
Arti�ial Intelligene IDr Sean Holden

Notes on problem solving by searh

Copyright Sean Holden 2002-2010.

Problem solving by searhWe begin with what is perhaps the simplest olletion of AI teh-niques: those allowing an agent existing within an environment tosearh for a sequene of ations that ahieves a goal .The algorithms an, rudely, be divided into two kinds: uninformedand informed .Not surprisingly, the latter are more e�etive and so we'll look atthose in more detail.Reading: Russell and Norvig, hapters 3 and 4.

Problem solving by searhAs with any area of omputer siene, some degree of abstration isneessary when designing AI algorithms.Searh algorithms apply to a partiularly simple lass of problems|we need to identify:� An initial state : what is the agent's situation to start with?� A set of ations : these are modelled by speifying what state willresult on performing any available ation from any known state.� A goal test : we an tell whether or not the state we're in orre-sponds to a goal.Note that the goal may be desribed by a property rather than anexpliit state or set of states, for example hekmate .

Problem solving by searhA simple example: the 8-puzzle .

2 58

6

7 3 4

1

2 5

6

7 3 4

18

5

6

3

18

7 4

2

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

Ation Ation

Start State

Goal StateFurther ations

(A good way of keeping kids quiet...)

Problem solving by searhStart state: a randomly-seleted on�guration of the numbers 1 to
8 arranged on a 3 × 3 square grid, with one square empty.Goal state: the numbers in asending order with the bottom rightsquare empty.Ations: left, right, up, down. We an move any square adjaentto the empty square into the empty square. (It's not always possibleto hoose from all four ations.)Path ost: 1 per move.The 8-puzzle is very simple. However general sliding blok puzzlesare a good test ase. The general problem is NP-omplete. The 5×5version has about 1025 states, and a random instane is in fat quitea hallenge.

Problem solving by basi searhEVIL ROBOT has found himself in an unfamiliar building:
ODIN

Evil Robot Teleport

He wants the ODIN (Oblivion Devie of Indesribable Nastiness).

Problem solving by searhStart state: EVIL ROBOT is in the top left orner.Goal state: EVIL ROBOT is in the area ontaining the ODIN.Ations: left, right, up, down. We an move as long as there's nowall in the way. (Again, it's not always possible to hoose from allfour ations.)Path ost: 1 per move. If you step on a teleport then you move tothe other one with a ost of 0.

Problem solving by searhProblems of this kind are very simple, but a surprisingly large numberof appliations have appeared:� route-�nding/tour-�nding� layout of VLSI systems� navigation systems for robots� sequening for automati assembly� searhing the internet� design of proteinsand many others...Problems of this kind ontinue to form an ative researh area.

Problem solving by searhIt's worth emphasising that a lot of abstration has taken plae here:� Can the agent know it's urrent state in full?� Can the agent know the outome of its ations in full?Single-state problems: the state is always known preisely, as is thee�et of any ation. There is therefore a single outome state.Multiple-state problems: The e�ets of ations are known, but thestate an not reliably be inferred, or the state is known but not thee�ets of the ations.

Problem solving by searhSingle and multiple state problems an be handled using these searhtehniques.In the latter, we must reason about the set of states that we ouldbe in:� In this ase we have an initial set of states.� Eah ation leads to a further set of states.� The goal is a set of states all of whih are valid goals.

Problem solving by searhContingeny problemsIn some situations it is neessary to perform sensing while the ationsare being arried out in order to guarantee reahing a goal.(It's good to keep your eyes open while you ross the road!)This kind of problem requires planning and will be dealt with later.Sometimes it is atively bene�ial to at and see what happens, ratherthan to try to onsider all possibilities in advane in order to obtaina perfet plan.

Problem solving by searhExploration problemsSometimes you have no knowledge of the e�et that your ationshave on the environment.Babies in partiular have this experiene.This means you need to experiment to �nd out what happens whenyou at.This kind of problem requires reinforement learning for a solution.We will not over reinforement learning in this ourse. (Although itis in AI II.)

Searh treesThe basi idea should be familiar from your (urrent) Algorithms Iourse, and also from Foundations of Computer Siene .� We build a tree with the start state as root node.� A node is expanded by applying ations to it to generate newstates.� A path is a sequene of ations that lead from state to state.� The aim is to �nd a goal state within the tree.� A solution is a path beginning with the initial state and endingin a goal state.We may also be interested in the path ost as some solutions mightbe better than others.Path ost will be denoted by p.

