
Arti�
ial Intelligen
e IDr Sean Holden

Notes on problem solving by sear
h

Copyright

 Sean Holden 2002-2010.

Problem solving by sear
hWe begin with what is perhaps the simplest
olle
tion of AI te
h-niques: those allowing an agent existing within an environment tosear
h for a sequen
e of a
tions that a
hieves a goal .The algorithms
an,
rudely, be divided into two kinds: uninformedand informed .Not surprisingly, the latter are more e�e
tive and so we'll look atthose in more detail.Reading: Russell and Norvig,
hapters 3 and 4.

Problem solving by sear
hAs with any area of
omputer s
ien
e, some degree of abstra
tion isne
essary when designing AI algorithms.Sear
h algorithms apply to a parti
ularly simple
lass of problems|we need to identify:� An initial state : what is the agent's situation to start with?� A set of a
tions : these are modelled by spe
ifying what state willresult on performing any available a
tion from any known state.� A goal test : we
an tell whether or not the state we're in
orre-sponds to a goal.Note that the goal may be des
ribed by a property rather than anexpli
it state or set of states, for example
he
kmate .

Problem solving by sear
hA simple example: the 8-puzzle .

2 58

6

7 3 4

1

2 5

6

7 3 4

18

5

6

3

18

7 4

2

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

A
tion A
tion

Start State

Goal StateFurther a
tions

(A good way of keeping kids quiet...)

Problem solving by sear
hStart state: a randomly-sele
ted
on�guration of the numbers 1 to

8 arranged on a 3 × 3 square grid, with one square empty.Goal state: the numbers in as
ending order with the bottom rightsquare empty.A
tions: left, right, up, down. We
an move any square adja
entto the empty square into the empty square. (It's not always possibleto
hoose from all four a
tions.)Path
ost: 1 per move.The 8-puzzle is very simple. However general sliding blo
k puzzlesare a good test
ase. The general problem is NP-
omplete. The 5×5version has about 1025 states, and a random instan
e is in fa
t quitea
hallenge.

Problem solving by basi
 sear
hEVIL ROBOT has found himself in an unfamiliar building:
ODIN

Evil Robot Teleport

He wants the ODIN (Oblivion Devi
e of Indes
ribable Nastiness).

Problem solving by sear
hStart state: EVIL ROBOT is in the top left
orner.Goal state: EVIL ROBOT is in the area
ontaining the ODIN.A
tions: left, right, up, down. We
an move as long as there's nowall in the way. (Again, it's not always possible to
hoose from allfour a
tions.)Path
ost: 1 per move. If you step on a teleport then you move tothe other one with a
ost of 0.

Problem solving by sear
hProblems of this kind are very simple, but a surprisingly large numberof appli
ations have appeared:� route-�nding/tour-�nding� layout of VLSI systems� navigation systems for robots� sequen
ing for automati
 assembly� sear
hing the internet� design of proteinsand many others...Problems of this kind
ontinue to form an a
tive resear
h area.

Problem solving by sear
hIt's worth emphasising that a lot of abstra
tion has taken pla
e here:� Can the agent know it's
urrent state in full?� Can the agent know the out
ome of its a
tions in full?Single-state problems: the state is always known pre
isely, as is thee�e
t of any a
tion. There is therefore a single out
ome state.Multiple-state problems: The e�e
ts of a
tions are known, but thestate
an not reliably be inferred, or the state is known but not thee�e
ts of the a
tions.

Problem solving by sear
hSingle and multiple state problems
an be handled using these sear
hte
hniques.In the latter, we must reason about the set of states that we
ouldbe in:� In this
ase we have an initial set of states.� Ea
h a
tion leads to a further set of states.� The goal is a set of states all of whi
h are valid goals.

Problem solving by sear
hContingen
y problemsIn some situations it is ne
essary to perform sensing while the a
tionsare being
arried out in order to guarantee rea
hing a goal.(It's good to keep your eyes open while you
ross the road!)This kind of problem requires planning and will be dealt with later.Sometimes it is a
tively bene�
ial to a
t and see what happens, ratherthan to try to
onsider all possibilities in advan
e in order to obtaina perfe
t plan.

