Artificial Intelligence I	Problem solving is different to planning
Dr Sean Holden	In search problems we:
	• <i>Represent states</i> : and a state representation contains <i>everything</i> that's relevant about the environment.
	• <i>Represent actions</i> : by describing a new state obtained from a current state.
Notes on <i>planning</i>	• <i>Represent goals</i> : all we know is how to test a state either to see if it's a goal, or using a heuristic.
	• A sequence of actions is a 'plan': but we only consider se- quences of consecutive actions.
	Search algorithms are good for solving problems that fit this frame- work. However for more complex problems they may fail completely
Copyright © Sean Holden 2002-2010.	
Problem solving is different to planning	Introduction to planning
Representing a problem such as: 'go out and buy some pies' is hopeless:	We now look at how an agent might <i>construct a plan</i> enabling it to achieve a goal.
• There are too many possible actions at each step.	Aims:
• A heuristic can only help you rank states. In particular it does not help you <i>ignore</i> useless actions.	• To look at how we might update our concept of <i>knowledge representation and reasoning</i> to apply more specifically to planning
• We are forced to start at the initial state, but you have to work	tasks.
out how to get the pies—that is, go to town and buy them, get online and find a web site that sells pies etc—before you can start to do it.	• To look in detail at the basic <i>partial-order planning algorithm</i> .
	Reading: Russell and Norvig, chapter 11.
Knowledge representation and reasoning might not help either: al- though we end up with a sequence of actions—a plan—there is so	

Planning algorithms work differently

Difference 1:

- Planning algorithms use a *special purpose language*—often based on FOL or a subset— to represent states, goals, and actions.
- States and goals are described by sentences, as might be expected, but...
- ... actions are described by stating their *preconditions* and their *effects*.

So if you know the goal includes (maybe among other things)

Have(pie)

and action Buy(x) has an effect Have(x) then you know that a plan including

Buy(pie)

might be reasonable.

Planning algorithms work differently

Difference 3:

It is assumed that most elements of the environment are *independent* of most other elements.

- A goal including several requirements can be attacked with a divide-and-conquer approach.
- Each individual requirement can be fulfilled using a subplan...
- ...and the subplans then combined.

This works provided there is not significant interaction between the subplans.

Remember: the *frame problem*.

Planning algorithms work differently

Difference 2:

- Planners can add actions at *any relevant point at all between the start and the goal*, not just at the end of a sequence starting at the start state.
- This makes sense: I may determine that Have(carKeys) is a good state to be in without worrying about what happens before or after finding them.
- By making an important decision like requiring Have(carKeys) early on we may reduce branching and backtracking.
- State descriptions are not complete—Have(carKeys) describes a *class of states*—and this adds flexibility.

So: you have the potential to search both *forwards* and *backwards* within the same problem.

Running example: gorilla-based mischief

We will use the following simple example problem, which as based on a similar one due to Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing Society wish to attach an inflatable gorilla to the spire of a Famous College. To do this they need to leave home and obtain:

- An inflatable gorilla: these can be purchased from all good joke shops.
- Some rope: available from a hardware store.
- A first-aid kit: also available from a hardware store.

They need to return home after they've finished their shopping.

How do they go about planning their *jolly escapade*?

The STRIPS language

STRIPS: "Stanford Research Institute Problem Solver" (1970).

States: are conjunctions of ground literals. They must not include function symbols.

 $\begin{array}{l} {\rm At(home)} \land \neg {\rm Have(gorilla)} \\ \land \neg {\rm Have(rope)} \\ \land \neg {\rm Have(kit)} \end{array}$

Goals: are conjunctions of literals where variables are assumed *existentially quantified*.

 $At(x) \wedge Sells(x, gorilla)$

A planner finds a sequence of actions that when performed makes the goal true. We are no longer employing a full theorem-prover.

The STRIPS language

STRIPS represents actions using *operators*. For example

А	t(x), $Path(x, y)$	
	Go(y)	
	$At(y), \neg At(x)$	

Op(Action: Go(y), Pre: At(x) \land Path(x, y), Effect: At(y) $\land \neg$ At(x)) All variables are implicitly universally quantified. An operator has:

- An action description: what the action does.
- A *precondition*: what must be true before the operator can be used. A *conjunction of positive literals*.
- An *effect*: what is true after the operator has been used. A *conjunction of literals*.

The space of plans

We now make a change in perspective—we search in *plan space*:

- Start with an *empty plan*.
- Operate on it to obtain new plans. Incomplete plans are called *partial plans*. Refinement operators add constraints to a partial plan. All other operators are called *modification operators*.
- Continue until we obtain a plan that solves the problem.

Operations on plans can be:

- Adding a step.
- Instantiating a variable.
- Imposing an ordering that places a step in front of another.
- \bullet and so on...

Representing a plan: partial order planners

When putting on your shoes and socks:

- It *does not matter* whether you deal with your left or right foot first.
- It *does matter* that you place a sock on *before* a shoe, for any given foot.