2 58

6

7 3 4

1 7

2 58

6

3 4

1

2 58

6

7 3 4

1

5

6

3

18

7 4

2

7

3

2 58

6

4

1 7

2 58

6

3 4

1

6

2 58

7 3 4

1

6

6

6

2

1

3

2 5

6

7 3 4

18Start State

2 58

7 4

1

2 58

7 3 4

1

58

7 3 4

1

2 58

7 3 4

6

Further statesUpDown
Left

DownLeft
UpLeftDown

Right Up Left

Searh trees versus searh graphsWe need to make an important distintion between searh trees andsearh graphs . For the time being we assume that it's a tree asopposed to a graph that we're dealing with.
as opposed to

(There is a good reason for this, whih we'll get to in a moment...)In a tree only one path an lead to a given state. In a graph a statean be reahed via possibly multiple paths .

Searh treesBasi approah:� Test the root to see if it is a goal.� If not then expand it by generating all possible suessor statesaording to the available ations.� If there is only one outome state then move to it. Otherwisehoose one of the outomes and expand it.� The way in whih this hoie is made de�nes a searh strategy .� Repeat until you �nd a goal.The olletion of states generated but not yet expanded is alled thefringe or frontier and is generally stored as a queue .

The basi tree-searh algorithmIn pseudo-ode, the algorithm looks like this:

function treeSearch

{

fringe = queue containing only the start state;

while()

{

if (empty(fringe))

return fail;

node = head(fringe);

if (goal(node))

return solution(node);

fringe = insert(expand(node), fringe);

}

}The searh strategy is set by using a priority queue .The de�nition of priority then sets the way in whih the tree issearhed.

The basi tree-searh algorithm
Not yet investigated

In the fringe, but not expanded

Expanded

The basi tree-searh algorithmWe an immediately de�ne some familiar tree searh algorithms:� New nodes are added to the head of the queue . This is depth-�rstsearh .� New nodes are added to the tail of the queue . This is breadth-�rst searh .We will not dwell on these, as they are both ompletely hopeless inpratie.Why is that?

The performane of searh tehniquesHow might we judge the performane of a searh tehnique?We are interested in:� Whether a solution is found.� Whether the solution found is a good one in terms of path ost.� The ost of the searh in terms of time and memory.the total ost = path ost+ searh ostIf a problem is highly omplex it may be worth settling for a sub-optimal solution obtained in a short time .

Evaluation of searh strategiesWe are also interested in:Completeness: does the strategy guarantee a solution is found?Optimality: does the strategy guarantee that the best solution isfound?One we start to onsider these, things get a lot more interesting...

Breadth-�rst searhWhy is breadth-�rst searh hopeless?� The proedure is omplete : it is guaranteed to �nd a solution ifone exists.� The proedure is optimal if the path ost is a non-dereasingfuntion of node-depth. (Exerise: why is this?)� The proedure has exponential omplexity for both memory andtime . A branhing fator b requires
1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1nodes if the shortest path has depth d.In pratie it is the memory requirement that is problemati.

Depth-�rst searhWith depth-�rst searh: for a given branhing fator b and depth dthe memory requirement is O(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is beause we need to store nodes on the urrent path and theother unexpanded nodes .The time omplexity is O(bd). Despite this, if there are many so-lutions we stand a hane of �nding one quikly, ompared withbreadth-�rst searh.

Baktraking searhWe an sometimes improve on depth-�rst searh by using baktrak-ing searh .� If eah node knows how to generate the next possibility thenmemory is improved to O(d).� Even better, if we an work by making modi�ations to a statedesription then the memory requirement is:
– One full state desription, plus...
– ... O(d) ations (in order to be able to undo ations).How does this work?

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:No baktraking

+ [up, up]

we an undo this to obtain
+ [up]

and apply down to get
+ [up, down]

and so on...
up

2 58

6

7 3 4

1

2 5

6

7 3 4

18

2 58

6

3 4

17

up
down

left

With baktrakingIf we have:
2 5

6

7 3 4

18

2 58

7 3 4

1

2 58

6

3 4

17

6

Depth-�rst, depth-limited, and iterative deepening searhDepth-�rst searh is learly dangerous if the tree is very deep orin�nite .Depth-limited searh simply imposes a limit on depth. For exampleif we're searhing for a route on a map with n ities we know thatthe maximum depth will be n. However:� We still risk �nding a suboptimal solution.� The proedure beomes problemati if we impose a depth limitthat is too small.Usually we do not know a reasonable depth limit in advane.Iterative deepening searh repeatedly runs depth-limited searh forinreasing depth limits 0, 1, 2, . . .