Problem solving by sear
hExploration problemsSometimes you have no knowledge of the e�e
t that your a
tionshave on the environment.Babies in parti
ular have this experien
e.This means you need to experiment to �nd out what happens whenyou a
t.This kind of problem requires reinfor
ement learning for a solution.We will not
over reinfor
ement learning in this
ourse. (Although itis in AI II.)

Sear
h treesThe basi
 idea should be familiar from your (
urrent) Algorithms I
ourse, and also from Foundations of Computer S
ien
e .� We build a tree with the start state as root node.� A node is expanded by applying a
tions to it to generate newstates.� A path is a sequen
e of a
tions that lead from state to state.� The aim is to �nd a goal state within the tree.� A solution is a path beginning with the initial state and endingin a goal state.We may also be interested in the path
ost as some solutions mightbe better than others.Path
ost will be denoted by p.

2 58

6

7 3 4

1 7

2 58

6

3 4

1

2 58

6

7 3 4

1

5

6

3

18

7 4

2

7

3

2 58

6

4

1 7

2 58

6

3 4

1

6

2 58

7 3 4

1

6

6

6

2

1

3

2 5

6

7 3 4

18Start State

2 58

7 4

1

2 58

7 3 4

1

58

7 3 4

1

2 58

7 3 4

6

Further statesUpDown
Left

DownLeft
UpLeftDown

Right Up Left

Sear
h trees versus sear
h graphsWe need to make an important distin
tion between sear
h trees andsear
h graphs . For the time being we assume that it's a tree asopposed to a graph that we're dealing with.
as opposed to

(There is a good reason for this, whi
h we'll get to in a moment...)In a tree only one path
an lead to a given state. In a graph a state
an be rea
hed via possibly multiple paths .

Sear
h treesBasi
 approa
h:� Test the root to see if it is a goal.� If not then expand it by generating all possible su

essor statesa

ording to the available a
tions.� If there is only one out
ome state then move to it. Otherwise
hoose one of the out
omes and expand it.� The way in whi
h this
hoi
e is made de�nes a sear
h strategy .� Repeat until you �nd a goal.The
olle
tion of states generated but not yet expanded is
alled thefringe or frontier and is generally stored as a queue .

The basi
 tree-sear
h algorithmIn pseudo-
ode, the algorithm looks like this:

function treeSearch

{

fringe = queue containing only the start state;

while()

{

if (empty(fringe))

return fail;

node = head(fringe);

if (goal(node))

return solution(node);

fringe = insert(expand(node), fringe);

}

}The sear
h strategy is set by using a priority queue .The de�nition of priority then sets the way in whi
h the tree issear
hed.

The basi
 tree-sear
h algorithm
Not yet investigated

In the fringe, but not expanded

Expanded

The basi
 tree-sear
h algorithmWe
an immediately de�ne some familiar tree sear
h algorithms:� New nodes are added to the head of the queue . This is depth-�rstsear
h .� New nodes are added to the tail of the queue . This is breadth-�rst sear
h .We will not dwell on these, as they are both
ompletely hopeless inpra
ti
e.Why is that?

The performan
e of sear
h te
hniquesHow might we judge the performan
e of a sear
h te
hnique?We are interested in:� Whether a solution is found.� Whether the solution found is a good one in terms of path
ost.� The
ost of the sear
h in terms of time and memory.the total
ost = path
ost+ sear
h
ostIf a problem is highly
omplex it may be worth settling for a sub-optimal solution obtained in a short time .

Evaluation of sear
h strategiesWe are also interested in:Completeness: does the strategy guarantee a solution is found?Optimality: does the strategy guarantee that the best solution isfound?On
e we start to
onsider these, things get a lot more interesting...

Breadth-�rst sear
hWhy is breadth-�rst sear
h hopeless?� The pro
edure is
omplete : it is guaranteed to �nd a solution ifone exists.� The pro
edure is optimal if the path
ost is a non-de
reasingfun
tion of node-depth. (Exer
ise: why is this?)� The pro
edure has exponential
omplexity for both memory andtime . A bran
hing fa
tor b requires
1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1nodes if the shortest path has depth d.In pra
ti
e it is the memory requirement that is problemati
.

