Artificial Intelligence I

Dr Sean Holden

Notes on *machine learning using neural networks*

Copyright © Sean Holden 2002-2010.
Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the following two questions:

1. Let

\[f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i x_i^2 \]

where the \(a_i \) are constants. Compute \(\frac{\partial f}{\partial x_j} \) where \(1 \leq j \leq n \)?

Answer: As

\[f(x_1, \ldots, x_n) = a_1 x_1^2 + \cdots + a_j x_j^2 + \cdots + a_n x_n^2 \]

only one term in the sum depends on \(x_j \), so all the other terms differentiate to give 0 and

\[\frac{\partial f}{\partial x_j} = 2a_j x_j \]
Did you heed the DIRE WARNING?

2. Let \(f(x_1, \ldots, x_n) \) be a function. Now assume \(x_i = g_i(y_1, \ldots, y_m) \) for each \(x_i \) and some collection of functions \(g_i \). Assuming all requirements for differentiability and so on are met, can you write down an expression for \(\partial f / \partial y_j \) where \(1 \leq j \leq m \)?

Answer: this is just the **chain rule** for partial differentiation

\[
\frac{\partial f}{\partial y_j} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial y_j}
\]
Supervised learning with neural networks

We now look at how an agent might learn to solve a general problem by seeing examples.

Aims:

- To present an outline of supervised learning as part of AI.
- To introduce much of the notation and terminology used.
- To introduce the classical perceptron.
- To introduce multilayer perceptrons and the backpropagation algorithm for training them.

Reading: Russell and Norvig chapter 20.
An example

A common source of problems in AI is *medical diagnosis*.

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call it D) by constructing a machine:

Could we do this by *explicitly writing a program* that examines the measurements and outputs a diagnosis?

Experience suggests that this is unlikely.
An example, continued...

An alternative approach: each collection of measurements can be written as a vector,

\[\mathbf{x}^\top = (x_1, x_2, \ldots, x_n) \]

where,

\[\begin{align*}
x_1 &= \text{heart rate} \\
x_2 &= \text{blood pressure} \\
x_3 &= 1 \text{ if the patient has green spots} \\
&\quad 0 \text{ otherwise} \\
\vdots \\
&\quad \text{and so on}
\end{align*} \]

(Note: it’s a common convention that vectors are *column vectors* by default. This is why the above is written as a *transpose*.)
An example, continued...

A vector of this kind contains all the measurements for a single patient and is called a feature vector or instance.

The measurements are attributes or features.

Attributes or features generally appear as one of three basic types:

- **Continuous**: \(x_i \in [x_{\text{min}}, x_{\text{max}}] \) where \(x_{\text{min}}, x_{\text{max}} \in \mathbb{R} \).
- **Binary**: \(x_i \in \{0, 1\} \) or \(x_i \in \{-1, +1\} \).
- **Discrete**: \(x_i \) can take one of a finite number of values, say \(x_i \in \{X_1, \ldots, X_p\} \).
An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and for each of these we know whether or not the patient suffered from D.

- The ith patient history gives us an instance x_i.
- This can be paired with a single bit—0 or 1—denoting whether or not the ith patient suffers from D. The resulting pair is called an example or a labelled example.
- Collecting all the examples together we obtain a training sequence

\[s = ((x_1, 0), (x_2, 0), \ldots, (x_m, 0)) \]
An example, continued...

In supervised machine learning we aim to design a *learning algorithm* which takes s and produces a *hypothesis* h.

![Diagram](image)

Intuitively, a hypothesis is something that lets us diagnose *new* patients.

This is *IMPORTANT*: we want to diagnose patients that *the system has never seen*.

The ability to do this successfully is called *generalisation*.
An example, continued...

In fact, a hypothesis is just a function that maps instances to labels.

As \(h \) is a function it assigns a label to any \(x \) and not just the ones that were in the training sequence.

