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Knowledge representation and reasoning using FOLWe now look at how an agent might represent knowledge aboutits environment using �rst order logi
 (FOL), and reason with thisknowledge to a
hieve its goals.Aims:� To show how FOL 
an be used to represent knowledge aboutan environment in the form of both ba
kground knowledge andknowledge derived from per
epts .� To show how this knowledge 
an be used to derive non-per
eivedknowledge about the environment using a theorem prover .� To introdu
e the situation 
al
ulus and demonstrate its appli
a-tion in a simple environment as a means by whi
h an agent 
anwork out what to do next.

Interesting readingReading: Russell and Norvig, 
hapters 7 to 10.Knowledge representation based on logi
 is a vast subje
t and 
an'tbe 
overed in full in the le
tures.In parti
ular:� Te
hniques for representing further kinds of knowledge .� Te
hniques for moving beyond the idea of a situation .� Reasoning systems based on 
ategories .� Reasoning systems using default information .� Truth maintenan
e systems .Happy reading :-)

Knowledge representation and reasoningEarlier in the 
ourse we looked at what an agent should be able todo.It seems that all of us|and all intelligent agents|should use logi
alreasoning to help us intera
t su

essfully with the world.Any intelligent agent should:� Possess knowledge about the environment and about how itsa
tions a�e
t the environment .� Use some form of logi
al reasoning to maintain its knowledge asper
epts arrive.� Use some form of logi
al reasoning to dedu
e a
tions to performin order to a
hieve goals .



Knowledge representation and reasoningThis raises some important questions:� How do we des
ribe the 
urrent state of the world?� How do we infer from our per
epts, knowledge of unseen parts ofthe world?� How does the world 
hange as time passes?� How does the world stay the same as time passes? (The frameproblem .)� How do we know the e�e
ts of our a
tions? (The quali�
ationand rami�
ation problems .)We'll now look at one way of answering some of these questions.

Logi
 for knowledge representationFOL (arguably?) seems to provide a good way in whi
h to representthe required kinds of knowledge:� It is expressive|anything you 
an program 
an be expressed.� It is 
on
ise .� It is unambiguous� It 
an be adapted to di�erent 
ontexts .� It has an inferen
e pro
edure , although a semide
idable one.In addition is has a well-de�ned syntax and semanti
s .

Logi
 for knowledge representationProblem: it's quite easy to talk about things like set theory usingFOL. For example, we 
an easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S ⇔ x ∈ S ′)) ⇒ S = S ′)But how would we go about representing the proposition that if youhave a bu
ket of water and throw it at your friend they will getwet, have a bump on their head from being hit by a bu
ket, andthe bu
ket will now be empty and dented?More importantly, how 
ould this be represented within a widerframework for reasoning about the world?It's time to introdu
e my friend, The Wumpus ...

Wumpus worldAs a simple test s
enario for a knowledge-based agent we will makeuse of the Wumpus World .
Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based 
ave.EVIL ROBOT wants to enter the 
ave, �nd some gold, and get outagain un-s
athed.



Wumpus worldThe rules of Wumpus World :� Unfortunately the 
ave 
ontains a number of pits, whi
h EVILROBOT 
an fall into. Eventually his batteries will fail, and that'sthe end of him.� The 
ave also 
ontains the Wumpus, who is armed with state ofthe art Evil Robot Obliteration Te
hnology .� The Wumpus itself knows where the pits are and never falls intoone.

Wumpus worldEVIL ROBOT 
an move around the 
ave at will and 
an per
eive thefollowing:� In a position adja
ent to the Wumpus, a sten
h is per
eived.(Wumpuses are famed for their la
k of personal hygiene .)� In a position adja
ent to a pit, a breeze is per
eived.� In the position where the gold is, a glitter is per
eived.� On trying to move into a wall, a bump is per
eived.� On killing the Wumpus a s
ream is per
eived.In addition, EVIL ROBOT has a single arrow, with whi
h to try tokill the Wumpus.\Adja
ent" in the following does not in
lude diagonals.

Wumpus worldSo we have:Per
epts: stench, breeze, glitter, bump, scream.A
tions: forward, turnLeft, turnRight, grab, release, shoot,

climb.Of 
ourse, our aim now is not just to design an agent that 
an performwell in a single 
ave layout.We want to design an agent that 
an usually perform well regardlessof the layout of the 
ave.