Depth-�rst sear
hWith depth-�rst sear
h: for a given bran
hing fa
tor b and depth dthe memory requirement is O(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is be
ause we need to store nodes on the
urrent path and theother unexpanded nodes .The time
omplexity is O(bd). Despite this, if there are many so-lutions we stand a
han
e of �nding one qui
kly,
ompared withbreadth-�rst sear
h.

Ba
ktra
king sear
hWe
an sometimes improve on depth-�rst sear
h by using ba
ktra
k-ing sear
h .� If ea
h node knows how to generate the next possibility thenmemory is improved to O(d).� Even better, if we
an work by making modi�
ations to a statedes
ription then the memory requirement is:

– One full state des
ription, plus...

– ... O(d) a
tions (in order to be able to undo a
tions).How does this work?

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:No ba
ktra
king

+ [up, up]

we
an undo this to obtain

+ [up]

and apply down to get

+ [up, down]

and so on...

up

2 58

6

7 3 4

1

2 5

6

7 3 4

18

2 58

6

3 4

17

up
down

left

With ba
ktra
kingIf we have:

2 5

6

7 3 4

18

2 58

7 3 4

1

2 58

6

3 4

17

6

Depth-�rst, depth-limited, and iterative deepening sear
hDepth-�rst sear
h is
learly dangerous if the tree is very deep orin�nite .Depth-limited sear
h simply imposes a limit on depth. For exampleif we're sear
hing for a route on a map with n
ities we know thatthe maximum depth will be n. However:� We still risk �nding a suboptimal solution.� The pro
edure be
omes problemati
 if we impose a depth limitthat is too small.Usually we do not know a reasonable depth limit in advan
e.Iterative deepening sear
h repeatedly runs depth-limited sear
h forin
reasing depth limits 0, 1, 2, . . .

Iterative deepening sear
hIterative deepening sear
h :� Essentially
ombines the advantages of depth-�rst and breadth-�rst sear
h.� It is
omplete and optimal.� It has a memory requirement similar to that of depth-�rst sear
h.Importantly, the fa
t that you're repeating a sear
h pro
ess severaltimes is less signi�
ant than it might seem.It's still not a good pra
ti
al method, but it does point us in thedire
tion of one...

Iterative deepening sear
hIterative deepening depends on the fa
t that the vast majority ofthe nodes in a tree are in the bottom level :� In a tree with bran
hing fa
tor b and depth d the number of nodesis

f1(b, d) = 1 + b + b2 + b3 + · · · + bd =
bd+1 − 1

b − 1� A
omplete iterative deepening sear
h of this tree generates the�nal layer on
e, the penultimate layer twi
e, and so on down tothe root, whi
h is generated d + 1 times. The total number ofnodes generated is therefore

f2(b, d) = (d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · · + 2bd−1 + bd

Iterative deepening sear
hExample:� For b = 20 and d = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706whi
h represents a 5 per
ent in
rease with iterative deepeningsear
h.� The overhead gets smaller as b in
reases. However the time
om-plexity is still exponential.For problems where the sear
h spa
e is large and the solution depthis not known, this
an be a good method.

Iterative deepening sear
hFurther insight
an be gained if we note that
f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)as we generate the root, then the tree to depth 1, and so on. Thus

f2(b, d) =

d∑

i=0

f1(b, i) =

d∑

i=0

bi+1 − 1

b − 1

=
1

b − 1

d∑

i=0

bi+1 − 1 =
1

b − 1

[(

d∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =

d∑

i=0

bi+1we have
f2(b, d) =

b

b − 1
f1(b, d) −

d + 1

b − 1so f2(b, d) is about equal to f1(b, d) for large b.

Bidire
tional sear
hIn some problems we
an simultaneously sear
h:forward from the start stateba
kward from the goal stateuntil the sear
hes meet.This is potentially a very good idea:� If the sear
h methods have
omplexity O(bd) then...� ...we are
onverting this to O(2bd/2) = O(bd/2).(Here, we are assuming the bran
hing fa
tor is b in both dire
tions.)

