Artificial Intelligence I

Dr Sean Holden

Notes on problem solving by search

Copyright (©) Sean Holden 2002-2010.

Problem solving by search

We begin with what is perhaps the simplest collection of Al tech-
niques: those allowing an agent existing within an environment to
search for a sequence of actions that achieves a goal.

The algorithms can, crudely, be divided into two kinds: uninformed
and informed.

Not surprisingly, the latter are more effective and so we'll look at
those in more detail.

Reading: Russell and Norvig, chapters 3 and 4.

Problem solving by search

As with any area of computer science, some degree of abstraction is
necessary when designing Al algorithms.

Search algorithms apply to a particularly simple class of problems—
we need to identify:

e An wnitial state: what is the agent’s situation to start with?

e A set of actions: these are modelled by specifying what state will
result on performing any available action from any known state.

e A goal test: we can tell whether or not the state we're in corre-
sponds to a goal.

Note that the goal may be described by a property rather than an
explicit state or set of states, for example checkmate.

Problem solving by search

A simple example: the 8-puzzle.

Start State

A@mAcﬂ}m
2 |{||5
6mAction3
5 — Goal State
8 @)] Further actions m
* mEE

(A good way of keeping kids quiet...)

Problem solving by search

Start state: a randomly-selected configuration of the numbers 1 to
8 arranged on a 3 x 3 square grid, with one square empty.

Goal state: the numbers in ascending order with the bottom right
square empty.

Actions: left, right, up, down. We can move any square adjacent
to the empty square into the empty square. (It’s not always possible
to choose from all four actions.)

Path cost: 1 per move.

The 8-puzzle is very simple. However general sliding block puzzles
are a good test case. The general problem is NP-complete. The 5 x5
version has about 10? states, and a random instance is in fact quite
a challenge.

Problem solving by basic search

EVIL ROBOT has found himself in an unfamiliar building;:

EvilRobot/‘ : | %

- SRV T S X Teleport

He wants the ODIN (Oblivion Device of Indescribable Nastiness).

Problem solving by search

Start state: EVIL ROBOT is in the top left corner.
Goal state: EVIL ROBOT is in the area containing the ODIN.

Actions: left, right, up, down. We can move as long as there’s no
wall in the way. (Again, it's not always possible to choose from all
four actions.)

Path cost: 1 per move. If you step on a teleport then you move to
the other one with a cost of 0.

Problem solving by search

Problems of this kind are very simple, but a surprisingly large number
of applications have appeared:

e route-finding /tour-finding

e layout of VLSI systems

e navigation systems for robots

e sequencing for automatic assembly
e searching the internet

e design of proteins

and many others...

Problems of this kind continue to form an active research area.

Problem solving by search

It’s worth emphasising that a lot of abstraction has taken place here:

e Can the agent know it’s current state in full?

e Can the agent know the outcome of its actions in full?

Single-state problems: the state is always known precisely, as is the
effect of any action. There is therefore a single outcome state.

Multiple-state problems: The effects of actions are known, but the
state can not reliably be inferred, or the state is known but not the
effects of the actions.

Problem solving by search

Single and multiple state problems can be handled using these search
techniques.

In the latter, we must reason about the set of states that we could
be in:

e In this case we have an initial set of states.
e Hach action leads to a further set of states.

e The goal is a set of states all of which are valid goals.

Problem solving by search

Contingency problems

In some situations it is necessary to perform sensing while the actions
are being carried out in order to guarantee reaching a goal.

(It’s good to keep your eyes open while you cross the road!)
This kind of problem requires planning and will be dealt with later.

Sometimes it is actively beneficial to act and see what happens, rather
than to try to consider all possibilities in advance in order to obtain
a perfect plan.

Problem solving by search

Ezploration problems

Sometimes you have no knowledge of the effect that your actions
have on the environment.

Babies in particular have this experience.

This means you need to experiment to find out what happens when
you act.

This kind of problem requires reinforcement learning for a solution.
We will not cover reinforcement learning in this course. (Although it
isin Al IL.)

