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Problem solving is di�erent to planningIn sear
h problems we:� Represent states : and a state representation 
ontains everythingthat's relevant about the environment.� Represent a
tions : by des
ribing a new state obtained from a
urrent state.� Represent goals : all we know is how to test a state either to seeif it's a goal, or using a heuristi
.� A sequen
e of a
tions is a `plan' : but we only 
onsider se-quen
es of 
onse
utive a
tions .Sear
h algorithms are good for solving problems that �t this frame-work. However for more 
omplex problems they may fail 
ompletely...



Problem solving is di�erent to planningRepresenting a problem su
h as: `go out and buy some pies' ishopeless:� There are too many possible a
tions at ea
h step.� A heuristi
 
an only help you rank states. In parti
ular it doesnot help you ignore useless a
tions.� We are for
ed to start at the initial state, but you have to workout how to get the pies|that is, go to town and buy them, getonline and �nd a web site that sells pies et
|before you 
an startto do it .Knowledge representation and reasoning might not help either: al-though we end up with a sequen
e of a
tions|a plan|there is somu
h 
exibility that 
omplexity might well be
ome an issue.



Introdu
tion to planningWe now look at how an agent might 
onstru
t a plan enabling it toa
hieve a goal.Aims :� To look at how we might update our 
on
ept of knowledge repre-sentation and reasoning to apply more spe
i�
ally to planningtasks.� To look in detail at the basi
 partial-order planning algorithm .Reading : Russell and Norvig, 
hapter 11.



Planning algorithms work di�erentlyDi�eren
e 1 :� Planning algorithms use a spe
ial purpose language|often basedon FOL or a subset| to represent states, goals, and a
tions.� States and goals are des
ribed by senten
es, as might be expe
ted,but...� ...a
tions are des
ribed by stating their pre
onditions and theire�e
ts .So if you know the goal in
ludes (maybe among other things)Have(pie)and a
tion Buy(x) has an e�e
t Have(x) then you know that a planin
luding Buy(pie)might be reasonable.



Planning algorithms work di�erentlyDi�eren
e 2 :� Planners 
an add a
tions at any relevant point at all betweenthe start and the goal , not just at the end of a sequen
e startingat the start state.� This makes sense: I may determine that Have(carKeys) is a goodstate to be in without worrying about what happens before orafter �nding them.� By making an important de
ision like requiring Have(carKeys)early on we may redu
e bran
hing and ba
ktra
king.� State des
riptions are not 
omplete|Have(carKeys) des
ribes a
lass of states|and this adds 
exibility.So: you have the potential to sear
h both forwards and ba
kwardswithin the same problem.



Planning algorithms work di�erentlyDi�eren
e 3 :It is assumed that most elements of the environment are independentof most other elements .� A goal in
luding several requirements 
an be atta
ked with adivide-and-
onquer approa
h.� Ea
h individual requirement 
an be ful�lled using a subplan...� ...and the subplans then 
ombined.This works provided there is not signi�
ant intera
tion between thesubplans.Remember: the frame problem .



Running example: gorilla-based mis
hiefWe will use the following simple example problem, whi
h as basedon a similar one due to Russell and Norvig.The intrepid little s
amps in theCambridge University Roof-ClimbingSo
iety wish to atta
h an in
atable gorilla to the spire of a FamousCollege . To do this they need to leave home and obtain:� An in
atable gorilla : these 
an be pur
hased from all good jokeshops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly es
apade?



The STRIPS languageSTRIPS: \Stanford Resear
h Institute Problem Solver" (1970).States : are 
onjun
tions of ground literals . They must not in
ludefun
tion symbols . At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)Goals : are 
onjun
tions of literals where variables are assumed ex-istentially quanti�ed .At(x) ∧ Sells(x, gorilla)A planner �nds a sequen
e of a
tions that when performed makes thegoal true. We are no longer employing a full theorem-prover.



