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Did you heed the DIRE WARNING?At the beginning of the 
ourse I suggested making sure you 
ananswer the following two questions:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are 
onstants. Compute ∂f/∂xj where 1 ≤ j ≤ n?Answer: As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx2

nonly one term in the sum depends on xj, so all the other termsdi�erentiate to give 0 and
∂f

∂xj

= 2ajxj



Did you heed the DIRE WARNING?2. Let f(x1, . . . , xn) be a fun
tion. Now assume xi = gi(y1, . . . , ym)for ea
h xi and some 
olle
tion of fun
tions gi. Assuming allrequirements for di�erentiability and so on are met, 
an you writedown an expression for ∂f/∂yj where 1 ≤ j ≤ m?Answer: this is just the 
hain rule for partial di�erentiation
∂f

∂yj

=

n∑

i=1

∂f

∂gi

∂gi

∂yj



Supervised learning with neural networksWe now look at how an agent might learn to solve a general problemby seeing examples .Aims :� To present an outline of supervised learning as part of AI.� To introdu
e mu
h of the notation and terminology used.� To introdu
e the 
lassi
al per
eptron .� To introdu
e multilayer per
eptrons and the ba
kpropagationalgorithm for training them.Reading : Russell and Norvig 
hapter 20.



An exampleA 
ommon sour
e of problems in AI is medi
al diagnosis .Imagine that we want to automate the diagnosis of an EmbarrassingDisease (
all it D) by 
onstru
ting a ma
hine:
0 otherwise1 if the patient su�ers from DMeasurements taken from thepatient: heart rate, blood pressure,presen
e of green spots et
. Ma
hine

Could we do this by expli
itly writing a program that examines themeasurements and outputs a diagnosis?Experien
e suggests that this is unlikely.



An example, 
ontinued...An alternative approa
h: ea
h 
olle
tion of measurements 
an bewritten as a ve
tor,

x
T = ( x1 x2 · · · xn )where,

x1 = heart rate

x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise... and so on

(Note : it's a 
ommon 
onvention that ve
tors are 
olumn ve
torsby default. This is why the above is written as a transpose .)



An example, 
ontinued...A ve
tor of this kind 
ontains all the measurements for a single patientand is 
alled a feature ve
tor or instan
e .The measurements are attributes or features .Attributes or features generally appear as one of three basi
 types:� Continuous : xi ∈ [xmin, xmax] where xmin, xmax ∈ R.� Binary : xi ∈ {0, 1} or xi ∈ {−1,+1}.� Dis
rete : xi 
an take one of a �nite number of values, say xi ∈

{X1, . . . , Xp}.



An example, 
ontinued...Now imagine that we have a large 
olle
tion of patient histories (min total) and for ea
h of these we know whether or not the patientsu�ered from D.� The ith patient history gives us an instan
e xi.� This 
an be paired with a single bit|0 or 1|denoting whetheror not the ith patient su�ers from D. The resulting pair is 
alledan example or a labelled example .� Colle
ting all the examples together we obtain a training se-quen
e

s = ((x1, 0), (x2, 0), . . . , (xm, 0))



An example, 
ontinued...In supervised ma
hine learning we aim to design a learning algo-rithm whi
h takes s and produ
es a hypothesis h.

Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new pa-tients.This is IMPORTANT : we want to diagnose patients that the systemhas never seen .The ability to do this su

essfully is 
alled generalisation .



An example, 
ontinued...In fa
t, a hypothesis is just a fun
tion that maps instan
es to labels .
x

Classi�er

h(x) LabelAttribute ve
tor

As h is a fun
tion it assigns a label to any x and not just the onesthat were in the training sequen
e .What we mean by a label here depends on whether we're doing 
las-si�
ation or regression .



Supervised learning: 
lassi�
ationIn 
lassi�
ation we're assigning x to one of a set {ω1, . . . ,ωc} of c
lasses .For example, if x 
ontains measurements taken from a patient thenthere might be three 
lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a 
omputer!The binary 
ase above also �ts into this framework, and we'll oftenspe
ialise to the 
ase of two 
lasses, denoted C1 and C2.



Supervised learning: regressionIn regression we're assigning x to a real number h(x) ∈ R.For example, if x 
ontains measurements taken regarding today'sweather then we might have

h(x) = estimate of amount of rainfall expe
ted tomorrowFor the two-
lass 
lassi�
ation problem we will also refer to a situationsomewhat between the two, where
h(x) = Pr(x is in C1)and so we would typi
ally assign x to 
lass C1 if h(x) > 1/2.



SummaryWe don't want to design h expli
itly.
Training sequen
e
h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute ve
tor

x

So we use a learner L to infer it on the basis of a sequen
e s oftraining examples .