Search trees

The basic idea should be familiar from your (current) Algorithms I
course, and also from Foundations of Computer Science.

e We build a tree with the start state as root node.

e A node is expanded by applying actions to it to generate new
states.

e A path is a sequence of actions that lead from state to state.
e The aim is to find a goal state within the tree.

e A solution is a path beginning with the initial state and ending
in a goal state.

We may also be interested in the path cost as some solutions might
be better than others.

Path cost will be denoted by p.

AR
...Wu[jnnnn
7 3 4
7 BEE |EEm—
BEm - 5
Up
Start State /
-
Left
aEE, [@ - 0D @EE -
e
BEE > ———aEH__——)
Al —e
v\ |E[E[E] oo |
5 p T EEE EEE
aEEN\ DEE | |@n @EE f{ 4
= 5 EE 8D 0 [EEE
B 5 EE
BEE

Search trees versus search graphs

We need to make an important distinction between search trees and
search graphs. For the time being we assume that it's a tree as
opposed to a graph that we're dealing with.

as opposed to

(There is a good reason for this, which we'll get to in a moment...)

In a tree only one path can lead to a given state. In a graph a state
can be reached via possibly multiple paths.

Search trees

Basic approach:

e Test the root to see if it is a goal.

e If not then expand it by generating all possible successor states
according to the available actions.

o If there is only one outcome state then move to it. Otherwise
choose one of the outcomes and expand it.

e The way in which this choice is made defines a search strategy.

e Repeat until you find a goal.

The collection of states generated but not yet expanded is called the
fringe or frontier and is generally stored as a queue.

The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch
{
fringe = queue containing only the start state;
while()
{
if (empty(fringe))
return fail;
node = head(fringe);
if (goal(node))
return solution(node);
fringe = insert(expand(node), fringe);

The search strategy is set by using a priority queue.

The definition of priority then sets the way in which the tree is
searched.

The basic tree-search algorithm

. Expanded
O In the fringe, but not expanded

@ Notyetinvestigated

The basic tree-search algorithm

We can immediately define some familiar tree search algorithms:

e New nodes are added to the head of the queue. This is depth-first
search.

e New nodes are added to the tail of the queue. This is breadth-
first search.

We will not dwell on these, as they are both completely hopeless in
practice.

Why is that?

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

e Whether a solution is found.
e Whether the solution found is a good one in terms of path cost.

e The cost of the search in terms of time and memory.

the total cost = path cost + search cost

If a problem is highly complex it may be worth settling for a sub-
optimal solution obtained in a short time.

Evaluation of search strategies

We are also interested in:
Completeness: does the strategy guarantee a solution is found?

Optimality: does the strategy guarantee that the best solution is
found?

Once we start to consider these, things get a lot more interesting...

Breadth-first search

Why is breadth-first search hopeless?

e The procedure is complete: it is guaranteed to find a solution if
one exists.

e The procedure is optimal if the path cost is a non-decreasing
function of node-depth. (Exercise: why is this?)

e The procedure has exponential complezity for both memory and
time. A branching factor b requires

bd+l —1

T4b+b2 4% 4o b = =

nodes if the shortest path has depth d.

In practice it is the memory requirement that is problematic.

Depth-first search

With depth-first search: for a given branching factor b and depth d
the memory requirement is O(bd).

.

This is because we need to store nodes on the current path and the
other unexpanded nodes.

The time complexity is O(b%). Despite this, if there are many so-
lutions we stand a chance of finding one quickly, compared with
breadth-first search.

Backtracking search

We can sometimes improve on depth-first search by using backtrack-
ing search.

e If each node knows how to generate the next possibility then
memory is improved to O(d).

e Even better, if we can work by making modifications to a state
description then the memory requirement is:

— One full state description, plus...
— ... O(d) actions (in order to be able to undo actions).

How does this work?

No backtracking ‘With backtracking
Trying: up, down, left, right: If we have:
7110 E|E(m
BEE //’ aE
up)/ we can undo this to obtain
@ m @ m + [up]
BEE B/ [E
up * \ and apply down to get
down
87| (61|67 | =) (e) |61 2] 3]] s
~

and s

]
o
B

Depth-first, depth-limited, and iterative deepening search

Depth-first search is clearly dangerous if the tree is very deep or
infinite.