Some nomen
latureThe 
hoi
e of knowledge representation language tends to lead to twoimportant 
ommitments:� Ontologi
al 
ommitments : what does the world 
onsist of?� Epistemologi
al 
ommitments : what are the allowable states ofknowledge?Propositional logi
 is useful for introdu
ing some fundamental ideas,but its ontologi
al 
ommitment|that the world 
onsists of fa
ts|sometimes makes it too limited for further use.FOL has a di�erent ontologi
al 
ommitment|the world 
onsists offa
ts , obje
ts and relations .



Logi
 for knowledge representationThe fundamental aim is to 
onstru
t a knowledge base KB 
ontaininga 
olle
tion of statements about the world|expressed in FOL|su
h that useful things 
an be derived from it.Our 
entral aim is to generate senten
es that are true , if the sen-ten
es in the KB are true .This pro
ess is based on 
on
epts familiar from your introdu
torylogi
 
ourses:� Entailment: KB |= α means that the KB entails α.� Proof: KB ⊢i α means that α is derived from the KB using i. If i issound then we have a proof .� i is sound if it 
an generate only entailed α.� i is 
omplete if it 
an �nd a proof for any entailed α.

Example: PrologYou have by now learned a little about programming in Prolog . Forexample:

concat([],L,L).

concat([H|T],L,[H|L2]) :- concat(T,L,L2).is a program to 
on
atenate two lists. The query
concat([1,2,3],[4,5],X).results in

X = [1, 2, 3, 4, 5].What's happening here? Well, Prolog is just a more limited form ofFOL so...

Example: Prolog... we are in fa
t doing inferen
e from a KB:� The Prolog programme itself is the KB. It expresses some knowl-edge about lists .� The query is expressed in su
h a way as to derive some newknowledge .How does this relate to full FOL? First of all the list notation isnothing but synta
ti
 sugar . It 
an be removed: we de�ne a 
onstant
alled empty and a fun
tion 
alled cons.Now [1,2,3] just means cons(1, cons(2, cons(3, empty))))whi
his a term in FOL.I will assume the use of the synta
ti
 sugar for lists from nowon.

Prolog and FOLThe program when expressed in FOL, says

∀x . concat(empty, x, x)∧

∀h, t, l1, l2 . concat(t, l1, l2) =⇒ concat(cons(h, t), l1, cons(h, l2))The rule is simple|given a Prolog program:� Universally quantify all the unbound variables in ea
h line ofthe program and ...� ... form the 
onjun
tion of the results .If the universally quanti�ed lines are L1, L2, . . . , Ln then the Prologprogramme 
orresponds to the KB
KB = L1 ∧ L2 ∧ · · · ∧ LnNow, what does the query mean?



Prolog and FOLWhen you give the query

concat([1,2,3],[4,5],X).to Prolog it responds by trying to prove the following statement

KB =⇒ ∃x . concat([1, 2, 3], [4, 5], x)So: it tries to prove that the KB implies the query , and variables inthe query are existentially quanti�ed.When a proof is found, it supplies a value for x that makes theinferen
e true .

Prolog and FOLProlog di�ers from FOL in that, amongst other things:� It restri
ts you to using Horn 
lauses .� Its inferen
e pro
edure is not a full-blown proof pro
edure .� It does not deal with negation 
orre
tly.However the 
entral idea also works for full-blown theorem provers .If you want to experiment, you 
an obtain Prover9 from
http://www.cs.unm.edu/∼mccune/mace4/We'll see a brief example now, and a more extensive example of itsuse later, time permitting...

Prolog and FOLExpressed in Prover9, the above Prolog program and query look likethis:

set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.

% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).

end_of_list.Note: it is assumed that unbound variables are universally quan-ti�ed .

Prolog and FOLYou 
an try to infer a proof using

prover9 -f file.inand the result is (in addition to a lot of other information):

1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].

2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].

3 concat([],A,A). [assumption].

4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a,3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

9 $F. [resolve(8,a,7,a)].This shows that a proof is found but doesn't expli
itly give a valuefor X|we'll see how to extra
t that later...



The fundamental ideaSo the basi
 idea is: build a KB that en
odes knowledge about theworld , the e�e
ts of a
tions and so on.The KB is a 
onjun
tion of pie
es of knowledge, su
h that:� A query regarding what our agent should do 
an be posed in theform

∃actionList . Goal(... actionList ...)� Proving that

KB =⇒ ∃actionList . Goal(... actionList ...)instantiates actionList to an a
tual list of a
tions that willa
hieve a goal represented by the Goal predi
ate.We sometimes use the notation ask and tell to refer to queryingand adding to the KB.