Neural networksThere is generally a set H of hypotheses from whi
h L is allowed tosele
t h

L(s) = h ∈ H

H is 
alled the hypothesis spa
e .The learner 
an output a hypothesis expli
itly or|as in the 
ase ofa neural network|it 
an output a ve
tor
w

T =
(

w1 w2 · · · wW

)of weights whi
h in turn spe
ify h

h(x) = f(w;x)where w = L(s).



Types of learningThe form of ma
hine learning des
ribed is 
alled supervised learning .This introdu
tion will 
on
entrate on this kind of learning. In par-ti
ular, the literature also dis
usses:1. Unsupervised learning .2. Learning using membership queries and equivalen
e queries .3. Reinfor
ement learning .Some of this further material will be 
overed in AI 2.



Some further examples� Spee
h re
ognition .� De
iding whether or not to give 
redit .� Dete
ting 
redit 
ard fraud .� De
iding whether to buy or sell a sto
k option .� De
iding whether a tumour is benign .� Data mining : extra
ting interesting but hidden knowledge fromexisting, large databases. For example, databases 
ontaining �-nan
ial transa
tions or loan appli
ations .� De
iding whether driving 
onditions are dangerous .� Automati
 driving . (See Pomerleau, 1989, in whi
h a 
ar isdriven for 90 miles at 70 miles per hour, on a publi
 road withother 
ars present, but with no assistan
e from humans.)



This is very similar to 
urve �ttingThis pro
ess is in fa
t very similar to 
urve �tting .Think of the pro
ess as follows:� Nature pi
ks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequen
e s where ea
h xi is la-belled as h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only .This is easy to visualise in one dimension: it's just �tting a 
urveto some points .



Curve �ttingExample : if H is the set of all polynomials of degree 3 then naturemight pi
k

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

The line is dashed to emphasise the fa
t that we don't get to see it .



Curve �ttingWe 
an now use h ′ to obtain a training sequen
e s in the mannersuggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,

s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))where ea
h xi and yi is a real number.



Curve �ttingWe'll use a learning algorithm L that operates in a reasonable-looking way: it pi
ks an h ∈ H minimising the following quantity,
E =

m∑

i=1

(h(xi) − yi)
2

In other words

h = L(s) = argmin
h∈H

m∑

i=1

(h(xi) − yi)
2

Why is this sensible?1. Ea
h term in the sum is 0 if h(xi) is exa
tly yi.2. Ea
h term in
reases as the di�eren
e between h(xi) and yi in-
reases.3. We add the terms for all examples.



Curve �ttingIf we pi
k h using this method then we get:
0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The 
hosen h is 
lose to the target h ′, even though it was 
hosenusing only a small number of noisy examples .It is not quite identi
al to the target 
on
ept.However if we were given a new point x
′ and asked to guess the value

h ′(x ′) then guessing h(x ′) might be expe
ted to do quite well.



Curve �ttingProblem : we don't know what H nature is using . What if the onewe 
hoose doesn't mat
h? We 
an make our H `bigger' by de�ningit as

H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:
0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The result in this 
ase is similar to the previous one: h is again quite
lose to h ′, but not quite identi
al.



Curve �ttingSo what's the problem? Repeating the pro
ess with,
H = {h : h is a polynomial of degree at most 1}gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In e�e
t, we have made our H too `small'. It does not in fa
t 
ontainany hypothesis similar to h ′.



Curve �ttingSo we have to make H huge, right? WRONG!!! With
H = {h : h is a polynomial of degree at most 25}we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!! This is known as over�tting .



Curve �ttingAn experiment to gain some further insight : using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying fun
tion.We 
an look at how the degree of the polynomial the training algo-rithm 
an output a�e
ts the generalisation ability of the resulting

h.We use the same training algorithm, and we train using
H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30



Curve �tting� Ea
h time we obtain an h of a given degree|
all it hd|we assessits quality using a further 100 inputs x
′
i generated at randomand 
al
ulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not ne
essarilyin
luded in the training sequen
e they measure generalisation .� To smooth out the e�e
ts of the random sele
tion of examples werepeat this pro
ess 100 times and average the values q(d).



Curve �ttingHere is the result:

5 10 15 20 25 30
d

5

10

15

20

25

30

Log of average q

Clearly: we need to 
hoose H sensibly if we want to obtain goodgeneralisation performan
e .



The per
eptronThe example just given illustrates mu
h of what we want to do. How-ever in pra
ti
e we deal with more than a single dimension .The simplest form of hypothesis used is the linear dis
riminant ,also known as the per
eptron . Here

h(w;x) = σ

(

w0 +

m∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)So: we have a linear fun
tion modi�ed by the a
tivation fun
tion

σ.The per
eptron's in
uen
e 
ontinues to be felt in the re
ent and on-going development of support ve
tor ma
hines .