What we mean by a label here depends on whether we’re doing classification or regression.
Supervised learning: classification

In classification we’re assigning \(x \) to one of a set \(\{\omega_1, \ldots, \omega_c\} \) of \(c \) classes.

For example, if \(x \) contains measurements taken from a patient then there might be three classes:

\[
\begin{align*}
\omega_1 &= \text{patient has disease} \\
\omega_2 &= \text{patient doesn’t have disease} \\
\omega_3 &= \text{don’t ask me buddy, I’m just a computer!}
\end{align*}
\]

The binary case above also fits into this framework, and we’ll often specialise to the case of two classes, denoted \(C_1 \) and \(C_2 \).
Supervised learning: regression

In *regression* we’re assigning x to a *real number* $h(x) \in \mathbb{R}$.

For example, if x contains measurements taken regarding today’s weather then we might have

$$h(x) = \text{estimate of amount of rainfall expected tomorrow}$$

For the two-class classification problem we will also refer to a situation somewhat between the two, where

$$h(x) = \Pr(x \text{ is in } C_1)$$

and so we would typically assign x to class C_1 if $h(x) > 1/2$.
Summary

We don’t want to design h explicitly.

So we use a learner L to infer it on the basis of a sequence s of training examples.
Neural networks

There is generally a set \mathcal{H} of hypotheses from which L is allowed to select h

$$L(s) = h \in \mathcal{H}$$

\mathcal{H} is called the **hypothesis space**.

The learner can output a hypothesis explicitly or—as in the case of a **neural network**—it can output a vector

$$w^T = (w_1 \ w_2 \ \cdots \ w_W)$$

of **weights** which in turn specify h

$$h(x) = f(w; x)$$

where $w = L(s)$.
Types of learning

The form of machine learning described is called *supervised learning*.

This introduction will concentrate on this kind of learning. In particular, the literature also discusses:

1. *Unsupervised learning*.
2. Learning using *membership queries* and *equivalence queries*.

Some of this further material will be covered in AI 2.
Some further examples

- *Speech recognition.*
- Deciding *whether or not to give credit.*
- Detecting *credit card fraud.*
- Deciding whether to *buy or sell a stock option.*
- Deciding whether a *tumour is benign.*
- *Data mining:* extracting interesting but hidden knowledge from existing, large databases. For example, databases containing financial transactions or loan applications.
- Deciding whether *driving conditions are dangerous.*
- *Automatic driving.* (See Pomerleau, 1989, in which a car is driven for 90 miles at 70 miles per hour, on a public road with other cars present, but with no assistance from humans.)
This is very similar to curve fitting

This process is in fact very similar to *curve fitting*.

Think of the process as follows:

- Nature picks an $h' \in \mathcal{H}$ but doesn’t reveal it to us.
- Nature then shows us a training sequence s where each x_i is labelled as $h'(x_i) + e_i$ where e_i is noise of some kind.

Our job is to try to infer what h' is *on the basis of s only*.

This is easy to visualise in one dimension: *it’s just fitting a curve to some points.*
Curve fitting

Example: if \(\mathcal{H} \) is the set of all polynomials of degree 3 then nature might pick

\[
h'(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x - \frac{1}{2}
\]

The line is dashed to emphasise the fact that *we don't get to see it*.
Curve fitting

We can now use h' to obtain a training sequence s in the manner suggested.

Here we have,

$$s^T = ((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m))$$

where each x_i and y_i is a real number.
Curve fitting

We’ll use a *learning algorithm* L that operates in a reasonable-looking way: it picks an $h \in \mathcal{H}$ minimising the following quantity,

$$E = \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

In other words

$$h = L(s) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Why is this sensible?