Iterative deepening searhIterative deepening searh :� Essentially ombines the advantages of depth-�rst and breadth-�rst searh.� It is omplete and optimal.� It has a memory requirement similar to that of depth-�rst searh.Importantly, the fat that you're repeating a searh proess severaltimes is less signi�ant than it might seem.It's still not a good pratial method, but it does point us in thediretion of one...

Iterative deepening searhIterative deepening depends on the fat that the vast majority ofthe nodes in a tree are in the bottom level :� In a tree with branhing fator b and depth d the number of nodesis

f1(b, d) = 1 + b + b2 + b3 + · · · + bd =
bd+1 − 1

b − 1� A omplete iterative deepening searh of this tree generates the�nal layer one, the penultimate layer twie, and so on down tothe root, whih is generated d + 1 times. The total number ofnodes generated is therefore
f2(b, d) = (d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · · + 2bd−1 + bd

Iterative deepening searhExample:� For b = 20 and d = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706whih represents a 5 perent inrease with iterative deepeningsearh.� The overhead gets smaller as b inreases. However the time om-plexity is still exponential.For problems where the searh spae is large and the solution depthis not known, this an be a good method.

Iterative deepening searhFurther insight an be gained if we note that

f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)as we generate the root, then the tree to depth 1, and so on. Thus
f2(b, d) =

d∑

i=0

f1(b, i) =

d∑

i=0

bi+1 − 1

b − 1

=
1

b − 1

d∑

i=0

bi+1 − 1 =
1

b − 1

[(

d∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =

d∑

i=0

bi+1we have

f2(b, d) =
b

b − 1
f1(b, d) −

d + 1

b − 1so f2(b, d) is about equal to f1(b, d) for large b.

Bidiretional searhIn some problems we an simultaneously searh:forward from the start statebakward from the goal stateuntil the searhes meet.This is potentially a very good idea:� If the searh methods have omplexity O(bd) then...� ...we are onverting this to O(2bd/2) = O(bd/2).(Here, we are assuming the branhing fator is b in both diretions.)

Bidiretional searh - beware!� It is not always possible to generate eÆiently predeessors aswell as suessors.� If we only have the desription of a goal, not an expliit goal ,then generating predeessors an be hard. (For example, onsiderthe onept of hekmate .)� We need a way of heking whether or not a node appears in theother searh ...� ... and the �gure of O(bd/2) hides the assumption that we ando onstant time heking for intersetion of the frontiers. (Thismay be possible using a hash table).� We need to deide what kind of searh to use in eah half. Forexample, would depth-�rst searh be sensible? Possibly not...� ...to guarantee that the searhes meet, we need to store all thenodes of at least one of the searhes. Consequently the memoryrequirement is O(bd/2).

Uniform-ost searhBreadth-�rst searh �nds the shallowest solution, but this is notneessarily the best one.Uniform-ost searh is a variant. It uses the path ost p(n) as thepriority for the priority queue.Thus, the paths that are apparently best are explored �rst, and thebest solution will always be found if
∀n (∀n ′ ∈ suessors(n) . p(n ′) ≥ p(n))Although this is still not a good pratial algorithm, it does pointthe way forward to informed searh...

Repeated statesWith many problems it is easy to waste time by expanding nodesthat have appeared elsewhere in the tree. For example:

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

The sliding bloks puzzle for example su�ers this way.

Repeated statesFor example, in a problem suh as �nding a route in a map, whereall of the operators are reversible , this is inevitable.There are three basi ways to avoid this, depending on how you tradeo� e�etiveness against overhead.� Never return to the state you ame from .� Avoid yles: never proeed to a state idential to one of youranestors .� Do not expand any state that has previously appeared .Graph searh is a standard approah to dealing with the situation.It uses the last of these possibilities.

