Artificial Intelligence I

Dr Sean Holden

Notes on planning

Copyright (© Sean Holden 2002-2010.

Problem solving is different to planning

In search problems we:

e Represent states: and a state representation contains everything
that’s relevant about the environment.

e Represent actions: by describing a new state obtained from a
current state.

e Represent goals: all we know 1s how to test a state either to see
if 1t’s a goal, or using a heuristic.

e A sequence of actions 1s a ‘plan’: but we only consider se-
quences of consecutive actions.

Search algorithms are good for solving problems that fit this frame-
work. However for more complex problems they may fail completely...

Problem solving is different to planning

Representing a problem such as: ‘go out and buy some pies’ is
hopeless:

e There are too many possible actions at each step.

e A heuristic can only help you rank states. In particular it does
not help you 2gnore useless actions.

e We are forced to start at the initial state, but you have to work
out how to get the pies—that 1s, go to town and buy them, get
online and find a web site that sells pies etc—before you can start
to do 1t.

Knowledge representation and reasoning might not help either: al-
though we end up with a sequence of actions—a plan—there is so
much flexibility that complexity might well become an issue.

Introduction to planning

We now look at how an agent might construct a plan enabling it to
achieve a goal.

Aims:

e To look at how we might update our concept of knowledge repre-

sentation and reasoning to apply more specifically to planning
tasks.

e To look in detail at the basic partial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.

Planning algorithms work differently

Difference 1:

e Planning algorithms use a special purpose language—often based
on FOL or a subset— to represent states, goals, and actions.

e States and goals are described by sentences, as might be expected,
but...

e ...actions are described by stating their preconditions and their
effects.

So if you know the goal includes (maybe among other things)
Have(pie)
and action Buy(x) has an effect Have(x) then you know that a plan

including
Buy(pie)

might be reasonable.

Planning algorithms work differently

Difference 2:

e Planners can add actions at any relevant point at all between
the start and the goal, not just at the end of a sequence starting
at the start state.

e This makes sense: I may determine that Have(carKeys) is a good
state to be in without worrying about what happens before or
after finding them.

e By making an important decision like requiring Have(carKeys)
early on we may reduce branching and backtracking.

e State descriptions are not complete—Have(carKeys) describes a
class of states—and this adds flexibility.

So: you have the potential to search both forwards and backwards
within the same problem.

Planning algorithms work differently

Difference 3:

It 1s assumed that most elements of the environment are independent
of most other elements.

e A goal including several requirements can be attacked with a
divide-and-conquer approach.

e Fach individual requirement can be fulfilled using a subplan...

e ...and the subplans then combined.

This works provided there is not significant interaction between the
subplans.

Remember: the frame problem.

Running example: gorilla-based mischief

We will use the following simple example problem, which as based
on a similar one due to Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing
Society wish to attach an inflatable gorilla to the spire of a Famous
College. To do this they need to leave home and obtain:

e An wnflatable gorilla: these can be purchased from all good joke
shops.

e Some rope: available from a hardware store.
e A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?

The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals. They must not include
function symbols.
At(home) /A “Have(gorilla)
/\ —Have(rope)
A\ —Have(kit)
Goals: are conjunctions of literals where variables are assumed ez-
1stentially quantified.

At(x) /A Sells(x, gorilla)

A planner finds a sequence of actions that when performed makes the
goal true. We are no longer employing a full theorem-prover.

The STRIPS language

STRIPS represents actions using operators. For example

At(x), Path(x,y)

Gol(y)

Op(Action: Go(y), Pre: At(x) /A Path(x,y), Effect: At(y) A —At(x))

All variables are implicitly universally quantified. An operator has:

e An action description: what the action does.

e A precondition: what must be true before the operator can be
used. A conjunction of positive literals.

e An effect: what i1s true after the operator has been used. A
conjunction of literals.

