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Did you heed the DIRE WARNING?At the beginning of the ourse I suggested making sure you ananswer the following two questions:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are onstants. Compute ∂f/∂xj where 1 ≤ j ≤ n?Answer: As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx2

nonly one term in the sum depends on xj, so all the other termsdi�erentiate to give 0 and
∂f

∂xj

= 2ajxj



Did you heed the DIRE WARNING?2. Let f(x1, . . . , xn) be a funtion. Now assume xi = gi(y1, . . . , ym)for eah xi and some olletion of funtions gi. Assuming allrequirements for di�erentiability and so on are met, an you writedown an expression for ∂f/∂yj where 1 ≤ j ≤ m?Answer: this is just the hain rule for partial di�erentiation
∂f

∂yj

=

n∑

i=1

∂f

∂gi

∂gi

∂yj



Supervised learning with neural networksWe now look at how an agent might learn to solve a general problemby seeing examples .Aims :� To present an outline of supervised learning as part of AI.� To introdue muh of the notation and terminology used.� To introdue the lassial pereptron .� To introdue multilayer pereptrons and the bakpropagationalgorithm for training them.Reading : Russell and Norvig hapter 20.



An exampleA ommon soure of problems in AI is medial diagnosis .Imagine that we want to automate the diagnosis of an EmbarrassingDisease (all it D) by onstruting a mahine:
0 otherwise1 if the patient su�ers from DMeasurements taken from thepatient: heart rate, blood pressure,presene of green spots et. Mahine

Could we do this by expliitly writing a program that examines themeasurements and outputs a diagnosis?Experiene suggests that this is unlikely.



An example, ontinued...An alternative approah: eah olletion of measurements an bewritten as a vetor,

x
T = ( x1 x2 · · · xn )where,

x1 = heart rate

x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise... and so on

(Note : it's a ommon onvention that vetors are olumn vetorsby default. This is why the above is written as a transpose .)



An example, ontinued...A vetor of this kind ontains all the measurements for a single patientand is alled a feature vetor or instane .The measurements are attributes or features .Attributes or features generally appear as one of three basi types:� Continuous : xi ∈ [xmin, xmax] where xmin, xmax ∈ R.� Binary : xi ∈ {0, 1} or xi ∈ {−1,+1}.� Disrete : xi an take one of a �nite number of values, say xi ∈

{X1, . . . , Xp}.



An example, ontinued...Now imagine that we have a large olletion of patient histories (min total) and for eah of these we know whether or not the patientsu�ered from D.� The ith patient history gives us an instane xi.� This an be paired with a single bit|0 or 1|denoting whetheror not the ith patient su�ers from D. The resulting pair is alledan example or a labelled example .� Colleting all the examples together we obtain a training se-quene

s = ((x1, 0), (x2, 0), . . . , (xm, 0))



An example, ontinued...In supervised mahine learning we aim to design a learning algo-rithm whih takes s and produes a hypothesis h.

Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new pa-tients.This is IMPORTANT : we want to diagnose patients that the systemhas never seen .The ability to do this suessfully is alled generalisation .



An example, ontinued...In fat, a hypothesis is just a funtion that maps instanes to labels .
x

Classi�er

h(x) LabelAttribute vetor

As h is a funtion it assigns a label to any x and not just the onesthat were in the training sequene .What we mean by a label here depends on whether we're doing las-si�ation or regression .



Supervised learning: lassi�ationIn lassi�ation we're assigning x to one of a set {ω1, . . . ,ωc} of classes .For example, if x ontains measurements taken from a patient thenthere might be three lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a omputer!The binary ase above also �ts into this framework, and we'll oftenspeialise to the ase of two lasses, denoted C1 and C2.



Supervised learning: regressionIn regression we're assigning x to a real number h(x) ∈ R.For example, if x ontains measurements taken regarding today'sweather then we might have

h(x) = estimate of amount of rainfall expeted tomorrowFor the two-lass lassi�ation problem we will also refer to a situationsomewhat between the two, where
h(x) = Pr(x is in C1)and so we would typially assign x to lass C1 if h(x) > 1/2.



SummaryWe don't want to design h expliitly.
Training sequene
h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute vetor

x

So we use a learner L to infer it on the basis of a sequene s oftraining examples .