1. Each term in the sum is 0 if $h(x_i)$ is exactly y_i.
2. Each term *increases* as the difference between $h(x_i)$ and y_i increases.
3. We add the terms for all examples.
Curve fitting

If we pick h using this method then we get:

The chosen h is close to the target h', even though it was chosen using only a small number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new point x' and asked to guess the value $h'(x')$ then guessing $h(x')$ might be expected to do quite well.
Curve fitting

Problem: we don’t know *what* \mathcal{H} nature is using. What if the one we choose doesn’t match? We can make *our* \mathcal{H} ‘bigger’ by defining it as

$$\mathcal{H} = \{ h : h \text{ is a polynomial of degree at most 5} \}$$

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to h', but not quite identical.
Curve fitting

So what's the problem? Repeating the process with,

\[\mathcal{H} = \{ h : h \text{ is a polynomial of degree at most 1} \} \]

gives the following:

In effect, we have made our \(\mathcal{H} \) too 'small'. It does not in fact contain any hypothesis similar to \(h' \).
Curve fitting

So we have to make \mathcal{H} huge, right? **WRONG!!!** With

$$\mathcal{H} = \{h : h \text{ is a polynomial of degree at most } 25\}$$

we get:

Beware!!! This is known as *overfitting.*
Curve fitting

An experiment to gain some further insight: using

\[h'(x) = \frac{1}{10}x^{10} - \frac{1}{12}x^8 + \frac{1}{15}x^6 + \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x - \frac{1}{2}. \]

as the unknown underlying function.

We can look at how *the degree of the polynomial the training algorithm can output affects the generalisation ability of the resulting function*.

We use the same training algorithm, and we train using

\[\mathcal{H} = \{ h : h \text{ is a polynomial of degree at most } d \} \]

for values of \(d \) ranging from 1 to 30.
Curve fitting

- Each time we obtain an \(h \) of a given degree—call it \(h_d \)—we assess its quality using a further 100 inputs \(x'_i \) generated at random and calculating

\[
q(d) = \frac{1}{100} \sum_{i=1}^{100} (h'(x'_i) - h_d(x'_i))^2
\]

- As the values \(q(d) \) are found using inputs that are not necessarily included in the training sequence they measure generalisation.

- To smooth out the effects of the random selection of examples we repeat this process 100 times and average the values \(q(d) \).
Curve fitting

Here is the result:

Clearly: we need to choose \mathcal{H} sensibly if we want to obtain good generalisation performance.
The perceptron

The example just given illustrates much of what we want to do. However, in practice we deal with *more than a single dimension*.

The simplest form of hypothesis used is the *linear discriminant*, also known as the *perceptron*. Here

\[
h(w; x) = \sigma \left(w_0 + \sum_{i=1}^{m} w_i x_i \right) = \sigma (w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n)
\]

So: we have a *linear function* modified by the *activation function* \(\sigma \).

The perceptron’s influence continues to be felt in the recent and ongoing development of *support vector machines*.
The perceptron activation function I

There are three standard forms for the activation function:

1. **Linear**: for *regression problems* we often use
 \[\sigma(z) = z \]

2. **Step**: for *two-class classification problems* we often use
 \[\sigma(z) = \begin{cases} C_1 & \text{if } z > 0 \\ C_2 & \text{otherwise.} \end{cases} \]

3. **Sigmoid/Logistic**: for *probabilistic classification* we often use
 \[\Pr(x \text{ is in } C_1) = \sigma(z) = \frac{1}{1 + \exp(-z)}. \]

The *step function* is important but the algorithms involved are somewhat different to those we’ll be seeing. We won’t consider it further.

The *sigmoid/logistic function* plays a major role in what follows.
The sigmoid/logistic function

The logistic function $\sigma(z) = \frac{1}{1+\exp(-z)}$

Logistic $\sigma(z)$ applied to the output of a linear function
Gradient descent

A method for \textit{training a basic perceptron} works as follows. Assume we’re dealing with a \textit{regression problem} and using $\sigma(z) = z$.