Bidire
tional sear
h - beware!� It is not always possible to generate eÆ
iently prede
essors aswell as su

essors.� If we only have the des
ription of a goal, not an expli
it goal ,then generating prede
essors
an be hard. (For example,
onsiderthe
on
ept of
he
kmate .)� We need a way of
he
king whether or not a node appears in theother sear
h ...� ... and the �gure of O(bd/2) hides the assumption that we
ando
onstant time
he
king for interse
tion of the frontiers. (Thismay be possible using a hash table).� We need to de
ide what kind of sear
h to use in ea
h half. Forexample, would depth-�rst sear
h be sensible? Possibly not...� ...to guarantee that the sear
hes meet, we need to store all thenodes of at least one of the sear
hes. Consequently the memoryrequirement is O(bd/2).

Uniform-
ost sear
hBreadth-�rst sear
h �nds the shallowest solution, but this is notne
essarily the best one.Uniform-
ost sear
h is a variant. It uses the path
ost p(n) as thepriority for the priority queue.Thus, the paths that are apparently best are explored �rst, and thebest solution will always be found if

∀n (∀n ′ ∈ su

essors(n) . p(n ′) ≥ p(n))Although this is still not a good pra
ti
al algorithm, it does pointthe way forward to informed sear
h...

Repeated statesWith many problems it is easy to waste time by expanding nodesthat have appeared elsewhere in the tree. For example:

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

The sliding blo
ks puzzle for example su�ers this way.

Repeated statesFor example, in a problem su
h as �nding a route in a map, whereall of the operators are reversible , this is inevitable.There are three basi
 ways to avoid this, depending on how you tradeo� e�e
tiveness against overhead.� Never return to the state you
ame from .� Avoid
y
les: never pro
eed to a state identi
al to one of youran
estors .� Do not expand any state that has previously appeared .Graph sear
h is a standard approa
h to dealing with the situation.It uses the last of these possibilities.

Graph sear
hIn pseudo
ode:

function graphSearch()

{

closed = {};

fringe = queue containing only the start state;

while ()

{

if (empty(fringe))

return fail;

node = head(fringe);

if goal(node)

return solution(node);

if (node not a member of closed)

{

closed = closed + node;

fringe = insert(expand(node), fringe);

}

}

}

Graph sear
hThere are several points to note regarding graph sear
h:1. The
losed list
ontains all the expanded nodes.2. The
losed list
an be implemented using a hash table.3. Both worst
ase time and spa
e are now proportional to the sizeof the state spa
e.4. Memory: depth �rst and iterative deepening sear
h are no longerlinear spa
e as we need to store the
losed list.5. Optimality: when a repeat is found we are dis
arding the newpossibility even if it is better than the �rst one.� This never happens for uniform-
ost or breadth-�rst sear
hwith
onstant step
osts, so these remain optimal.� Iterative deepening sear
h needs to
he
k whi
h solution is bet-ter and if ne
essary modify path
osts and depths for des
en-dants of the repeated state.

Sear
h treesEverything we've seen so far is an example of uninformed or blindsear
h|we only distinguish goal states from non-goal states.(Uniform
ost sear
h is a slight anomaly as it uses the path
ost as aguide.)To perform well in pra
ti
e we need to employ informed or heuristi
sear
h.This involves exploiting knowledge of the distan
e between the
ur-rent state and a goal .

Problem solving by informed sear
hBasi
 sear
h methods make limited use of any problem-spe
i�
 knowl-edge we might have.� We have already seen the
on
ept of path
ost p(n)

p(n) =
ost of path (sequen
e of a
tions) from the start state to n� We
an now introdu
e an evaluation fun
tion . This is a fun
tionthat attempts to measure the desirability of ea
h node .The evaluation fun
tion will
learly not be perfe
t. (If it is, there isno need to sear
h.)Best-�rst sear
h simply expands nodes using the ordering given bythe evaluation fun
tion.

Greedy sear
hWe've already seen path
ost used for this purpose.� This is misguided as path
ost is not in general dire
ted in anysense toward the goal .� A heuristi
 fun
tion , usually denoted h(n) is one that estimatesthe
ost of the best path from any node n to a goal.� If n is a goal then h(n) = 0.Using a heuristi
 fun
tion along with best-�rst sear
h gives us thegreedy sear
h algorithm.