Depth-limited search simply imposes a limit on depth. For example
if we're searching for a route on a map with n cities we know that
the maximum depth will be n. However:

o We still risk finding a suboptimal solution.

e The procedure becomes problematic if we impose a depth limit
that is too small.

Usually we do not know a reasonable depth limit in advance.

Iterative deepening search repeatedly runs depth-limited search for
increasing depth limits 0,1,2,...

Iterative deepening search

Iterative deepening search:

e Hssentially combines the advantages of depth-first and breadth-
first search.

e It is complete and optimal.

e It has a memory requirement similar to that of depth-first search.

Importantly, the fact that you're repeating a search process several
times is less significant than it might seem.

It’s still not a good practical method, but it does point us in the
direction of one...

Iterative deepening search

Iterative deepening depends on the fact that the vast majority of
the nodes in a tree are in the bottom level:

e In a tree with branching factor b and depth d the number of nodes

18
d+1 1

b—1
e A complete iterative deepening search of this tree generates the
final layer once, the penultimate layer twice, and so on down to

the root, which is generated d 4+ 1 times. The total number of
nodes generated is therefore

f2(b,d)=(d+1)+db+(d—1)b*+ (d—2)b>+ -+ 2b% " 4+ bd

fi(b,d) =14+b+b*+b>+...+b%=

Iterative deepening search

Example:

e For b =20 and d =5 we have
fi(b,d) = 3,368,421

f,(b,d) = 3,545,706

which represents a 5 percent increase with iterative deepening
search.

e The overhead gets smaller as b increases. However the time com-
plexity is still exponential.

For problems where the search space is large and the solution depth
is not known, this can be a good method.

Iterative deepening search

Further insight can be gained if we note that
fa(b,d) = f1(b,0) + f1(b, 1) + - - + f1(b, d)
as we generate the root, then the tree to depth 1, and so on. Thus

d d bt —1
fa(b,d) =) fi(b,1) =
2()d) ;](,1) ; b1
1 4 1 d
_szm—‘_b_][(Zb”‘>—(d+1)
=0 i=0
Noting that
a
bf](b,d):b-|-b2_|_..._|_bd+1:Zbiﬂ
i=0
we have , i
f2(b,d) = +—fi(b,d) — - —

so f,(b, d) is about equal to f;(b, d) for large b.

Bidirectional search

In some problems we can simultaneously search:
forward from the start state

backward from the goal state

until the searches meet.

This is potentially a very good idea:

e If the search methods have complexity O(b¢) then...
e ...we are converting this to O(2b%?) = O(b%/2).

(Here, we are assuming the branching factor is b in both directions.)

Bidirectional search - beware!

e It is not always possible to generate efficiently predecessors as
well as successors.

e If we only have the description of a goal, not an explicit goal,
then generating predecessors can be hard. (For example, consider
the concept of checkmate.)

e We need a way of checking whether or not a node appears in the
other search...

e ... and the figure of O(b%?) hides the assumption that we can
do constant time checking for intersection of the frontiers. (This
may be possible using a hash table).

e We need to decide what kind of search to use in each half. For
example, would depth-first search be sensible? Possibly not...

e ...to guarantee that the searches meet, we need to store all the
nodes of at least one of the searches. Consequently the memory
requirement is O(b%/?).

Uniform-cost search

Breadth-first search finds the shallowest solution, but this is not
necessarily the best one.

Uniform-cost search is a variant. It uses the path cost p(n) as the
priority for the priority queue.

Thus, the paths that are apparently best are explored first, and the
best solution will always be found if

vn (Vn' € successors(n) . p(n’) > p(n))

Although this is still not a good practical algorithm, it does point
the way forward to informed search...

Repeated states

With many problems it is easy to waste time by expanding nodes
that have appeared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.

Repeated states

For example, in a problem such as finding a route in a map, where
all of the operators are reversible, this is inevitable.

There are three basic ways to avoid this, depending on how you trade
off effectiveness against overhead.

e Never return to the state you came from.

e Avoid cycles: never proceed to a state identical to one of your
ancestors.

e Do not expand any state that has previously appeared.

Graph search is a standard approach to dealing with the situation.
It uses the last of these possibilities.