The space of plans

We now make a change in perspective—we search in plan space:

e Start with an empty plan.

e Operate on 1t to obtain new plans. Incomplete plans are called
partial plans. Refinement operators add constraints to a partial
plan. All other operators are called modification operators.

e Continue until we obtain a plan that solves the problem.
Operations on plans can be:

e Adding a step.
e Instantiating a variable.
e /mposing an ordering that places a step in front of another.

e and so on...

Representing a plan: partial order planners

When putting on your shoes and socks:

e It does not matter whether you deal with your left or right foot
first.

e It does matter that you place a sock on before a shoe, for any
given foot.

It makes sense in constructing a plan not to make any commaitment
to which side 1s done first ¢f you don’t have to.

Principle of least commitment: do not commit to any specific
choices until you have to. This can be applied both to ordering and
to instantiation of variables. A partial order planner allows plans to
specify that some steps must come before others but others have no
ordering. A linearisation of such a plan imposes a specific sequence
on the actions therein.

Representing a plan: partial order planners

A plan consists of:

1. Aset{S, Sy, ...,S,.}of steps. Each of these is one of the available
operators.

2. A set of ordering constraints. An ordering constraint S; < S;
denotes the fact that step S; must happen before step S;. S; <
S; < Sy and so on has the obvious meaning. S; < S; does not
mean that S; must immediately precede S;.

3. A set of variable bindings v = x where v i1s a variable and x 1is
either a variable or a constant.

4. A set of causal links or protection intervals S; — S;. This de-
notes the fact that the purpose of S; is to achieve the precondition
c for Sj.

A causal link is always paired with an equivalent ordering constraint.

Representing a plan: partial order planners

The nitial plan has:

e T'wo steps, called Start and Finish.
e a single ordering constraint Start < Finish.
e No variable bindings.

e No causal links.
In addition to this:

e The step Start has no preconditions, and its effect is the start
state for the problem.

e The step Finish has no effect, and its precondition is the goal.

e Neither Start or Finish has an associated action.

We now need to consider what constitutes a solution...

Solutions to planning problems

A solution to a planning problem is any complete and consistent
partially ordered plan.

Complete: each precondition of each step is achieved by another
step in the solution.

A precondition c for S is achieved by a step S’ if:

1. The precondition is an effect of the step
S’ < S and ¢ € Effects(S’)

and...

2. ... there is no other step that can cancel the precondition:

no S” exists where S’ < S” < S and —c € Effects(S”)

Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in
the proposed ordering. That is:

1. For binding constraints, we never have v = X and v = Y for
distinct constants X and Y.

2. For the ordering, we never have S < S’ and S’ < S.

Returning to the roof-climber’s shopping expedition, here is the basic
approach:

e Begin with only the Start and Finish steps in the plan.
e At each stage add a new step.

e Always add a new step such that a currently non-achieved pre-
condition 1s achieved.

e Backtrack when necessary.

An example of partial-order planning

Here 1s the wnitial plan:

At (Home) A Sells(JS,G) /A $ells(HS,R) A Sells(HS,FA)

At (Home) /A Have(G) AHave(R) /\ Have (FA)

Thin arrows denote ordering.

An example of partial-order planning

There are two actions available:

At(x),Sells(x,y)

Buy(y)

Have(y)

A planner might begin, for example, by adding a Buy(G) action in
order to achieve the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one
available to a planner.

It has been chosen for illustrative purposes.

An example of partial-order planning

Incorporating the suggested step into the plan:

At (Home), Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At (Home) ,Have (G) ,Have (R),Have (FA)

Thick arrows denote causal links. They always have a thin arrow
underneath.

Here the new Buy step achieves the Have(G) precondition of Finish.

An example of partial-order planning

The planner can now introduce a second causal link from Start to
achieve the Sells(x, G) precondition of Buy(G).