The STRIPS languageSTRIPS represents a
tions using operators . For example

At(y), ¬At(x)

At(x),Path(x, y)Go(y)

Op(A
tion: Go(y),Pre: At(x) ∧ Path(x, y),E�e
t: At(y) ∧ ¬At(x))All variables are impli
itly universally quanti�ed. An operator has:� An a
tion des
ription : what the a
tion does.� A pre
ondition : what must be true before the operator 
an beused. A 
onjun
tion of positive literals .� An e�e
t : what is true after the operator has been used. A
onjun
tion of literals .



The spa
e of plansWe now make a 
hange in perspe
tive|we sear
h in plan spa
e :� Start with an empty plan .� Operate on it to obtain new plans. In
omplete plans are 
alledpartial plans . Re�nement operators add 
onstraints to a partialplan. All other operators are 
alled modi�
ation operators .� Continue until we obtain a plan that solves the problem.Operations on plans 
an be:� Adding a step.� Instantiating a variable .� Imposing an ordering that pla
es a step in front of another.� and so on...



Representing a plan: partial order plannersWhen putting on your shoes and so
ks:� It does not matter whether you deal with your left or right foot�rst.� It does matter that you pla
e a so
k on before a shoe, for anygiven foot.It makes sense in 
onstru
ting a plan not to make any 
ommitmentto whi
h side is done �rst if you don't have to.Prin
iple of least 
ommitment : do not 
ommit to any spe
i�

hoi
es until you have to. This 
an be applied both to ordering andto instantiation of variables. A partial order planner allows plans tospe
ify that some steps must 
ome before others but others have noordering. A linearisation of su
h a plan imposes a spe
i�
 sequen
eon the a
tions therein.



Representing a plan: partial order plannersA plan 
onsists of:1. A set {S1, S2, . . . , Sn} of steps . Ea
h of these is one of the availableoperators .2. A set of ordering 
onstraints . An ordering 
onstraint Si < Sjdenotes the fa
t that step Si must happen before step Sj. Si <

Sj < Sk and so on has the obvious meaning. Si < Sj does notmean that Si must immediately pre
ede Sj.3. A set of variable bindings v = x where v is a variable and x iseither a variable or a 
onstant.4. A set of 
ausal links or prote
tion intervals Si
c
→ Sj. This de-notes the fa
t that the purpose of Si is to a
hieve the pre
ondition

c for Sj.A 
ausal link is always paired with an equivalent ordering 
onstraint.



Representing a plan: partial order plannersThe initial plan has:� Two steps, 
alled Start and Finish.� a single ordering 
onstraint Start < Finish.� No variable bindings .� No 
ausal links .In addition to this:� The step Start has no pre
onditions, and its e�e
t is the startstate for the problem.� The step Finish has no e�e
t, and its pre
ondition is the goal.� Neither Start or Finish has an asso
iated a
tion.We now need to 
onsider what 
onstitutes a solution ...



Solutions to planning problemsA solution to a planning problem is any 
omplete and 
onsistentpartially ordered plan.Complete : ea
h pre
ondition of ea
h step is a
hieved by anotherstep in the solution.A pre
ondition c for S is a
hieved by a step S ′ if:1. The pre
ondition is an e�e
t of the step
S ′ < S and c ∈ E�e
ts(S ′)and...2. ... there is no other step that 
an 
an
el the pre
ondition:no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ E�e
ts(S ′′)



Solutions to planning problemsConsistent : no 
ontradi
tions exist in the binding 
onstraints or inthe proposed ordering. That is:1. For binding 
onstraints, we never have v = X and v = Y fordistin
t 
onstants X and Y.2. For the ordering, we never have S < S ′ and S ′ < S.Returning to the roof-
limber's shopping expedition, here is the basi
approa
h:� Begin with only the Start and Finish steps in the plan.� At ea
h stage add a new step.� Always add a new step su
h that a 
urrently non-a
hieved pre-
ondition is a
hieved .� Ba
ktra
k when ne
essary.



An example of partial-order planningHere is the initial plan :

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.



An example of partial-order planningThere are two a
tions available :

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) a
tion inorder to a
hieve the Have(G) pre
ondition of Finish.Note : the following order of events is by no means the only oneavailable to a planner.It has been 
hosen for illustrative purposes.