We define a measure of \textit{error} for a given collection of weights. For example

$$E(w) = \sum_{i=1}^{m} (y_i - h(w; x_i))^2$$

Modifying our notation slightly so that

\[
\begin{align*}
x^\top &= (1 \ x_1 \ x_2 \ \cdots \ x_n) \\
w^\top &= (w_0 \ w_1 \ w_2 \ \cdots \ w_n)
\end{align*}
\]

lets us write

$$E(w) = \sum_{i=1}^{m} (y_i - w^\top x_i)^2$$
Gradient descent

We want to minimize $E(w)$.

One way to approach this is to start with a random w_0 and update it as follows:

$$w_{t+1} = w_t - \eta \frac{\partial E(w)}{\partial w} \bigg|_{w_t}$$

where

$$\frac{\partial E(w)}{\partial w} = \left(\frac{\partial E(w)}{\partial w_0} \quad \frac{\partial E(w)}{\partial w_1} \quad \ldots \quad \frac{\partial E(w)}{\partial w_n} \right)^T$$

and η is some small positive number.

The vector

$$-\frac{\partial E(w)}{\partial w}$$

tells us the direction of the steepest decrease in $E(w)$.
Gradient descent

With

\[E(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \]

we have

\[
\frac{\partial E(w)}{\partial w_j} = \frac{\partial}{\partial w_j} \left(\sum_{i=1}^{m} (y_i - w^T x_i)^2 \right)
\]

\[
= \sum_{i=1}^{m} \left(\frac{\partial}{\partial w_j} (y_i - w^T x_i)^2 \right)
\]

\[
= \sum_{i=1}^{m} \left(2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (-w^T x_i) \right)
\]

\[
= -2x_i^{(j)} \sum_{i=1}^{m} (y_i - w^T x_i)
\]

where \(x_i^{(j)} \) is the \(j \)th element of \(x_i \).
Gradient descent

The method therefore gives the algorithm

\[w_{t+1} = w_t + 2\eta \sum_{i=1}^{m} (y_i - w_t^T x_i) x_i \]

Some things to note:

- In this case \(E(w) \) is parabolic and has a unique global minimum and no local minima so this works well.

- Gradient descent in some form is a very common approach to this kind of problem.

- We can perform a similar calculation for other activation functions and for other definitions for \(E(w) \).

- Such calculations lead to different algorithms.
Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

We need a network that computes more interesting functions.
The multilayer perceptron

Each node in the network is itself a perceptron:

- **Weights** w_i connect nodes together.
- a_j is the weighted sum or activation for node j.
- σ is the activation function.
- The output is $z_j = \sigma(a_j)$.
The multilayer perceptron

Reminder:

We’ll continue to use the notation

\[z^\top = (1 \ z_1 \ z_2 \ \cdots \ z_n) \]
\[w^\top = (w_0 \ w_1 \ w_2 \ \cdots \ w_n) \]

So that

\[
\sum_{i=0}^{n} w_i z_i = w_0 + \sum_{i=1}^{n} w_i z_i = w^\top z
\]
The multilayer perceptron

In the general case we have a completely unrestricted feedforward structure:

Each node is a perceptron. No specific layering is assumed.

\(w_{i \rightarrow j} \) connects node \(i \) to node \(j \). \(w_0 \) for node \(j \) is denoted \(w_{0 \rightarrow j} \).
Backpropagation

As usual we have:

- Instances $\mathbf{x}^T = (x_1, \ldots, x_n)$.
- A training sequence $s = ((x_1, y_1), \ldots, (x_m, y_m))$.

We also define a measure of training error

$$E(\mathbf{w}) = \text{measure of the error of the network on } s$$

where \mathbf{w} is the vector of *all the weights in the network*.

Our aim is to find a set of weights that *minimises* $E(\mathbf{w})$ using *gradient descent*.
Backpropagation: the general case

The *central task* is therefore to calculate

\[
\frac{\partial E(w)}{\partial w}
\]

To do that we need to calculate the individual quantities

\[
\frac{\partial E(w)}{\partial w_{i\rightarrow j}}
\]

for *every weight* \(w_{i\rightarrow j}\) *in the network*.

