
Arti�ial Intelligene IDr Sean Holden
Notes on planning

Copyright Sean Holden 2002-2010.

Problem solving is di�erent to planningIn searh problems we:� Represent states : and a state representation ontains everythingthat's relevant about the environment.� Represent ations : by desribing a new state obtained from aurrent state.� Represent goals : all we know is how to test a state either to seeif it's a goal, or using a heuristi.� A sequene of ations is a `plan' : but we only onsider se-quenes of onseutive ations .Searh algorithms are good for solving problems that �t this frame-work. However for more omplex problems they may fail ompletely...

Problem solving is di�erent to planningRepresenting a problem suh as: `go out and buy some pies' ishopeless:� There are too many possible ations at eah step.� A heuristi an only help you rank states. In partiular it doesnot help you ignore useless ations.� We are fored to start at the initial state, but you have to workout how to get the pies|that is, go to town and buy them, getonline and �nd a web site that sells pies et|before you an startto do it .Knowledge representation and reasoning might not help either: al-though we end up with a sequene of ations|a plan|there is somuh exibility that omplexity might well beome an issue.

Introdution to planningWe now look at how an agent might onstrut a plan enabling it toahieve a goal.Aims :� To look at how we might update our onept of knowledge repre-sentation and reasoning to apply more spei�ally to planningtasks.� To look in detail at the basi partial-order planning algorithm .Reading : Russell and Norvig, hapter 11.

Planning algorithms work di�erentlyDi�erene 1 :� Planning algorithms use a speial purpose language|often basedon FOL or a subset| to represent states, goals, and ations.� States and goals are desribed by sentenes, as might be expeted,but...� ...ations are desribed by stating their preonditions and theire�ets .So if you know the goal inludes (maybe among other things)Have(pie)and ation Buy(x) has an e�et Have(x) then you know that a planinluding Buy(pie)might be reasonable.

Planning algorithms work di�erentlyDi�erene 2 :� Planners an add ations at any relevant point at all betweenthe start and the goal , not just at the end of a sequene startingat the start state.� This makes sense: I may determine that Have(carKeys) is a goodstate to be in without worrying about what happens before orafter �nding them.� By making an important deision like requiring Have(carKeys)early on we may redue branhing and baktraking.� State desriptions are not omplete|Have(carKeys) desribes alass of states|and this adds exibility.So: you have the potential to searh both forwards and bakwardswithin the same problem.

Planning algorithms work di�erentlyDi�erene 3 :It is assumed that most elements of the environment are independentof most other elements .� A goal inluding several requirements an be attaked with adivide-and-onquer approah.� Eah individual requirement an be ful�lled using a subplan...� ...and the subplans then ombined.This works provided there is not signi�ant interation between thesubplans.Remember: the frame problem .

Running example: gorilla-based mishiefWe will use the following simple example problem, whih as basedon a similar one due to Russell and Norvig.The intrepid little samps in theCambridge University Roof-ClimbingSoiety wish to attah an inatable gorilla to the spire of a FamousCollege . To do this they need to leave home and obtain:� An inatable gorilla : these an be purhased from all good jokeshops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly esapade?

The STRIPS languageSTRIPS: \Stanford Researh Institute Problem Solver" (1970).States : are onjuntions of ground literals . They must not inludefuntion symbols . At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)Goals : are onjuntions of literals where variables are assumed ex-istentially quanti�ed .At(x) ∧ Sells(x, gorilla)A planner �nds a sequene of ations that when performed makes thegoal true. We are no longer employing a full theorem-prover.

The STRIPS languageSTRIPS represents ations using operators . For example

At(y), ¬At(x)

At(x),Path(x, y)Go(y)

Op(Ation: Go(y),Pre: At(x) ∧ Path(x, y),E�et: At(y) ∧ ¬At(x))All variables are impliitly universally quanti�ed. An operator has:� An ation desription : what the ation does.� A preondition : what must be true before the operator an beused. A onjuntion of positive literals .� An e�et : what is true after the operator has been used. Aonjuntion of literals .

The spae of plansWe now make a hange in perspetive|we searh in plan spae :� Start with an empty plan .� Operate on it to obtain new plans. Inomplete plans are alledpartial plans . Re�nement operators add onstraints to a partialplan. All other operators are alled modi�ation operators .� Continue until we obtain a plan that solves the problem.Operations on plans an be:� Adding a step.� Instantiating a variable .� Imposing an ordering that plaes a step in front of another.� and so on...

Representing a plan: partial order plannersWhen putting on your shoes and soks:� It does not matter whether you deal with your left or right foot�rst.� It does matter that you plae a sok on before a shoe, for anygiven foot.It makes sense in onstruting a plan not to make any ommitmentto whih side is done �rst if you don't have to.Priniple of least ommitment : do not ommit to any spei�hoies until you have to. This an be applied both to ordering andto instantiation of variables. A partial order planner allows plans tospeify that some steps must ome before others but others have noordering. A linearisation of suh a plan imposes a spei� sequeneon the ations therein.

Representing a plan: partial order plannersA plan onsists of:1. A set {S1, S2, . . . , Sn} of steps . Eah of these is one of the availableoperators .2. A set of ordering onstraints . An ordering onstraint Si < Sjdenotes the fat that step Si must happen before step Sj. Si <

Sj < Sk and so on has the obvious meaning. Si < Sj does notmean that Si must immediately preede Sj.3. A set of variable bindings v = x where v is a variable and x iseither a variable or a onstant.4. A set of ausal links or protetion intervals Si
c
→ Sj. This de-notes the fat that the purpose of Si is to ahieve the preondition

c for Sj.A ausal link is always paired with an equivalent ordering onstraint.