Example: route-�ndingExample: for route �nding a reasonable heuristi
 fun
tion is

h(n) = straight line distan
e from n to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal

n1 n2

A

ura
y here obviously depends on what the roads are really like.

Example: route-�ndingGreedy sear
h su�ers from some problems:� Its time
omplexity is O(bd).� Its spa
e-
omplexity is O(bd).� It is not optimal or
omplete.BUT: greedy sear
h
an be e�e
tive, provided we have a good h(n).Wouldn't it be ni
e if we
ould improve it to make it optimal and
omplete?
A⋆ sear
hWell, we
an.

A⋆ sear
h
ombines the good points of:� Greedy sear
h|by making use of h(n).� Uniform-
ost sear
h|by being optimal and
omplete.It does this in a very simple manner: it uses path
ost p(n) and alsothe heuristi
 fun
tion h(n) by forming

f(n) = p(n) + h(n)where

p(n) =
ost of path to nand

h(n) = estimated
ost of best path from nSo: f(n) is the estimated
ost of a path through n.

A⋆ sear
h

A⋆ sear
h:� A best-�rst sear
h using f(n).� It is both
omplete and optimal...� ...provided that h obeys some simple
onditions.De�nition: an admissible heuristi
 h(n) is one that never overes-timates the
ost of the best path from n to a goal.If h(n) is admissible then tree-sear
h A⋆ is optimal.

A⋆ tree-sear
h is optimal for admissible h(n)To see that A⋆ sear
h is optimal we reason as follows.Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt(be
ause h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with

f(Goal2) = p(Goal2) = f2 > foptWe need to demonstrate that the sear
h
an never sele
t Goal2.

A⋆ tree-sear
h is optimal for admissible h(n)

Goalopt
n

Goal2 At some point Goal2 is in the fringe.Can it be sele
ted before n?

A⋆ tree-sear
h is optimal for admissible h(n)Let n be a leaf node in the fringe on an optimal path to Goalopt. So
fopt ≥ p(n) + h(n) = f(n)be
ause h is admissible.Now say Goal2 is
hosen for expansion before n. This means that

f(n) ≥ f2so we've established that

fopt ≥ f2 = p(Goal2).But this means that Goalopt is not optimal: a
ontradi
tion.

A⋆ graph sear
hOf
ourse, we will generally be dealing with graph sear
h .Unfortunately the proof breaks in this
ase.� Graph sear
h
an dis
ard an optimal route if that route is notthe �rst one generated.� We
ould keep only the least expensive path . This means updat-ing, whi
h is extra work, not to mention messy, but suÆ
ient toinsure optimality.� Alternatively, we
an impose a further
ondition on h(n) whi
hfor
es the best path to a repeated state to be generated �rst .The required
ondition is
alled monotoni
ity . Asmonotoni
ity −→ admissibilitythis is an important property.

Monotoni
ityAssume h is admissible. Remember that f(n) = p(n) + h(n) so if n ′follows n

p(n ′) ≥ p(n)and we expe
t that h(n ′) ≤ h(n) although this does not have to bethe
ase.

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

Here f(n) = 9 and f(n ′) = 7 so f(n ′) < f(n).

Monotoni
ityMonotoni
ity:� If it is always the
ase that f(n ′) ≥ f(n) then h(n) is
alled mono-toni
.� h(n) is monotoni
 if and only if it obeys the triangle inequality .

h(n) ≤
ost(n a
−→ n ′) + h(n ′)If h(n) is not monotoni
 we
an make a simple alteration and use

f(n ′) = max{f(n), p(n ′) + h(n ′)}This is
alled the pathmax equation.

The pathmax equationWhy does the pathmax equation make sense?

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

The fa
t that f(n) = 9 tells us the
ost of a path through n is atleast 9 (be
ause h(n) is admissible).But n ′ is on a path through n. So to say that f(n ′) = 7 makes nosense.