Neural networksThere is generally a set H of hypotheses from whih L is allowed toselet h

L(s) = h ∈ H

H is alled the hypothesis spae .The learner an output a hypothesis expliitly or|as in the ase ofa neural network|it an output a vetor
w

T =
(

w1 w2 · · · wW

)of weights whih in turn speify h

h(x) = f(w;x)where w = L(s).



Types of learningThe form of mahine learning desribed is alled supervised learning .This introdution will onentrate on this kind of learning. In par-tiular, the literature also disusses:1. Unsupervised learning .2. Learning using membership queries and equivalene queries .3. Reinforement learning .Some of this further material will be overed in AI 2.



Some further examples� Speeh reognition .� Deiding whether or not to give redit .� Deteting redit ard fraud .� Deiding whether to buy or sell a stok option .� Deiding whether a tumour is benign .� Data mining : extrating interesting but hidden knowledge fromexisting, large databases. For example, databases ontaining �-nanial transations or loan appliations .� Deiding whether driving onditions are dangerous .� Automati driving . (See Pomerleau, 1989, in whih a ar isdriven for 90 miles at 70 miles per hour, on a publi road withother ars present, but with no assistane from humans.)



This is very similar to urve �ttingThis proess is in fat very similar to urve �tting .Think of the proess as follows:� Nature piks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequene s where eah xi is la-belled as h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only .This is easy to visualise in one dimension: it's just �tting a urveto some points .



Curve �ttingExample : if H is the set of all polynomials of degree 3 then naturemight pik

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2
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The line is dashed to emphasise the fat that we don't get to see it .



Curve �ttingWe an now use h ′ to obtain a training sequene s in the mannersuggested..
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Here we have,

s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))where eah xi and yi is a real number.



Curve �ttingWe'll use a learning algorithm L that operates in a reasonable-looking way: it piks an h ∈ H minimising the following quantity,
E =

m∑

i=1

(h(xi) − yi)
2

In other words

h = L(s) = argmin
h∈H

m∑

i=1

(h(xi) − yi)
2

Why is this sensible?1. Eah term in the sum is 0 if h(xi) is exatly yi.2. Eah term inreases as the di�erene between h(xi) and yi in-reases.3. We add the terms for all examples.



Curve �ttingIf we pik h using this method then we get:
0.5 1 1.5 2 2.5 3

-0.2
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The hosen h is lose to the target h ′, even though it was hosenusing only a small number of noisy examples .It is not quite idential to the target onept.However if we were given a new point x
′ and asked to guess the value

h ′(x ′) then guessing h(x ′) might be expeted to do quite well.



Curve �ttingProblem : we don't know what H nature is using . What if the onewe hoose doesn't math? We an make our H `bigger' by de�ningit as

H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:
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The result in this ase is similar to the previous one: h is again quitelose to h ′, but not quite idential.



Curve �ttingSo what's the problem? Repeating the proess with,
H = {h : h is a polynomial of degree at most 1}gives the following:
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In e�et, we have made our H too `small'. It does not in fat ontainany hypothesis similar to h ′.



Curve �ttingSo we have to make H huge, right? WRONG!!! With
H = {h : h is a polynomial of degree at most 25}we get:
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BEWARE!!! This is known as over�tting .



Curve �ttingAn experiment to gain some further insight : using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying funtion.We an look at how the degree of the polynomial the training algo-rithm an output a�ets the generalisation ability of the resulting

h.We use the same training algorithm, and we train using
H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30



Curve �tting� Eah time we obtain an h of a given degree|all it hd|we assessits quality using a further 100 inputs x
′
i generated at randomand alulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not neessarilyinluded in the training sequene they measure generalisation .� To smooth out the e�ets of the random seletion of examples werepeat this proess 100 times and average the values q(d).



Curve �ttingHere is the result:
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Clearly: we need to hoose H sensibly if we want to obtain goodgeneralisation performane .



The pereptronThe example just given illustrates muh of what we want to do. How-ever in pratie we deal with more than a single dimension .The simplest form of hypothesis used is the linear disriminant ,also known as the pereptron . Here

h(w;x) = σ

(

w0 +

m∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)So: we have a linear funtion modi�ed by the ativation funtion

σ.The pereptron's inuene ontinues to be felt in the reent and on-going development of support vetor mahines .