The per
eptron a
tivation fun
tion IThere are three standard forms for the a
tivation fun
tion:1. Linear : for regression problems we often use
σ(z) = z2. Step: for two-
lass 
lassi�
ation problems we often use

σ(z) =

{
C1 if z > 0

C2 otherwise.3. Sigmoid/Logisti
: for probabilisti
 
lassi�
ation we often usePr(x is in C1) = σ(z) =
1

1 + exp(−z)
.

The step fun
tion is important but the algorithms involved are some-what di�erent to those we'll be seeing. We won't 
onsider it further.The sigmoid/logisti
 fun
tion plays a major role in what follows.



The sigmoid/logisti
 fun
tion
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Gradient des
entA method for training a basi
 per
eptron works as follows. Assumewe're dealing with a regression problem and using σ(z) = z.We de�ne a measure of error for a given 
olle
tion of weights. Forexample

E(w) =

m∑

i=1

(yi − h(w;xi))
2Modifying our notation slightly so that

x
T = ( 1 x1 x2 · · · xn )

w
T = ( w0 w1 w2 · · · wn )lets us write

E(w) =

m∑

i=1

(yi − w
T
xi)

2



Gradient des
entWe want to minimise E(w).One way to approa
h this is to start with a random w0 and updateit as follows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtwhere

∂E(w)

∂w

=
(

∂E(w)

∂w0

∂E(w)

∂w1
· · ·

∂E(w)

∂wn

)Tand η is some small positive number.The ve
tor

−
∂E(w)

∂wtells us the dire
tion of the steepest de
rease in E(w).



Gradient des
entWith

E(w) =
1

2

m∑

i=1

(yi − w
T
xi)

2we have

∂E(w)

∂wj

=
∂

∂wj

(

m∑

i=1

(yi − w
T
xi)

2

)

=

m∑

i=1

(

∂

∂wj

(yi − w
T
xi)

2

)

=

m∑

i=1

(

2(yi − w
T
xi)

∂

∂wj

(

−w
T
xi

)

)

= −2x
(j)

i

m∑

i=1

(

yi − w
T
xi

)

where x
(j)

i is the jth element of xi.



Gradient des
entThe method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(

yi − w
T
t xi

)

xiSome things to note:� In this 
ase E(w) is paraboli
 and has a unique global minimumand no lo
al minima so this works well.� Gradient des
ent in some form is a very 
ommon approa
h tothis kind of problem.� We 
an perform a similar 
al
ulation for other a
tivation fun
-tions and for other de�nitions for E(w).� Su
h 
al
ulations lead to di�erent algorithms .



Per
eptrons aren't very powerful: the parity problemThere are many problems a per
eptron 
an't solve.
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We need a network that 
omputes more interesting fun
tions .



The multilayer per
eptronEa
h node in the network is itself a per
eptron:
aj zj

σ(aj)

w0

w1

w2

wn

...
Node j
z1

z2

zn

∑n

i=0 wizi

z0 = 1

� Weights wi 
onne
t nodes together.� aj is the weighted sum or a
tivation for node j.� σ is the a
tivation fun
tion .� The output is zj = σ(aj).



The multilayer per
eptronReminder :We'll 
ontinue to use the notation

z
T = ( 1 z1 z2 · · · zn )

w
T = ( w0 w1 w2 · · · wn )So that

n∑

i=0

wizi = w0 +

n∑

i=1

wizi

= w
T
z



The multilayer per
eptronIn the general 
ase we have a 
ompletely unrestri
ted feedforwardstru
ture :Feature ve
tor x Node i Node j
wi→j Output y = h(w;x)

x1

x2

xn

...
Ea
h node is a per
eptron. No spe
i�
 layering is assumed.

wi→j 
onne
ts node i to node j. w0 for node j is denoted w0→j.



Ba
kpropagationAs usual we have:� Instan
es x
T = (x1, . . . , xn).� A training sequen
e s = ((x1, y1), . . . , (xm, ym)).We also de�ne a measure of training error

E(w) = measure of the error of the network on swhere w is the ve
tor of all the weights in the network .Our aim is to �nd a set of weights that minimises E(w) using gra-dient des
ent .



Ba
kpropagation: the general 
aseThe 
entral task is therefore to 
al
ulate

∂E(w)

∂wTo do that we need to 
al
ulate the individual quantities
∂E(w)

∂wi→jfor every weight wi→j in the network .Often E(w) is the sum of separate 
omponents, one for ea
h examplein s

E(w) =

m∑

p=1

Ep(w)in whi
h 
ase

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wWe 
an therefore 
onsider examples individually.