Graph searhIn pseudoode:

function graphSearch()

{

closed = {};

fringe = queue containing only the start state;

while ()

{

if (empty(fringe))

return fail;

node = head(fringe);

if goal(node)

return solution(node);

if (node not a member of closed)

{

closed = closed + node;

fringe = insert(expand(node), fringe);

}

}

}

Graph searhThere are several points to note regarding graph searh:1. The losed list ontains all the expanded nodes.2. The losed list an be implemented using a hash table.3. Both worst ase time and spae are now proportional to the sizeof the state spae.4. Memory: depth �rst and iterative deepening searh are no longerlinear spae as we need to store the losed list.5. Optimality: when a repeat is found we are disarding the newpossibility even if it is better than the �rst one.� This never happens for uniform-ost or breadth-�rst searhwith onstant step osts, so these remain optimal.� Iterative deepening searh needs to hek whih solution is bet-ter and if neessary modify path osts and depths for desen-dants of the repeated state.

Searh treesEverything we've seen so far is an example of uninformed or blindsearh|we only distinguish goal states from non-goal states.(Uniform ost searh is a slight anomaly as it uses the path ost as aguide.)To perform well in pratie we need to employ informed or heuristisearh.This involves exploiting knowledge of the distane between the ur-rent state and a goal .

Problem solving by informed searhBasi searh methods make limited use of any problem-spei� knowl-edge we might have.� We have already seen the onept of path ost p(n)

p(n) = ost of path (sequene of ations) from the start state to n� We an now introdue an evaluation funtion . This is a funtionthat attempts to measure the desirability of eah node .The evaluation funtion will learly not be perfet. (If it is, there isno need to searh.)Best-�rst searh simply expands nodes using the ordering given bythe evaluation funtion.

Greedy searhWe've already seen path ost used for this purpose.� This is misguided as path ost is not in general direted in anysense toward the goal .� A heuristi funtion , usually denoted h(n) is one that estimatesthe ost of the best path from any node n to a goal.� If n is a goal then h(n) = 0.Using a heuristi funtion along with best-�rst searh gives us thegreedy searh algorithm.

Example: route-�ndingExample: for route �nding a reasonable heuristi funtion is
h(n) = straight line distane from n to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal

n1 n2

Auray here obviously depends on what the roads are really like.

Example: route-�ndingGreedy searh su�ers from some problems:� Its time omplexity is O(bd).� Its spae-omplexity is O(bd).� It is not optimal or omplete.BUT: greedy searh an be e�etive, provided we have a good h(n).Wouldn't it be nie if we ould improve it to make it optimal andomplete?

A⋆ searhWell, we an.

A⋆ searh ombines the good points of:� Greedy searh|by making use of h(n).� Uniform-ost searh|by being optimal and omplete.It does this in a very simple manner: it uses path ost p(n) and alsothe heuristi funtion h(n) by forming
f(n) = p(n) + h(n)where

p(n) = ost of path to nand

h(n) = estimated ost of best path from nSo: f(n) is the estimated ost of a path through n.

A⋆ searh

A⋆ searh:� A best-�rst searh using f(n).� It is both omplete and optimal...� ...provided that h obeys some simple onditions.De�nition: an admissible heuristi h(n) is one that never overes-timates the ost of the best path from n to a goal.If h(n) is admissible then tree-searh A⋆ is optimal.

A⋆ tree-searh is optimal for admissible h(n)To see that A⋆ searh is optimal we reason as follows.Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt(beause h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with
f(Goal2) = p(Goal2) = f2 > foptWe need to demonstrate that the searh an never selet Goal2.

A⋆ tree-searh is optimal for admissible h(n)

Goalopt
n

Goal2 At some point Goal2 is in the fringe.Can it be seleted before n?

A⋆ tree-searh is optimal for admissible h(n)Let n be a leaf node in the fringe on an optimal path to Goalopt. So
fopt ≥ p(n) + h(n) = f(n)beause h is admissible.Now say Goal2 is hosen for expansion before n. This means that

f(n) ≥ f2so we've established that

fopt ≥ f2 = p(Goal2).But this means that Goalopt is not optimal: a ontradition.

A⋆ graph searhOf ourse, we will generally be dealing with graph searh .Unfortunately the proof breaks in this ase.� Graph searh an disard an optimal route if that route is notthe �rst one generated.� We ould keep only the least expensive path . This means updat-ing, whih is extra work, not to mention messy, but suÆient toinsure optimality.� Alternatively, we an impose a further ondition on h(n) whihfores the best path to a repeated state to be generated �rst .The required ondition is alled monotoniity . Asmonotoniity −→ admissibilitythis is an important property.

MonotoniityAssume h is admissible. Remember that f(n) = p(n) + h(n) so if n ′follows n

p(n ′) ≥ p(n)and we expet that h(n ′) ≤ h(n) although this does not have to bethe ase.