Graph search

In pseudocode:

function graphSearch()

{
closed = {};
fringe = queue containing only the start state;
while O
{

if (empty(fringe))
return fail;
node = head(fringe);
if goal(node)
return solution(node);
if (node not a member of closed)
{
closed = closed + node;
fringe = insert(expand(node), fringe);
¥
}
}

Graph search
There are several points to note regarding graph search:

1. The closed list contains all the expanded nodes.
2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional to the size
of the state space.

4. Memory: depth first and iterative deepening search are no longer
linear space as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new
possibility even if it is better than the first one.

e This never happens for uniform-cost or breadth-first search
with constant step costs, so these remain optimal.

e [terative deepening search needs to check which solution is bet-
ter and if necessary modify path costs and depths for descen-
dants of the repeated state.

Search trees

Everything we've seen so far is an example of uninformed or blind
search—we only distinguish goal states from non-goal states.

(Uniform cost search is a slight anomaly as it uses the path cost as a
guide.)

To perform well in practice we need to employ informed or heuristic
search.

This involves exploiting knowledge of the distance between the cur-
rent state and a goal.

Problem solving by informed search

Basic search methods make limited use of any problem-specific knowl-
edge we might have.

e We have already seen the concept of path cost p(n)

p(n) = cost of path (sequence of actions) from the start state to n

e We can now introduce an evaluation function. This is a function
that attempts to measure the desirability of each node.

The evaluation function will clearly not be perfect. (If it is, there is
no need to search.)

Best-first search simply expands nodes using the ordering given by
the evaluation function.

Greedy search

We've already seen path cost used for this purpose.

e This is misguided as path cost is not in general directed in any
sense toward the goal.

e A heuristic function, usually denoted h(n) is one that estimates
the cost of the best path from any node n to a goal.

e If n is a goal then h(n) =0.

Using a heuristic function along with best-first search gives us the
greedy search algorithm.

Example: route-finding

Ezample: for route finding a reasonable heuristic function is

h(n) = straight line distance from n to the nearest goal

n 1 n; 1 n3
@ - L °
hino) =v2 |
< h(ns) =1
hi)=v5
e Goal

Accuracy here obviously depends on what the roads are really like.

Example: route-finding

Greedy search suffers from some problems:

e Its time complexity is O(b?).
o Its space-complexity is O(b4).

e It is not optimal or complete.

BUT: greedy search can be effective, provided we have a good h(n).

Wouldn’t it be nice if we could improve it to make it optimal and
complete?

A* search

Well, we can.

A* search combines the good points of:

e Greedy search—by making use of h(n).

e Uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path cost p(n) and also
the heuristic function h(n) by forming
f(n) =p(n)+h(n)
where
p(n) = cost of path to n

and
h(n) = estimated cost of best path from n

So: f(n) is the estimated cost of a path through n.

A* search
A* search:

e A best-first search using f(n).
e [t is both complete and optimal...

e ...provided that h obeys some simple conditions.

Definition: an admaissible heuristic h(n) is one that never overes-
timates the cost of the best path from n to a goal.

If h(n) is admissible then tree-search A* is optimal.

A* tree-search is optimal for admissible h(n)

To see that A* search is optimal we reason as follows.

Let Goalyp be an optimal goal state with
(Goalopt) = p(Coalopt) = fops

(because h(Goalyp) = 0). Let Goal, be a suboptimal goal state with
f(Goal;) = p(Goaly) = f; > fopt

We need to demonstrate that the search can never select Goal,.

A* tree-search is optimal for admissible h(n)

At some point Goal, is in the fringe.

Can it be selected before n?

. \. Goalopt

A* tree-search is optimal for admissible h(n)

Let n be a leaf node in the fringe on an optimal path to Goaley. So
fopt > p(n) + h(n) = f(n)

because h 1s admissible.

Now say Goal, is chosen for expansion before n. This means that
fln) > 1,
so we've established that
fopt > f2 = p(Goaly).

But this means that Goalgy: is not optimal: a contradiction.

A* graph search

Of course, we will generally be dealing with graph search.

Unfortunately the proof breaks in this case.

e Graph search can discard an optimal route if that route is not
the first one generated.

e We could keep only the least expensive path. This means updat-
ing, which is extra work, not to mention messy, but sufficient to
insure optimality.

e Alternatively, we can impose a further condition on h(n) which
forces the best path to a repeated state to be generated first.