Using FOL in AI: the triumphant return of the WumpusWe want to be able to spe
ulate about the past and about possiblefutures . So:
Evil Robot

Wumpus

� We in
lude situations in the logi
al language used by our KB.� We in
lude axioms in our KB that relate to situations.This gives rise to situation 
al
ulus .

Situation 
al
ulusIn situation 
al
ulus :� The world 
onsists of sequen
es of situations .� Over time, an agent moves from one situation to another.� Situations are 
hanged as a result of a
tions .In Wumpus World the a
tions are: forward, shoot, grab, climb,
release, turnRight, turnLeft.� A situation argument is added to items that 
an 
hange overtime. For example At(lo
ation, s)Items that 
an 
hange over time are 
alled 
uents .� A situation argument is not needed for things that don't 
hange.These are sometimes referred to as eternal or atemporal .

Representing 
hange as a result of a
tionsSituation 
al
ulus uses a fun
tionresult(action, s)to denote the new situation arising as a result of performing thespe
i�ed a
tion in the spe
i�ed situation.result(grab, s0) = s1result(turnLeft, s1) = s2result(shoot, s2) = s3result(forward, s3) = s4...



Axioms I: possibility axiomsThe �rst kind of axiom we need in a KB spe
i�es when parti
ulara
tions are possible .We introdu
e a predi
ate Poss(action, s)denoting that an a
tion 
an be performed in situation s.We then need a possibility axiom for ea
h a
tion. For example:At(l, s) ∧Available(gold, l, s) =⇒ Poss(grab, s)Remember that unbound variables are universally quanti�ed .

Axioms II: e�e
t axiomsGiven that an a
tion results in a new situation, we 
an introdu
ee�e
t axioms to spe
ify the properties of the new situation.For example, to keep tra
k of whether EVIL ROBOT has the goldwe need e�e
t axioms to des
ribe the e�e
t of pi
king it up:Poss(grab, s) =⇒ Have(gold, result(grab, s))E�e
t axioms des
ribe the way in whi
h the world 
hanges .We would probably also in
lude
¬Have(gold, s0)in the KB, where s0 is the starting state .Important : we are des
ribing what is true in the situation thatresults from performing an a
tion in a given situation .

Axioms III: frame axiomsWe need frame axioms to des
ribe the way in whi
h the worldstays the same .Example:Have(o, s) ∧

¬(a = release∧ o = gold) ∧ ¬(a = shoot∧ o = arrow)

=⇒ Have(o, result(a, s))des
ribes the e�e
t of having something and not dis
arding it .In a more general setting su
h an axiom might well look di�erent.For example

¬Have(o, s) ∧

(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))

=⇒ ¬Have(o, result(a, s))des
ribes the e�e
t of not having something and not pi
king it up.

The frame problemThe frame problem has histori
ally been a major issue.Representational frame problem : a large number of frame axiomsare required to represent the many things in the world whi
h will not
hange as the result of an a
tion.We will see how to solve this in a moment.Inferential frame problem : when reasoning about a sequen
e of sit-uations, all the un
hanged properties still need to be 
arried throughall the steps.This 
an be alleviated using planning systems that allow us to reasoneÆ
iently when a
tions 
hange only a small part of the world. Thereare also other remedies, whi
h we will not 
over.



Su

essor-state axiomsE�e
t axioms and frame axioms 
an be 
ombined into su

essor-state axioms .One is needed for ea
h predi
ate that 
an 
hange over time.A
tion a is possible =⇒

(true in new situation ⇐⇒

(you did something to make it true ∨it was already true and you didn't make it false))For examplePoss(a, s) =⇒

(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧Available(o,s)) ∨

(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧

¬(a = shoot ∧ o = arrow))))

Knowing where you areIf s0 is the initial situation we know thatAt((1, 1), s0)I am assuming that we've added axioms allowing us to deal with thenumbers 0 to 5 and pairs of su
h numbers. (Exer
ise: do this.)We need to keep tra
k of what way we're fa
ing. Say north is 0, southis 2, east is 1 and west is 3.fa
ing(s0) = 0We need to know how motion a�e
ts lo
ationforwardResult((x, y), north) = (x, y + 1)forwardResult((x, y), east) = (x + 1, y)...and At(l, s) =⇒ goForward(s) = forwardResult(l, fa
ing(s))