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

Here f(n) = 9 and f(n ′) = 7 so f(n ′) < f(n).

MonotoniityMonotoniity:� If it is always the ase that f(n ′) ≥ f(n) then h(n) is alled mono-toni.� h(n) is monotoni if and only if it obeys the triangle inequality .
h(n) ≤ ost(n a

−→ n ′) + h(n ′)If h(n) is not monotoni we an make a simple alteration and use

f(n ′) = max{f(n), p(n ′) + h(n ′)}This is alled the pathmax equation.

The pathmax equationWhy does the pathmax equation make sense?
n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

The fat that f(n) = 9 tells us the ost of a path through n is atleast 9 (beause h(n) is admissible).But n ′ is on a path through n. So to say that f(n ′) = 7 makes nosense.

A⋆ graph searh is optimal for monotoni heuristis
A⋆ graph searh is optimal for monotoni heuristis.The ruial fat from whih optimality follows is that if h(n) is mono-toni then the values of f(n) along any path are non-dereasing.Assume we move from n to n ′ using ation a. Then

∀a . p(n ′) = p(n) + ost(n a
−→ n ′)and using the triangle inequality

h(n) ≤ ost(n a
−→ n ′) + h(n ′) (1)Thus

f(n ′) = p(n ′) + h(n ′)

= p(n) + ost(n a
−→ n ′) + h(n ′)

≥ p(n) + h(n)

= f(n)where the inequality follows from equation 1.

A⋆ graph searh is optimal for monotoni heuristisWe therefore have the following situation:
f(n)

f(n ′′) < f(n ′) has been dealt with.
f(n ′)

You an't deal with n ′ until everything with

Consequently everything with f(n ′′) < fopt gets explored. Then oneor more things with fopt get found (not neessarily all goals).

A⋆ searh is omplete

A⋆ searh is omplete provided:1. The graph has �nite branhing fator.2. There is a �nite, positive onstant c suh that eah operator hasost at least c.Why is this?

A⋆ searh is ompleteThe searh expands nodes aording to inreasing f(n). So: the onlyway it an fail to �nd a goal is if there are in�nitely many nodes with
f(n) < f(Goal).There are two ways this an happen:1. There is a node with an in�nite number of desendants.2. There is a path with an in�nite number of nodes but a �nite pathost.

Complexity� A⋆ searh has a further desirable property: it is optimally eÆ-ient .� This means that no other optimal algorithm that works by on-struting paths from the root an guarantee to examine fewernodes.� BUT: despite its good properties we're not done yet...� ...A⋆ searh unfortunately still has exponential time omplexity inmost ases unless h(n) satis�es a very stringent ondition that isgenerally unrealisti:

|h(n) − h ′(n)| ≤ O(log h ′(n))where h ′(n) denotes the real ost from n to the goal.� As A⋆ searh also stores all the nodes it generates, one again itis generally memory that beomes a problem before time .

IDA⋆ - iterative deepening A⋆ searhHow might we improve the way in whih A⋆ searh uses memory?� Iterative deepening searh used depth-�rst searh with a limit ondepth that gradually inreased.� IDA⋆ does the same thing with a limit on f ost .
ActionSequence ida()

{

float fLimit = f(root);

root = root node for problem;

while()

{

(sequence, fLimit) = contour(root,fLimit,emptySequence);

if (sequence != emptySequence)

return sequence;

if (fLimit == infinity)

return emptySequence;

}

}

IDA⋆ - iterative deepening A⋆ searhThe funtion contour searhes from a given node, as far as thespei�ed f limit . It returns either a solution, or the next biggestvalue of f to try.

(ActionSequence,Float) contour(Node node, Float fLimit, ActionSequence s)

{

Float nextF = infinity;

if (f(node) > fLimit)

return (emptySequence,f(node));

ActionSequence s’ = addToSequence(node,s);

if (goalTest(node))

return (s’,fLimit);

for (each successor n’ of node)

{

(sequence,newF) = contour(n’,fLimit,s’);

if (sequence != emptySequence)

return (sequence,fLimit);

nextF = minimum(nextF,newF);

}

return (emptySequence,nextF);

}

IDA⋆ - iterative deepening A⋆ searhThis is a little triky to unravel, so here is an example:
37 4 5

Initially, the algorithm looks ahead and �nds the smallest f ost thatis greater than its urrent f ost limit. The new limit is 4.