Often \(E(w)\) is the sum of separate components, one for each example in \(s\)

\[
E(w) = \sum_{p=1}^{m} E_p(w)
\]

in which case

\[
\frac{\partial E(w)}{\partial w} = \sum_{p=1}^{m} \frac{\partial E_p(w)}{\partial w}
\]

We can therefore consider examples individually.
Backpropagation: the general case

Place example \(p \) at the input and calculate \(a_j \) and \(z_j \) for all nodes including the output \(y \). This is forward propagation.

We have

\[
\frac{\partial E_p(w)}{\partial w_{i\rightarrow j}} = \frac{\partial E_p(w)}{\partial a_j} \frac{\partial a_j}{\partial w_{i\rightarrow j}}
\]

where \(a_j = \sum_k w_{k\rightarrow j} z_k \).

Here the sum is over all the nodes connected to node \(j \). As

\[
\frac{\partial a_j}{\partial w_{i\rightarrow j}} = \frac{\partial}{\partial w_{i\rightarrow j}} \left(\sum_k w_{k\rightarrow j} z_k \right) = z_i
\]

we can write

\[
\frac{\partial E_p(w)}{\partial w_{i\rightarrow j}} = \delta_j z_i
\]

where we’ve defined

\[
\delta_j = \frac{\partial E_p(w)}{\partial a_j}
\]
Backpropagation: the general case

So we now need to calculate the values for δ_j...

When j is the output node—that is, the one producing the output $y = h(w; x_p)$ of the network—this is easy as $z_j = y$ and

$$
\delta_j = \frac{\partial E_p(w)}{\partial a_j} = \frac{\partial E_p(w)}{\partial y} \frac{\partial y}{\partial a_j} = \frac{\partial E_p(w)}{\partial y} \sigma'(a_j)
$$

using the fact that $y = \sigma(a_j)$.
Backpropagation: the general case

The first term is in general easy to calculate for a given E as the error is generally just a measure of the distance between y and the label in the training sequence.

Example: when

$$E_p(w) = (y - y_p)^2$$

we have

$$\frac{\partial E_p(w)}{\partial y} = 2(y - y_p)$$

$$= 2(f(w; x_p) - y_p)$$
Backpropagation: the general case

When \(j \) is *not an output node* we need something different:

\[
\delta_j = \frac{\partial E_p(w)}{\partial a_j}
\]

Altering \(a_j \) can affect several other nodes \(k_1, k_2, \ldots, k_q \) each of which can in turn affect \(E_p(w) \).
Backpropagation: the general case

We have

$$\delta_j = \frac{\partial E_p(w)}{\partial a_j} = \sum_{k \in \{k_1, k_2, \ldots, k_q\}} \frac{\partial E_p(w)}{\partial a_k} \frac{\partial a_k}{\partial a_j} = \sum_{k \in \{k_1, k_2, \ldots, k_q\}} \delta_k \frac{\partial a_k}{\partial a_j}$$

where k_1, k_2, \ldots, k_q are the nodes to which node j sends a connection.
Backpropagation: the general case

Because we know how to compute δ_j for the output node we can work backwards computing further δ values.

We will always know all the values δ_k for nodes ahead of where we are.

Hence the term backpropagation.
Backpropagation: the general case

\[
\frac{\partial a_k}{\partial a_j} = \frac{\partial}{\partial a_j} \left(\sum_i w_{i \rightarrow k} \sigma(a_i) \right) = w_{j \rightarrow k} \sigma'(a_j)
\]

and

\[
\delta_j = \sum_{k \in \{k_1, k_2, \ldots, k_q\}} \delta_k w_{j \rightarrow k} \sigma'(a_j) = \sigma'(a_j) \sum_{k \in \{k_1, k_2, \ldots, k_q\}} \delta_k w_{j \rightarrow k}
\]
Backpropagation: the general case

Summary: to calculate $\frac{\partial E_p(w)}{\partial w}$ for the pth pattern:

1. **Forward propagation**: apply x_p and calculate outputs *etc* for all the nodes in the network.