An example of partial-order planningIn
orporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

At(x), Sells(x, G)

Thi
k arrows denote 
ausal links. They always have a thin arrowunderneath.Here the new Buy step a
hieves the Have(G) pre
ondition of Finish.



An example of partial-order planningThe planner 
an now introdu
e a se
ond 
ausal link from Start toa
hieve the Sells(x, G) pre
ondition of Buy(G).
Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(JS), Sells(JS,G)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)



An example of partial-order planningThe planner's next obvious move is to introdu
e a Go step to a
hievethe At(JS) pre
ondition of Buy(G).
Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(x)

Go(JS)

Start

At(JS), Sells(JS,G)

And we 
ontinue...



An example of partial-order planningInitially the planner 
an 
ontinue quite easily in this manner:� Add a 
ausal link from Start to Go(JS) to a
hieve the At(x) pre-
ondition.� Add the step Buy(R) with an asso
iated 
ausal link to the Have(R)pre
ondition of Finish.� Add a 
ausal link from Start to Buy(R) to a
hieve the Sells(HS, R)pre
ondition.But then things get more interesting...



An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

At(HS), Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get tri
ky...The At(HS) pre
ondition in Buy(R) is not a
hieved.



An example of partial-order planning

Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(Home)

The At(HS) pre
ondition is easy to a
hieve. But if we introdu
ea 
ausal link from Start to Go(HS) then we risk invalidating thepre
ondition for Go(JS).



An example of partial-order planningA step that might invalidate (sometimes the word 
lobber is em-ployed) a previously a
hieved pre
ondition is 
alled a threat .

Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner 
an try to �x a threat by introdu
ing an ordering 
on-straint.



An example of partial-order planningThe planner 
ould ba
ktra
k and try to a
hieve the At(x) pre
ondi-tion using the existing Go(JS) step.

Start

At(JS), Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

This involves a threat, but one that 
an be �xed using promotion.



The algorithmSimplifying slightly to the 
ase where there are no variables .Say we have a partially 
ompleted plan and a set of the pre
onditionsthat have yet to be a
hieved.� Sele
t a pre
ondition p that has not yet been a
hieved and isasso
iated with an a
tion B.� At ea
h stage the partially 
omplete plan is expanded into anew 
olle
tion of plans .� To expand a plan, we 
an try to a
hieve p either by using ana
tion that's already in the plan or by adding a new a
tion to theplan. In either 
ase, 
all the a
tion A.We then try to 
onstru
t 
onsistent plans where A a
hieves p.



The algorithmThis works as follows:� For ea
h possible way of a
hieving p:

– Add Start < A, A < Finish, A < B and the 
ausal link A
p
→ Bto the plan.

– If the resulting plan is 
onsistent we're done, otherwise gener-ate all possible ways of removing in
onsisten
ies by promo-tion or demotion and keep any resulting 
onsistent plans .At this stage:� If you have no further pre
onditions that haven't been a
hievedthen any plan obtained is valid .



The algorithmBut how do we try to enfor
e 
onsisten
y?When you attempt to a
hieve p using A:� Find all the existing 
ausal links A ′ ¬p
→ B ′ that are 
lobbered by

A.� For ea
h of those you 
an try adding A < A ′ or B ′ < A to theplan.� Find all existing a
tions C in the plan that 
lobber the new 
ausallink A
p
→ B.� For ea
h of those you 
an try adding C < A or B < C to the plan.� Generate every possible 
ombination in this way and retain any
onsistent plans that result.



Possible threatsWhat about dealing with variables?If at any stage an e�e
t ¬At(x) appears, is it a threat to At(JS)?Su
h an o

urren
e is 
alled a possible threat and we 
an deal withit by introdu
ing inequality 
onstraints : in this 
ase x 6= JS.� Ea
h partially 
omplete plan now has a set I of inequality 
on-straints asso
iated with it.� An inequality 
onstraint has the form v 6= X where v is a variableand X is a variable or a 
onstant.� Whenever we try to make a substitution we 
he
k I to make surewe won't introdu
e a 
on
i
t.If we would introdu
e a 
on
i
t then we dis
ard the partially 
om-pleted plan as in
onsistent.
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