The required condition is called monotonicity. As
monotonicity — admissibility

this is an important property.

Monotonicity

Assume h is admissible. Remember that f(n) = p(n) + h(n) so if n’
follows n

p(m') >p(n)
and we expect that h(n’) < h(n) although this does not have to be
the case.

Here f(n) = 9 and f(n/) =7 so f(n') < f(n).

Monotonicity

Monotonzicity:

e If it is always the case that f(n’) > f(n) then h(n) is called mono-
tonic.

e h(n) is monotonic if and only if it obeys the triangle inequality.

h(n) < cost(n —= n’) + h(n')

If h(n) is not monotonic we can make a simple alteration and use
f(n') = max{f(n),p(n’) + h(n')}

This is called the pathmaz equation.

The pathmax equation

Why does the pathmax equation make sense?

The fact that f(n) = 9 tells us the cost of a path through n is at
least 9 (because h(n) is admissible).

But n’ is on a path through n. So to say that f(n’) = 7 makes no
sense.

A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if h(n) is mono-
tonic then the values of f(n) along any path are non-decreasing.

Assume we move from n to n’ using action a. Then

Va.pm') =p(n)+ cost(n — n’)
and using the triangle inequality

h(n) < cost(n == n') + h(n’) (1)

Thus
p(n') +h(n')
p(n) + cost(n == n') + h(n')
p(n) +h(n)
= f(n)

where the inequality follows from equation 1.

f(n’)

[AVAT

A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can’t deal with n’ until everything with

f(n”) < f(n') has been dealt with.

Consequently everything with f(n”) < fop; gets explored. Then one
or more things with fop; get found (not necessarily all goals).

A* search is complete

A* search is complete provided:

1. The graph has finite branching factor.

2. There is a finite, positive constant ¢ such that each operator has
cost at least c.

Why is this?

A* search is complete

The search expands nodes according to increasing f(n). So: the only
way it can fail to find a goal is if there are infinitely many nodes with
f(n) < f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.

2. There is a path with an infinite number of nodes but a finite path
cost.

Complexity

e A* search has a further desirable property: it is optimally effi-
cient.

e This means that no other optimal algorithm that works by con-
structing paths from the root can guarantee to examine fewer
nodes.

e BUT:" despite its good properties we're not done yet...

e ...A* search unfortunately still has exponential time complexity in
most cases unless h(n) satisfies a very stringent condition that is
generally unrealistic:

Ih(n) —h'(n)] < O(logh'(n))
where h’/(n) denotes the real cost from n to the goal.

e As A* search also stores all the nodes it generates, once again it
is generally memory that becomes a problem before time.

IDA” - iterative deepening A* search

How might we improve the way in which A* search uses memory?

e Iterative deepening search used depth-first search with a limit on
depth that gradually increased.

e IDA* does the same thing with a limit on cost.

ActionSequence ida()
{
float fLimit = f(root);
root = root node for problem;
while()
{
(sequence, fLimit) = contour(root,fLimit,emptySequence);
if (sequence != emptySequence)
return sequence;
if (fLimit == infinity)
return emptySequence;

IDA” - iterative deepening A* search

The function contour searches from a given node, as far as the
specified f limit. It returns either a solution, or the next biggest
value of f to try.

(ActionSequence,Float) contour(Node node, Float fLimit, ActionSequence s)
{
Float nextF = infinity;
if (f(node) > fLimit)
return (emptySequence,f (node));
ActionSequence s’ = addToSequence(node,s);
if (goalTest(node))
return (s’,fLimit);
for (each successor n’ of node)
{
(sequence,newF) = contour(n’,fLimit,s’);
if (sequence != emptySequence)
return (sequence,fLimit);
nextF = minimum(nextF,newF);
}

return (emptySequence,nextF);

IDA” - iterative deepening A* search

This is a little tricky to unravel, so here is an example:

Initially, the algorithm looks ahead and finds the smallest f cost that
is greater than its current f cost limit. The new limit is 4.