Knowing where you areThe 
on
ept of adja
en
y is very important in the Wumpus worldAdja
ent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2We also know that the 
ave is 4 by 4 and surrounded by wallsWallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)It is only possible to 
hange lo
ation by moving, and this only worksif you're not fa
ing a wall. So......we need a su

essor-state axiom:Poss(a, s) =⇒At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)

Knowing where you areIt is only possible to 
hange orientation by turning. Again, we needa su

essor-state axiomPoss(a, s) =⇒fa
ing(result(a, s)) = d ⇐⇒

(a = turnRight∧ d = mod(fa
ing(s) + 1, 4))

∨ (a = turnLeft∧ d = mod(fa
ing(s) − 1, 4))

∨ (fa
ing(s) = d ∧ a 6= turnRight∧ a 6= turnLeft)and so on...



The quali�
ation and rami�
ation problemsQuali�
ation problem : we are in general never 
ompletely 
ertainwhat 
onditions are required for an a
tion to be e�e
tive.Consider for example turning the key to start your 
ar.This will lead to problems if important 
onditions are omitted fromaxioms.Rami�
ation problem : a
tions tend to have impli
it 
onsequen
esthat are large in number.For example, if I pi
k up a sandwi
h in a dodgy sandwi
h shop, I willalso be pi
king up all the bugs that live in it. I don't want to modelthis expli
itly.

Solving the rami�
ation problemThe rami�
ation problem 
an be solved by modifying su

essor-state axioms .For example:Poss(a, s) =⇒

(At(o, l, result(a, s)) ⇐⇒

(a = go(l ′, l) ∧

[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧

[¬∃l ′′ . a = go(l, l ′′) ∧ l 6= l ′′ ∧

{o = robot ∨ Has(robot, o, s)}]))des
ribes the fa
t that anything EVIL ROBOT is 
arrying movesaround with him.

Dedu
ing properties of the world: 
ausal rulesIf you know where you are, then you 
an think about pla
es ratherthan just situations .Syn
hroni
 rules relate properties shared by a single state of theworld.There are two kinds: 
ausal and diagnosti
.Causal rules : some properties of the world will produ
e per
epts.WumpusAt(l1) ∧ Adja
ent(l1, l2) =⇒ Sten
hAt(l2)PitAt(l1) ∧ Adja
ent(l1, l2) =⇒ BreezeAt(l2)Systems reasoning with su
h rules are known as model-based reason-ing systems.

Dedu
ing properties of the world: diagnosti
 rulesDiagnosti
 rules : infer properties of the world from per
epts.For example: At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)At(l, s) ∧ Stench(s) =⇒ StenchAt(l)These may not be very strong.The di�eren
e between model-based and diagnosti
 reasoning 
an beimportant. For example, medi
al diagnosis 
an be done based onsymptoms or based on a model of disease.



General axioms for situations and obje
tsNote : in FOL, if we have two 
onstants robot and gold then aninterpretation is free to assign them to be the same thing.This is not something we want to allow.Unique names axioms state that ea
h pair of distin
t items in ourmodel of the world must be di�erent

robot 6= gold

robot 6= arrow

robot 6= wumpus...

wumpus 6= gold...

General axioms for situations and obje
tsUnique a
tions axioms state that a
tions must share this property,so for ea
h pair of a
tions

go(l, l ′) 6= grab

go(l, l ′) 6= drop(o)...

drop(o) 6= shoot...and in addition we need to de�ne equality for a
tions, so for ea
ha
tion

go(l, l ′) = go(l ′′, l ′′′) ⇐⇒ l = l ′′ ∧ l ′ = l ′′′

drop(o) = drop(o ′) ⇐⇒ o = o ′...

General axioms for situations and obje
tsThe situations are ordered so

s0 6= result(a, s)and situations are distin
t soresult(a, s) = result(a ′, s ′) ⇐⇒ a = a ′ ∧ s = s ′Stri
tly speaking we should be using a many-sorted version of FOL.In su
h a system variables 
an be divided into sorts whi
h are im-pli
itly separate from one another.

The start stateFinally, we're going to need to spe
ify what's true in the start state .For example At(robot, [1, 1], s0)At(wumpus, [3, 4], s0)Has(robot, arrow, s0)...and so on.