It makes sense in constructing a plan *not* to make any *commitment* to which side is done first *if you don't have to*.

Principle of least commitment: do not commit to any specific choices until you have to. This can be applied both to ordering and to instantiation of variables. A *partial order planner* allows plans to specify that some steps must come before others but others have no ordering. A *linearisation* of such a plan imposes a specific sequence on the actions therein.

Representing a plan: partial order planners

A plan consists of:

- 1. A set $\{S_1, S_2, \ldots, S_n\}$ of *steps*. Each of these is one of the available *operators*.
- 2. A set of ordering constraints. An ordering constraint $S_i < S_j$ denotes the fact that step S_i must happen before step $S_j. \ S_i < S_j < S_k$ and so on has the obvious meaning. $S_i < S_j$ does not mean that S_i must immediately precede $S_j.$
- 3. A set of variable bindings v = x where v is a variable and x is either a variable or a constant.
- 4. A set of causal links or protection intervals $S_i \xrightarrow{c} S_j$. This denotes the fact that the purpose of S_i is to achieve the precondition c for S_j .

A causal link is *always* paired with an equivalent ordering constraint.

Representing a plan: partial order planners

The initial plan has:

- Two steps, called Start and Finish.
- \bullet a single ordering constraint Start < Finish.
- No variable bindings.
- No causal links.

In addition to this:

- The step Start has no preconditions, and its effect is the start state for the problem.
- The step Finish has no effect, and its precondition is the goal.
- Neither Start or Finish has an associated action.

We now need to consider what constitutes a *solution*...

Solutions to planning problems

A solution to a planning problem is any *complete* and *consistent* partially ordered plan.

Complete: each precondition of each step is *achieved* by another step in the solution.

A precondition $c \mbox{ for } S$ is achieved by a step $S' \mbox{ if:}$

1. The precondition is an effect of the step

```
S' < S \text{ and } c \in \texttt{Effects}(S')
```

and...

2. ... there is no other step that can cancel the precondition:

no S'' exists where S' < S'' < S and $\neg c \in \operatorname{Effects}(S'')$

Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in the proposed ordering. That is:

- 1. For binding constraints, we never have $\nu = X$ and $\nu = Y$ for distinct constants X and Y.
- 2. For the ordering, we never have $S < S^\prime$ and $S^\prime < S.$

Returning to the roof-climber's shopping expedition, here is the basic approach:

- Begin with only the Start and Finish steps in the plan.
- At each stage add a new step.
- Always add a new step such that a currently non-achieved precondition is achieved.
- Backtrack when necessary.

An example of partial-order planning

A step that might invalidate (sometimes the word *clobber* is employed) a previously achieved precondition is called a *threat*.

A planner can try to fix a threat by introducing an ordering constraint.

The algorithm

Simplifying slightly to the case where there are no variables.

Say we have a partially completed plan and a set of the preconditions that have yet to be achieved.

- Select a precondition p that has not yet been achieved and is associated with an action B.
- At each stage the partially complete plan is expanded into a new collection of plans.
- To expand a plan, we can try to achieve p *either* by using an action that's already in the plan or by adding a new action to the plan. In either case, call the action A.

We then try to construct consistent plans where \boldsymbol{A} achieves $\boldsymbol{p}.$

An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondition using the existing Go(JS) step.

This involves a threat, but one that can be fixed using promotion.

The algorithm

This works as follows:

- For each possible way of achieving p:
 - Add Start < A, A < Finish, A < B and the causal link A \xrightarrow{p} B to the plan.
 - If the resulting plan is consistent we're done, otherwise generate all possible ways of removing inconsistencies by promotion or demotion and keep any resulting consistent plans.

At this stage:

• If you have no further preconditions that haven't been achieved then any plan obtained is valid.

The algorithm

But how do we try to *enforce consistency*?

When you attempt to achieve p using A:

- Find all the existing causal links $A' \xrightarrow{\neg p} B'$ that are *clobbered* by A.
- \bullet For each of those you can try adding $A < A^\prime$ or $B^\prime < A$ to the plan.
- Find all existing actions C in the plan that clobber the *new* causal link $A \xrightarrow{p} B$.
- \bullet For each of those you can try adding $C < A \mbox{ or } B < C \mbox{ to the plan}.$
- Generate *every possible combination* in this way and retain any consistent plans that result.

Possible threats

What about dealing with variables?

If at any stage an effect $\neg At(x)$ appears, is it a threat to At(JS)?

Such an occurrence is called a *possible threat* and we can deal with it by introducing *inequality constraints*: in this case $x \neq JS$.

- ${}^{\mbox{\tiny \ensuremath{\mathbb{S}}}}$ \bullet Each partially complete plan now has a set I of inequality constraints associated with it.
 - An inequality constraint has the form $\nu \neq X$ where ν is a variable and X is a variable or a constant.
 - Whenever we try to make a substitution we check I to make sure we won't introduce a conflict.

If we *would* introduce a conflict then we discard the partially completed plan as inconsistent.