At (Home), Sells(JS,G),Se\ls (HS,R), Sells (HS,FA)

At (JS),Sells(JS,G)

IIIHHHIHHII

At (Home) ,Have (G),Have (R),Have (FA)

An example of partial-order planning

The planner’s next obvious move i1s to introduce a Go step to achieve
the At(JS) precondition of Buy(G).

At (Home), Sells(JS,G), ¥11s(HS,R),Sells(HS,FA)

At (JS),Sells(JS,G)

At (Home) ,Have (G),Have (R),Have (FA)

And we continue...

An example of partial-order planning

Initially the planner can continue quite easily in this manner:

e Add a causal link from Start to Go(JS) to achieve the At(x) pre-
condition.

e Add the step Buy(R) with an associated causal link to the Have(R)
precondition of Finish.

e Add a causal link from Start to Buy(R) to achieve the Sells(HS,R)
precondition.

But then things get more interesting...

An example of partial-order planning

At (Home)

At (JS), Sells(JS,G) At (HS),Sells(HS,R)

At (Home) ,Have (G),Have (R),Have (FA)

At this point 1t starts to get tricky...

The At(HS) precondition in Buy(R) is not achieved.

An example of partial-order planning

At (Home)) ,G@), T9gR) , Sells (HS,FA)

At (JS),Sells(JS,q) Sells(HS,R),At (HS)

At (Home) ,Have (G) ,Have (R),Have (FA)

IIIHHIHIII

The At(HS) precondition is easy to achieve. But if we introduce
a causal link from Start to Go(HS) then we risk invalidating the
precondition for Go(JS).

An example of partial-order planning

A step that might invalidate (sometimes the word clobber is em-
ployed) a previously achieved precondition is called a threat.

Promotion

A planner can try to fix a threat by introducing an ordering con-
straint.

An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondi-
tion using the existing Go(JS) step.

At (Home) At (Home), Sells(JS,G), MG, Sells (HS,FA)

At(JS), Sells(JS,G) Sells(HS,R), At (HS)

At (Home) ,Have (G),Have (R),Have (FA)

This involves a threat, but one that can be fixed using promotion.

The algorithm

Simplifying slightly to the case where there are no variables.

Say we have a partially completed plan and a set of the preconditions
that have yet to be achieved.

e Select a precondition p that has not yet been achieved and is
associated with an action B.

e At each stage the partially complete plan 1s erpanded into a
new collection of plans.

e To expand a plan, we can try to achieve p either by using an
action that’s already in the plan or by adding a new action to the
plan. In either case, call the action A.

We then try to construct consistent plans where A achieves p.

The algorithm

This works as follows:

e For each possible way of achieving p:
— Add Start < A, A < Finish, A < B and the causal link A 2 B
to the plan.

— If the resulting plan is consistent we're done, otherwise gener-
ate all possible ways of removing inconsistencies by promo-
tion or demotion and keep any resulting consistent plans.

At this stage:

e If you have no further preconditions that haven’t been achieved
then any plan obtained s valid.

The algorithm

But how do we try to enforce consistency?

When you attempt to achieve p using A:

e Find all the existing causal links A’ —3 B’ that are clobbered by
A.

e For each of those you can try adding A < A’ or B’ < A to the
plan.

e F'ind all existing actions C in the plan that clobber the new causal
link A 5 B.

e For each of those you can try adding C < A or B < C to the plan.

e Generate every possible combination in this way and retain any
consistent plans that result.

Possible threats

What about dealing with variables?
If at any stage an effect —At(x) appears, is it a threat to At(JS)?

Such an occurrence is called a possible threat and we can deal with
it by introducing tnequality constraints: in this case x # JS.

e Hach partially complete plan now has a set I of inequality con-
straints associated with it.

e An inequality constraint has the form v # X where v is a variable
and X 1s a variable or a constant.

e Whenever we try to make a substitution we check I to make sure
we won't introduce a conflict.

If we would introduce a conflict then we discard the partially com-
pleted plan as inconsistent.