A⋆ graph sear
h is optimal for monotoni
 heuristi
s

A⋆ graph sear
h is optimal for monotoni
 heuristi
s.The
ru
ial fa
t from whi
h optimality follows is that if h(n) is mono-toni
 then the values of f(n) along any path are non-de
reasing.Assume we move from n to n ′ using a
tion a. Then

∀a . p(n ′) = p(n) +
ost(n a
−→ n ′)and using the triangle inequality

h(n) ≤
ost(n a
−→ n ′) + h(n ′) (1)Thus

f(n ′) = p(n ′) + h(n ′)

= p(n) +
ost(n a
−→ n ′) + h(n ′)

≥ p(n) + h(n)

= f(n)where the inequality follows from equation 1.

A⋆ graph sear
h is optimal for monotoni
 heuristi
sWe therefore have the following situation:

f(n)
f(n ′′) < f(n ′) has been dealt with.

f(n ′)

You
an't deal with n ′ until everything with

Consequently everything with f(n ′′) < fopt gets explored. Then oneor more things with fopt get found (not ne
essarily all goals).

A⋆ sear
h is
omplete
A⋆ sear
h is
omplete provided:1. The graph has �nite bran
hing fa
tor.2. There is a �nite, positive
onstant c su
h that ea
h operator has
ost at least c.Why is this?

A⋆ sear
h is
ompleteThe sear
h expands nodes a

ording to in
reasing f(n). So: the onlyway it
an fail to �nd a goal is if there are in�nitely many nodes with
f(n) < f(Goal).There are two ways this
an happen:1. There is a node with an in�nite number of des
endants.2. There is a path with an in�nite number of nodes but a �nite path
ost.

Complexity� A⋆ sear
h has a further desirable property: it is optimally eÆ-
ient .� This means that no other optimal algorithm that works by
on-stru
ting paths from the root
an guarantee to examine fewernodes.� BUT: despite its good properties we're not done yet...� ...A⋆ sear
h unfortunately still has exponential time
omplexity inmost
ases unless h(n) satis�es a very stringent
ondition that isgenerally unrealisti
:

|h(n) − h ′(n)| ≤ O(log h ′(n))where h ′(n) denotes the real
ost from n to the goal.� As A⋆ sear
h also stores all the nodes it generates, on
e again itis generally memory that be
omes a problem before time .

IDA⋆ - iterative deepening A⋆ sear
hHow might we improve the way in whi
h A⋆ sear
h uses memory?� Iterative deepening sear
h used depth-�rst sear
h with a limit ondepth that gradually in
reased.� IDA⋆ does the same thing with a limit on f
ost .

ActionSequence ida()

{

float fLimit = f(root);

root = root node for problem;

while()

{

(sequence, fLimit) = contour(root,fLimit,emptySequence);

if (sequence != emptySequence)

return sequence;

if (fLimit == infinity)

return emptySequence;

}

}
IDA⋆ - iterative deepening A⋆ sear
hThe fun
tion contour sear
hes from a given node, as far as thespe
i�ed f limit . It returns either a solution, or the next biggestvalue of f to try.

(ActionSequence,Float) contour(Node node, Float fLimit, ActionSequence s)

{

Float nextF = infinity;

if (f(node) > fLimit)

return (emptySequence,f(node));

ActionSequence s’ = addToSequence(node,s);

if (goalTest(node))

return (s’,fLimit);

for (each successor n’ of node)

{

(sequence,newF) = contour(n’,fLimit,s’);

if (sequence != emptySequence)

return (sequence,fLimit);

nextF = minimum(nextF,newF);

}

return (emptySequence,nextF);

}

IDA⋆ - iterative deepening A⋆ sear
hThis is a little tri
ky to unravel, so here is an example:
37 4 5

Initially, the algorithm looks ahead and �nds the smallest f
ost thatis greater than its
urrent f
ost limit. The new limit is 4.

IDA⋆ - iterative deepening A⋆ sear
hIt now does the same again:
37 4 55 9 10

Anything with f
ost at most equal to the
urrent limit gets explored,and the algorithm keeps tra
k of the smallest f
ost that is greaterthan its
urrent limit. The new limit is 5.

IDA⋆ - iterative deepening A⋆ sear
hAnd again:

37 4 55 9 10 19 12 78 12 7

The new limit is 7, so at the next iteration the three arrowed nodeswill be explored.