Ba
kpropagation: the general 
asePla
e example p at the input and 
al
ulate aj and zj for all nodesin
luding the output y. This is forward propagation .We have

∂Ep(w)

∂wi→j

=
∂Ep(w)

∂aj

∂aj

∂wi→jwhere aj =
∑

k wk→jzk.Here the sum is over all the nodes 
onne
ted to node j. As
∂aj

∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= ziwe 
an write

∂Ep(w)

∂wi→j

= δjziwhere we've de�ned
δj =

∂Ep(w)

∂aj



Ba
kpropagation: the general 
aseSo we now need to 
al
ulate the values for δj...When j is the output node|that is, the one produ
ing the output
y = h(w;xp) of the network|this is easy as zj = y and

δj =
∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ ′(aj)using the fa
t that y = σ(aj).



Ba
kpropagation: the general 
aseThe �rst term is in general easy to 
al
ulate for a given E as theerror is generally just a measure of the distan
e between y and thelabel in the training sequen
e.Example: when

Ep(w) = (y − yp)
2we have

∂Ep(w)

∂y
= 2(y − yp)

= 2(f(w;xp) − yp)



Ba
kpropagation: the general 
aseWhen j is not an output node we need something di�erent:
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We're interested in

δj =
∂Ep(w)

∂ajAltering aj 
an a�e
t several other nodes k1, k2, . . . , kq ea
h ofwhi
h 
an in turn a�e
t Ep(w).



Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

=
∑

k∈{k1,k2,...,kq}

δk

∂ak

∂ajwhere k1, k2, . . . , kq are the nodes to whi
h node j sends a 
onne
tion.



Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Be
ause we know how to 
ompute δj for the output node we 
anwork ba
kwards 
omputing further δ values.We will always know all the values δk for nodes ahead of wherewe are .Hen
e the term ba
kpropagation .



Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak

∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)and

δj =
∑

k∈{k1,k2,...,kq}

δkwj→kσ
′(aj) = σ ′(aj)

∑

k∈{k1,k2,...,kq}

δkwj→k



Ba
kpropagation: the general 
ase

Summary : to 
al
ulate ∂Ep(w)

∂w

for the pth pattern:1. Forward propagation : apply xp and 
al
ulate outputs et
 for allthe nodes in the network .2. Ba
kpropagation 1 : for the output node
∂Ep(w)

∂wi→j

= ziδj = ziσ
′(aj)

∂Ep(w)

∂ywhere y = h(w;xp).3. Ba
kpropagation 2 : For other nodes
∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kwhere the δk were 
al
ulated at an earlier step.



Ba
kpropagation: a spe
i�
 exampleHidden nodes re
eiveinputs from all features
Output node re
eivesinputs from all hiddennodes

y = h(w;x)......x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a)

.



Ba
kpropagation: a spe
i�
 exampleFor the output: σ(a) = a so σ ′(a) = 1.For the hidden nodes:

σ(a) =
1

1 + exp(−a)so

σ ′(a) = σ(a) [1 − σ(a)]We'll 
ontinue using the same de�nition for the error
E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2



Ba
kpropagation: a spe
i�
 exampleFor the output : the equation is

∂Ep(w)

∂wi→output = ziδoutput = ziσ
′(aoutput)∂Ep(w)

∂ywhere y = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp) − yp]and g ′(a) = 1 so

δoutput = 2 [h(w;xp) − yp]and

∂Ep(w)

∂wi→output = 2zi(h(w;xp) − yp)



Ba
kpropagation: a spe
i�
 exampleFor the hidden nodes : the equation is

∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kHowever there is only one output so

∂Ep(w)

∂wi→j

= ziσ(aj) [1 − σ(aj)] δoutputwj→outputand we know that

δoutput = 2 [h(w;xp) − yp]so

∂Ep(w)

∂wi→j

= 2ziσ(aj) [1 − σ(aj)] [h(w;xp) − yp]wj→output

= 2xizj(1 − zj) [h(w;xp) − yp] wj→output



Putting it all togetherWe 
an then use the derivatives in one of two basi
 ways:Bat
h : (as des
ribed previously)

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wthen

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtSequential : using just one pattern at on
e
wt+1 = wt − η

∂Ep(w)

∂w

∣

∣

∣

∣

wtsele
ting patterns in sequen
e or at random .



Example: the parity problem revisitedAs an example we show the result of training a network with:� Two inputs.� One output.� One hidden layer 
ontaining 5 units.� η = 0.01.� All other details as above.The problem is the parity problem. There are 40 noisy examples.The sequential approa
h is used, with 1000 repetitions through theentire training sequen
e.
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