The pereptron ativation funtion IThere are three standard forms for the ativation funtion:1. Linear : for regression problems we often use
σ(z) = z2. Step: for two-lass lassi�ation problems we often use

σ(z) =

{
C1 if z > 0

C2 otherwise.3. Sigmoid/Logisti: for probabilisti lassi�ation we often usePr(x is in C1) = σ(z) =
1

1 + exp(−z)
.

The step funtion is important but the algorithms involved are some-what di�erent to those we'll be seeing. We won't onsider it further.The sigmoid/logisti funtion plays a major role in what follows.



The sigmoid/logisti funtion
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Gradient desentA method for training a basi pereptron works as follows. Assumewe're dealing with a regression problem and using σ(z) = z.We de�ne a measure of error for a given olletion of weights. Forexample

E(w) =

m∑

i=1

(yi − h(w;xi))
2Modifying our notation slightly so that

x
T = ( 1 x1 x2 · · · xn )

w
T = ( w0 w1 w2 · · · wn )lets us write

E(w) =

m∑

i=1

(yi − w
T
xi)

2



Gradient desentWe want to minimise E(w).One way to approah this is to start with a random w0 and updateit as follows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtwhere

∂E(w)

∂w

=
(

∂E(w)

∂w0

∂E(w)

∂w1
· · ·

∂E(w)

∂wn

)Tand η is some small positive number.The vetor

−
∂E(w)

∂wtells us the diretion of the steepest derease in E(w).



Gradient desentWith

E(w) =
1

2

m∑

i=1

(yi − w
T
xi)

2we have

∂E(w)

∂wj

=
∂

∂wj

(

m∑

i=1

(yi − w
T
xi)

2

)

=

m∑

i=1

(

∂

∂wj

(yi − w
T
xi)

2

)

=

m∑

i=1

(

2(yi − w
T
xi)

∂

∂wj

(

−w
T
xi

)

)

= −2x
(j)

i

m∑

i=1

(

yi − w
T
xi

)

where x
(j)

i is the jth element of xi.



Gradient desentThe method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(

yi − w
T
t xi

)

xiSome things to note:� In this ase E(w) is paraboli and has a unique global minimumand no loal minima so this works well.� Gradient desent in some form is a very ommon approah tothis kind of problem.� We an perform a similar alulation for other ativation fun-tions and for other de�nitions for E(w).� Suh alulations lead to di�erent algorithms .



Pereptrons aren't very powerful: the parity problemThere are many problems a pereptron an't solve.
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We need a network that omputes more interesting funtions .



The multilayer pereptronEah node in the network is itself a pereptron:
aj zj

σ(aj)

w0

w1

w2

wn

...
Node j
z1

z2

zn

∑n

i=0 wizi

z0 = 1

� Weights wi onnet nodes together.� aj is the weighted sum or ativation for node j.� σ is the ativation funtion .� The output is zj = σ(aj).



The multilayer pereptronReminder :We'll ontinue to use the notation

z
T = ( 1 z1 z2 · · · zn )

w
T = ( w0 w1 w2 · · · wn )So that

n∑

i=0

wizi = w0 +

n∑

i=1

wizi

= w
T
z



The multilayer pereptronIn the general ase we have a ompletely unrestrited feedforwardstruture :Feature vetor x Node i Node j
wi→j Output y = h(w;x)

x1

x2

xn

...
Eah node is a pereptron. No spei� layering is assumed.

wi→j onnets node i to node j. w0 for node j is denoted w0→j.



BakpropagationAs usual we have:� Instanes x
T = (x1, . . . , xn).� A training sequene s = ((x1, y1), . . . , (xm, ym)).We also de�ne a measure of training error

E(w) = measure of the error of the network on swhere w is the vetor of all the weights in the network .Our aim is to �nd a set of weights that minimises E(w) using gra-dient desent .



Bakpropagation: the general aseThe entral task is therefore to alulate

∂E(w)

∂wTo do that we need to alulate the individual quantities
∂E(w)

∂wi→jfor every weight wi→j in the network .Often E(w) is the sum of separate omponents, one for eah examplein s

E(w) =

m∑

p=1

Ep(w)in whih ase

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wWe an therefore onsider examples individually.