IDA” - iterative deepening A* search

It now does the same again:

Anything with f cost at most equal to the current limit gets explored,
and the algorithm keeps track of the smallest f cost that is greater
than its current limit. The new limit is 5.

IDA” - iterative deepening A* search

And again:

X

The new limit is 7, so at the next iteration the three arrowed nodes
will be explored.

IDA” - iterative deepening A* search

Properties of IDA™:

e It is complete and optimal under the same conditions as A*.
e It is often good if we have step costs equal to 1.

e It does not require us to maintain a sorted queue of nodes.
e It only requires space proportional to the longest path.

e The time taken depends on the number of values h can take.

If h takes enough values to be problematic we can increase f by a
fixed € at each stage, guaranteeing a solution at most € worse than
the optimum.

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory lim-
itations is the Recursive best-first search (RBF'S).

Idea: try to do a best-first search, but only use linear space by doing
a depth-first search with a few modifications:

1. We remember the f(n') for the best alternative node n’ we've seen
so far on the way to the node n we're currently considering.
2. If n has f(n) > f(n'):
e We go back and explore the best alternative...

e ..and as we retrace our steps we replace the f cost of every
node we’ve seen in the current path with f(n).

The replacement of f values as we retrace our steps provides a means
of remembering how good a discarded path might be, so that we can
easily return to it later.

Recursive best-first search (RBFS)

Note: for simplicity a parameter for the path has been omitted.

function RBFS(Node n, Float fLimit) {
if (goaltest(n))
return n;
if (n has no successors)
return (fail, infinity);
for (each successor n’ of n)
f(n’) = maximum(f(n’), £(n));
while() {
best = successor of n that has the smallest f(n’);
if (f(best) > fLimit)
return (fail, f(best));
nextBest = second smallest f(n’) value for successors of n;
(result, f(best)) = RBFS(best, minimum(fLimit, nextBest));
if (result != fail)
return result;

IMPORTANT: f(best) is modified when RBFS produces a result.

Recursive best-first search (RBFS): an example

This function is called using RBFS(startState, infinity) to begin
the process.

Function call number 1:

fLimit; = oo

Now perform the recursive function call (result,, f(best;)) = RBFS(bests,5)

Recursive best-first search (RBFS): an example

Function call number 2:

3 fLimit; = oo
fLimit, =5

5
_ nextBet

Now perform the recursive function call (results, f(best,)) = RBFS(besty,5)

Recursive best-first search (RBFS): an example

Function call number 3:

3 fLimit; = co
fLimit, = 5
imit; =5

nextBest; = 11 best;

Now f(best;) > fLimit; so the function call returns (fail, 10) into
(results, f(best,)).

Recursive best-first search (RBFS): an example

The while loop for function call 2 now repeats:

3 fLimit; = oo
fLimit, = 5

4 replaced by 9

5
- _ nextBes

5 replaced by

Now f(best;) > fLimit, so the function call returns (fail,9) into
(result,, f(bestq)).

Recursive best-first search (RBFS): an example

The while loop for function call 1 now repeats:

3 fLimit, = oo

4 replaced by 9

~ nextBest; =7

) 5 replaced by
4 b .
s s S

11/ 12

’ ! \ ’ ! \ /, ! \\ ’ ! \ ’ ! \ ’ ! \ ’ ! \ ’ ! \
SN SN SN 10/ 0N SN SN SN SN
e ©¢ ¢ ¢ ©¢ ¢ ¢ ° ¢ ® ©¢ ¢ ¢ ©¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o ¢

We do a further function call to expand the new best node, and so
on...

Recursive best-first search (RBFS)

Some nice properties:

e If h is admissible then RBF'S is optimal.
e Memory requirement is O(bd)

e Generally more efficient than IDA™.
And some less nice ones:

e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of time re-generating nodes.

Other methods for getting around the memory problem

To some extent IDA* and RBF'S throw the baby out with the bath-
water.

e They limit memory too harshly, so...

e ...we can try to use all available memory.

MA* and SMA* will not be covered in this course...

[93

Exercises

1. Exam question: paper 5, question 6, 2004.
2. Exam question: paper 3, question 8, 2007.
3. Exam question: paper 3, question 7, 2008.
4. Exam question: paper 4, question 3, 2009.