IDA⋆ - iterative deepening A⋆ searhIt now does the same again:
37 4 55 9 10

Anything with f ost at most equal to the urrent limit gets explored,and the algorithm keeps trak of the smallest f ost that is greaterthan its urrent limit. The new limit is 5.

IDA⋆ - iterative deepening A⋆ searhAnd again:

37 4 55 9 10 19 12 78 12 7

The new limit is 7, so at the next iteration the three arrowed nodeswill be explored.

IDA⋆ - iterative deepening A⋆ searhProperties of IDA⋆:� It is omplete and optimal under the same onditions as A⋆.� It is often good if we have step osts equal to 1.� It does not require us to maintain a sorted queue of nodes.� It only requires spae proportional to the longest path .� The time taken depends on the number of values h an take.If h takes enough values to be problemati we an inrease f by a�xed ǫ at eah stage, guaranteeing a solution at most ǫ worse thanthe optimum.

Reursive best-�rst searh (RBFS)Another method by whih we an attempt to overome memory lim-itations is the Reursive best-�rst searh (RBFS).Idea: try to do a best-�rst searh, but only use linear spae by doinga depth-�rst searh with a few modi�ations:1. We remember the f(n ′) for the best alternative node n ′ we've seenso far on the way to the node n we're urrently onsidering.2. If n has f(n) > f(n ′):� We go bak and explore the best alternative...� ...and as we retrae our steps we replae the f ost of everynode we've seen in the urrent path with f(n).The replaement of f values as we retrae our steps provides a meansof remembering how good a disarded path might be, so that we aneasily return to it later.

Reursive best-�rst searh (RBFS)Note: for simpliity a parameter for the path has been omitted.
function RBFS(Node n, Float fLimit) {

if (goaltest(n))

return n;

if (n has no successors)

return (fail, infinity);

for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));

while() {

best = successor of n that has the smallest f(n’);

if (f(best) > fLimit)

return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;

(result, f(best)) = RBFS(best, minimum(fLimit, nextBest));

if (result != fail)

return result;

}

}IMPORTANT: f(best) is modi�ed when RBFS produes a result.

Reursive best-�rst searh (RBFS): an exampleThis funtion is alled using RBFS(startState, infinity) to beginthe proess.Funtion all number 1:

37 4 5best1 fLimit1 = ∞ nextBest1 = 5

Now perform the reursive funtion all (result2, f(best1)) = RBFS(best1, 5)

Reursive best-�rst searh (RBFS): an exampleFuntion all number 2:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 = ∞

5 9 10best2 nextBest2 = 9

Now perform the reursive funtion all (result3, f(best2)) = RBFS(best2, 5)

Reursive best-�rst searh (RBFS): an exampleFuntion all number 3:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 = ∞

5 9 10best211 12 10best3
5 replaed by 10 nextBest2 = 9

fLimit3 = 5

nextBest3 = 11

Now f(best3) > fLimit3 so the funtion all returns (fail, 10) into

(result3, f(best2)).

Reursive best-�rst searh (RBFS): an exampleThe while loop for funtion all 2 now repeats:
37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 = ∞

5 9 1011 12 10
5 replaed by 10 best2

4 replaed by 9

Now f(best2) > fLimit2 so the funtion all returns (fail, 9) into

(result2, f(best1)).

Reursive best-�rst searh (RBFS): an exampleThe while loop for funtion all 1 now repeats:
37 4 5fLimit1 = ∞

5 9 1011 12 10
5 replaed by 10

4 replaed by 9 best1nextBest1 = 7

We do a further funtion all to expand the new best node, and soon...

Reursive best-�rst searh (RBFS)Some nie properties:� If h is admissible then RBFS is optimal.� Memory requirement is O(bd)� Generally more eÆient than IDA⋆.And some less nie ones:� Time omplexity is hard to analyse, but an be exponential.� Can spend a lot of time re-generating nodes .

Other methods for getting around the memory problemTo some extent IDA⋆ and RBFS throw the baby out with the bath-water.� They limit memory too harshly, so...� ...we an try to use all available memory .MA⋆ and SMA⋆ will not be overed in this ourse...

Exerises1. Exam question: paper 5, question 6, 2004.2. Exam question: paper 3, question 8, 2007.3. Exam question: paper 3, question 7, 2008.4. Exam question: paper 4, question 3, 2009.72