2. **Backpropagation 1**: for the output node

 $$\frac{\partial E_p(w)}{\partial w_{i\rightarrow j}} = z_i \delta_j = z_i \sigma'(a_j) \frac{\partial E_p(w)}{\partial y}$$

 where $y = h(w; x_p)$.

3. **Backpropagation 2**: For other nodes

 $$\frac{\partial E_p(w)}{\partial w_{i\rightarrow j}} = z_i \sigma'(a_j) \sum_k \delta_k w_{j\rightarrow k}$$

 where the δ_k were calculated at an earlier step.
Backpropagation: a specific example

For the output: $\sigma(a) = a$. For the hidden nodes $\sigma(a) = \frac{1}{1 + \exp(-a)}$.
Backpropagation: a specific example

For the output: $\sigma(a) = a$ so $\sigma'(a) = 1$.

For the hidden nodes:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

so

$$\sigma'(a) = \sigma(a) [1 - \sigma(a)]$$

We’ll continue using the same definition for the error

$$E(w) = \sum_{p=1}^{m} (y_p - h(w; x_p))^2$$

$$E_p(w) = (y_p - h(w; x_p))^2$$
Backpropagation: a specific example

For the output: the equation is

\[
\frac{\partial E_p(w)}{\partial w_{i\rightarrow output}} = z_i \delta_{\text{output}} = z_i \sigma'(a_{\text{output}}) \frac{\partial E_p(w)}{\partial y}
\]

where \(y = h(w; x_p) \). So as

\[
\frac{\partial E_p(w)}{\partial y} = \frac{\partial}{\partial y} ((y_p - y)^2) = 2 (y - y_p) = 2 [h(w; x_p) - y_p]
\]

and \(g'(a) = 1 \) so

\[
\delta_{\text{output}} = 2 [h(w; x_p) - y_p]
\]

and

\[
\frac{\partial E_p(w)}{\partial w_{i\rightarrow output}} = 2 z_i (h(w; x_p) - y_p)
\]
Backpropagation: a specific example

For the hidden nodes: the equation is

\[
\frac{\partial E_p(w)}{\partial w_{i \rightarrow j}} = z_i \sigma'(a_j) \sum_k \delta_k w_{j \rightarrow k}
\]

However there is only one output so

\[
\frac{\partial E_p(w)}{\partial w_{i \rightarrow j}} = z_i \sigma(a_j) [1 - \sigma(a_j)] \delta_{\text{output}} w_{j \rightarrow \text{output}}
\]

and we know that

\[
\delta_{\text{output}} = 2 [h(w; x_p) - y_p]
\]

so

\[
\frac{\partial E_p(w)}{\partial w_{i \rightarrow j}} = 2z_i \sigma(a_j) [1 - \sigma(a_j)] [h(w; x_p) - y_p] w_{j \rightarrow \text{output}} = 2x_i z_j (1 - z_j) [h(w; x_p) - y_p] w_{j \rightarrow \text{output}}
\]
Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)

\[
\frac{\partial E(w)}{\partial w} = \sum_{p=1}^{m} \frac{\partial E_p(w)}{\partial w}
\]

then

\[
w_{t+1} = w_t - \eta \frac{\partial E(w)}{\partial w} \bigg|_{w_t}
\]

Sequential: using just one pattern at once

\[
w_{t+1} = w_t - \eta \frac{\partial E_p(w)}{\partial w} \bigg|_{w_t}
\]

selecting patterns *in sequence or at random.*
Example: the parity problem revisited

As an example we show the result of training a network with:

- Two inputs.
- One output.
- One hidden layer containing 5 units.
- $\eta = 0.01$.
- All other details as above.

The problem is the parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire training sequence.
Example: the parity problem revisited
Example: the parity problem revisited
Example: the parity problem revisited