IDA⋆ - iterative deepening A⋆ sear
hProperties of IDA⋆:� It is
omplete and optimal under the same
onditions as A⋆.� It is often good if we have step
osts equal to 1.� It does not require us to maintain a sorted queue of nodes.� It only requires spa
e proportional to the longest path .� The time taken depends on the number of values h
an take.If h takes enough values to be problemati
 we
an in
rease f by a�xed ǫ at ea
h stage, guaranteeing a solution at most ǫ worse thanthe optimum.

Re
ursive best-�rst sear
h (RBFS)Another method by whi
h we
an attempt to over
ome memory lim-itations is the Re
ursive best-�rst sear
h (RBFS).Idea: try to do a best-�rst sear
h, but only use linear spa
e by doinga depth-�rst sear
h with a few modi�
ations:1. We remember the f(n ′) for the best alternative node n ′ we've seenso far on the way to the node n we're
urrently
onsidering.2. If n has f(n) > f(n ′):� We go ba
k and explore the best alternative...� ...and as we retra
e our steps we repla
e the f
ost of everynode we've seen in the
urrent path with f(n).The repla
ement of f values as we retra
e our steps provides a meansof remembering how good a dis
arded path might be, so that we
aneasily return to it later.

Re
ursive best-�rst sear
h (RBFS)Note: for simpli
ity a parameter for the path has been omitted.

function RBFS(Node n, Float fLimit) {

if (goaltest(n))

return n;

if (n has no successors)

return (fail, infinity);

for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));

while() {

best = successor of n that has the smallest f(n’);

if (f(best) > fLimit)

return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;

(result, f(best)) = RBFS(best, minimum(fLimit, nextBest));

if (result != fail)

return result;

}

}IMPORTANT: f(best) is modi�ed when RBFS produ
es a result.

Re
ursive best-�rst sear
h (RBFS): an exampleThis fun
tion is
alled using RBFS(startState, infinity) to beginthe pro
ess.Fun
tion
all number 1:

37 4 5best1 fLimit1 = ∞ nextBest1 = 5

Now perform the re
ursive fun
tion
all (result2, f(best1)) = RBFS(best1, 5)

Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion
all number 2:

37 4 5best1 nextBestfLimit2 = 5
fLimit1 = ∞

5 9 10best2 nextBest2 = 9

Now perform the re
ursive fun
tion
all (result3, f(best2)) = RBFS(best2, 5)

Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion
all number 3:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 = ∞

5 9 10best211 12 10best3
5 repla
ed by 10 nextBest2 = 9

fLimit3 = 5

nextBest3 = 11

Now f(best3) > fLimit3 so the fun
tion
all returns (fail, 10) into

(result3, f(best2)).

Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion
all 2 now repeats:
37 4 5best1 nextBestfLimit2 = 5

fLimit1 = ∞

5 9 1011 12 10

5 repla
ed by 10 best2
4 repla
ed by 9

Now f(best2) > fLimit2 so the fun
tion
all returns (fail, 9) into

(result2, f(best1)).

Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion
all 1 now repeats:
37 4 5fLimit1 = ∞

5 9 1011 12 10

5 repla
ed by 10

4 repla
ed by 9 best1nextBest1 = 7

We do a further fun
tion
all to expand the new best node, and soon...

Re
ursive best-�rst sear
h (RBFS)Some ni
e properties:� If h is admissible then RBFS is optimal.� Memory requirement is O(bd)� Generally more eÆ
ient than IDA⋆.And some less ni
e ones:� Time
omplexity is hard to analyse, but
an be exponential.� Can spend a lot of time re-generating nodes .

Other methods for getting around the memory problemTo some extent IDA⋆ and RBFS throw the baby out with the bath-water.� They limit memory too harshly, so...� ...we
an try to use all available memory .MA⋆ and SMA⋆ will not be
overed in this
ourse...

Exer
ises1. Exam question: paper 5, question 6, 2004.2. Exam question: paper 3, question 8, 2007.3. Exam question: paper 3, question 7, 2008.4. Exam question: paper 4, question 3, 2009.72