Bakpropagation: the general asePlae example p at the input and alulate aj and zj for all nodesinluding the output y. This is forward propagation .We have

∂Ep(w)

∂wi→j

=
∂Ep(w)

∂aj

∂aj

∂wi→jwhere aj =
∑

k wk→jzk.Here the sum is over all the nodes onneted to node j. As
∂aj

∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= ziwe an write

∂Ep(w)

∂wi→j

= δjziwhere we've de�ned
δj =

∂Ep(w)

∂aj



Bakpropagation: the general aseSo we now need to alulate the values for δj...When j is the output node|that is, the one produing the output
y = h(w;xp) of the network|this is easy as zj = y and

δj =
∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ ′(aj)using the fat that y = σ(aj).



Bakpropagation: the general aseThe �rst term is in general easy to alulate for a given E as theerror is generally just a measure of the distane between y and thelabel in the training sequene.Example: when

Ep(w) = (y − yp)
2we have

∂Ep(w)

∂y
= 2(y − yp)

= 2(f(w;xp) − yp)



Bakpropagation: the general aseWhen j is not an output node we need something di�erent:
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We're interested in

δj =
∂Ep(w)

∂ajAltering aj an a�et several other nodes k1, k2, . . . , kq eah ofwhih an in turn a�et Ep(w).



Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

=
∑

k∈{k1,k2,...,kq}

δk

∂ak

∂ajwhere k1, k2, . . . , kq are the nodes to whih node j sends a onnetion.



Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Beause we know how to ompute δj for the output node we anwork bakwards omputing further δ values.We will always know all the values δk for nodes ahead of wherewe are .Hene the term bakpropagation .



Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak

∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)and

δj =
∑

k∈{k1,k2,...,kq}

δkwj→kσ
′(aj) = σ ′(aj)

∑

k∈{k1,k2,...,kq}

δkwj→k



Bakpropagation: the general ase

Summary : to alulate ∂Ep(w)

∂w

for the pth pattern:1. Forward propagation : apply xp and alulate outputs et for allthe nodes in the network .2. Bakpropagation 1 : for the output node
∂Ep(w)

∂wi→j

= ziδj = ziσ
′(aj)

∂Ep(w)

∂ywhere y = h(w;xp).3. Bakpropagation 2 : For other nodes
∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kwhere the δk were alulated at an earlier step.



Bakpropagation: a spei� exampleHidden nodes reeiveinputs from all features
Output node reeivesinputs from all hiddennodes

y = h(w;x)......x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a)

.



Bakpropagation: a spei� exampleFor the output: σ(a) = a so σ ′(a) = 1.For the hidden nodes:

σ(a) =
1

1 + exp(−a)so

σ ′(a) = σ(a) [1 − σ(a)]We'll ontinue using the same de�nition for the error
E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2



Bakpropagation: a spei� exampleFor the output : the equation is

∂Ep(w)

∂wi→output = ziδoutput = ziσ
′(aoutput)∂Ep(w)

∂ywhere y = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp) − yp]and g ′(a) = 1 so

δoutput = 2 [h(w;xp) − yp]and

∂Ep(w)

∂wi→output = 2zi(h(w;xp) − yp)



Bakpropagation: a spei� exampleFor the hidden nodes : the equation is

∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kHowever there is only one output so

∂Ep(w)

∂wi→j

= ziσ(aj) [1 − σ(aj)] δoutputwj→outputand we know that

δoutput = 2 [h(w;xp) − yp]so

∂Ep(w)

∂wi→j

= 2ziσ(aj) [1 − σ(aj)] [h(w;xp) − yp]wj→output

= 2xizj(1 − zj) [h(w;xp) − yp] wj→output



Putting it all togetherWe an then use the derivatives in one of two basi ways:Bath : (as desribed previously)

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wthen

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtSequential : using just one pattern at one
wt+1 = wt − η

∂Ep(w)

∂w

∣

∣

∣

∣

wtseleting patterns in sequene or at random .



Example: the parity problem revisitedAs an example we show the result of training a network with:� Two inputs.� One output.� One hidden layer ontaining 5 units.� η = 0.01.� All other details as above.The problem is the parity problem. There are 40 noisy examples.The sequential approah is used, with 1000 repetitions through theentire training sequene.



Example: the parity problem revisited
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Example: the parity problem revisited
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Example: the parity problem revisited
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