Representing a plan: partial order plannersThe initial plan has:� Two steps, alled Start and Finish.� a single ordering onstraint Start < Finish.� No variable bindings .� No ausal links .In addition to this:� The step Start has no preonditions, and its e�et is the startstate for the problem.� The step Finish has no e�et, and its preondition is the goal.� Neither Start or Finish has an assoiated ation.We now need to onsider what onstitutes a solution ...

Solutions to planning problemsA solution to a planning problem is any omplete and onsistentpartially ordered plan.Complete : eah preondition of eah step is ahieved by anotherstep in the solution.A preondition c for S is ahieved by a step S ′ if:1. The preondition is an e�et of the step

S ′ < S and c ∈ E�ets(S ′)and...2. ... there is no other step that an anel the preondition:no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ E�ets(S ′′)

Solutions to planning problemsConsistent : no ontraditions exist in the binding onstraints or inthe proposed ordering. That is:1. For binding onstraints, we never have v = X and v = Y fordistint onstants X and Y.2. For the ordering, we never have S < S ′ and S ′ < S.Returning to the roof-limber's shopping expedition, here is the basiapproah:� Begin with only the Start and Finish steps in the plan.� At eah stage add a new step.� Always add a new step suh that a urrently non-ahieved pre-ondition is ahieved .� Baktrak when neessary.

An example of partial-order planningHere is the initial plan :

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.

An example of partial-order planningThere are two ations available :

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) ation inorder to ahieve the Have(G) preondition of Finish.Note : the following order of events is by no means the only oneavailable to a planner.It has been hosen for illustrative purposes.

An example of partial-order planningInorporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

At(x), Sells(x, G)

Thik arrows denote ausal links. They always have a thin arrowunderneath.Here the new Buy step ahieves the Have(G) preondition of Finish.

An example of partial-order planningThe planner an now introdue a seond ausal link from Start toahieve the Sells(x, G) preondition of Buy(G).

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(JS), Sells(JS,G)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

An example of partial-order planningThe planner's next obvious move is to introdue a Go step to ahievethe At(JS) preondition of Buy(G).

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(x)

Go(JS)

Start

At(JS), Sells(JS,G)

And we ontinue...

An example of partial-order planningInitially the planner an ontinue quite easily in this manner:� Add a ausal link from Start to Go(JS) to ahieve the At(x) pre-ondition.� Add the step Buy(R) with an assoiated ausal link to the Have(R)preondition of Finish.� Add a ausal link from Start to Buy(R) to ahieve the Sells(HS, R)preondition.But then things get more interesting...

An example of partial-order planning

Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

At(HS), Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get triky...The At(HS) preondition in Buy(R) is not ahieved.

An example of partial-order planning

Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(Home)
The At(HS) preondition is easy to ahieve. But if we introduea ausal link from Start to Go(HS) then we risk invalidating thepreondition for Go(JS).

An example of partial-order planningA step that might invalidate (sometimes the word lobber is em-ployed) a previously ahieved preondition is alled a threat .

Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner an try to �x a threat by introduing an ordering on-straint.

An example of partial-order planningThe planner ould baktrak and try to ahieve the At(x) preondi-tion using the existing Go(JS) step.

Start

At(JS), Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

This involves a threat, but one that an be �xed using promotion.

The algorithmSimplifying slightly to the ase where there are no variables .Say we have a partially ompleted plan and a set of the preonditionsthat have yet to be ahieved.� Selet a preondition p that has not yet been ahieved and isassoiated with an ation B.� At eah stage the partially omplete plan is expanded into anew olletion of plans .� To expand a plan, we an try to ahieve p either by using anation that's already in the plan or by adding a new ation to theplan. In either ase, all the ation A.We then try to onstrut onsistent plans where A ahieves p.

The algorithmThis works as follows:� For eah possible way of ahieving p:

– Add Start < A, A < Finish, A < B and the ausal link A
p
→ Bto the plan.

– If the resulting plan is onsistent we're done, otherwise gener-ate all possible ways of removing inonsistenies by promo-tion or demotion and keep any resulting onsistent plans .At this stage:� If you have no further preonditions that haven't been ahievedthen any plan obtained is valid .

The algorithmBut how do we try to enfore onsisteny?When you attempt to ahieve p using A:� Find all the existing ausal links A ′ ¬p
→ B ′ that are lobbered by

A.� For eah of those you an try adding A < A ′ or B ′ < A to theplan.� Find all existing ations C in the plan that lobber the new ausallink A
p
→ B.� For eah of those you an try adding C < A or B < C to the plan.� Generate every possible ombination in this way and retain anyonsistent plans that result.

Possible threatsWhat about dealing with variables?If at any stage an e�et ¬At(x) appears, is it a threat to At(JS)?Suh an ourrene is alled a possible threat and we an deal withit by introduing inequality onstraints : in this ase x 6= JS.� Eah partially omplete plan now has a set I of inequality on-straints assoiated with it.� An inequality onstraint has the form v 6= X where v is a variableand X is a variable or a onstant.� Whenever we try to make a substitution we hek I to make surewe won't introdue a onit.If we would introdue a onit then we disard the partially om-pleted plan as inonsistent.

30