Sequen
es of situationsWe know that the fun
tion result tells us about the situation resultingfrom performing an a
tion in an earlier situation.How 
an this help us �nd sequen
es of a
tions to get things done?De�neSequen
e([], s, s ′) = s ′ = sSequen
e([a], s, s ′) = Poss(a, s) ∧ s ′ = result(a, s)Sequen
e(a :: as, s, s ′) = ∃t . Sequen
e([a], s, t) ∧ Sequen
e(as, t, s ′)To obtain a sequen
e of a
tions that a
hieves Goal(s) we 
an usethe query

∃a ∃s . Sequen
e(a, s0, s) ∧ Goal(s)
Problems1. There have in fa
t been two queries suggested in the notes forobtaining a sequen
e of a
tions. The details for

∃a ∃s . Sequen
e(a, s0, s) ∧Goal(s)were given on the last slide, but earlier in the notes the format
∃actionList . Goal(... actionList ...)was suggested. Explain how this alternative form of query mightbe made to work.2. Making 
orre
t use of the situation 
al
ulus, write the senten
esin FOL required to implement the following a
tions in WumpusWorld:� Climb� Shoot

ProblemsPaper 9, Question 8, 2003 - part 2You wish to 
onstru
t a roboti
 pet 
at for the purposes of entertain-ment. One purpose of the 
at is to s
rat
h valuable obje
ts when theowner is not present. Give a brief general des
ription of situation
al
ulus and des
ribe how it might be used for knowledge represen-tation by the robot. In
lude in your answer one example ea
h of aframe axiom , an e�e
t axiom , and a su

essor-state axiom , alongwith example de�nitions of suitable predi
ates and fun
tions. [12marks℄

Knowledge representation and reasoningIt should be 
lear that generating sequen
es of a
tions by inferen
ein FOL is highly non-trivial.Ideally we'd like to maintain an expressive language while restri
tingit enough to be able to do inferen
e eÆ
iently .Further aims :� To give a brief introdu
tion to semanti
 networks and framesfor knowledge representation.� To see how inheritan
e 
an be applied as a reasoning method.� To look at the use of rules for knowledge representation, alongwith forward 
haining and ba
kward 
haining for reasoning.Further reading : The Essen
e of Arti�
ial Intelligen
e , AlisonCawsey. Prenti
e Hall, 1998.



Frames and semanti
 networksFrames and semanti
 networks represent knowledge in the form of
lasses of obje
ts and relationships between them :� The sub
lass and instan
e relationships are emphasised.� We form 
lass hierar
hies in whi
h inheritan
e is supported andprovides the main inferen
e me
hanism .As a result inferen
e is quite limited.We also need to be extremely 
areful about semanti
s .The only major di�eren
e between the two ideas is notational .

Example of a semanti
 network
has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

FramesFrames on
e again support inheritan
e through the sub
lass rela-tionship.

volume:      loud

has:             ear problems
hairlength:  long

subclass:     Musician

Rock musician

subclass:  Person
has:          instrument

Musician

has, hairlength, volume et
 are slots .

long, loud, instrument et
 are slot values .These are a dire
t prede
essor of obje
t-oriented programming lan-guages .

DefaultsBoth approa
hes to knowledge representation are able to in
orporatedefaults :

has:                ear problems
* hairlength:  long

subclass:        Musician

* volume:      loud

subclass:    Rock musician
hairlength: short
image:       gothic

Rock musician
Dementia Evilperson

Starred slots are typi
al values asso
iated with sub
lasses and in-stan
es, but 
an be overridden .



Multiple inheritan
eBoth approa
hes 
an in
orporate multiple inheritan
e , at a 
ost:

instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

� What is hairlength for Cornelius if we're trying to use inheri-tan
e to establish it?� This 
an be over
ome initially by spe
ifying whi
h 
lass is inher-ited from in preferen
e when there's a 
on
i
t.� But the problem is still not entirely solved|what if we want toprefer inheritan
e of some things from one 
lass, but inheritan
eof others from a di�erent one?

Other issues� Slots and slot values 
an themselves be frames. For example
Dementiamay have an instrument slot with the value Electric harp,whi
h itself may have properties des
ribed in a frame.� Slots 
an have spe
i�ed attributes . For example, we might spe
ifythat instrument 
an have multiple values, that ea
h value 
anonly be an instan
e of Instrument, that ea
h value has a slot
alled owned by and so on.� Slots may 
ontain arbitrary pie
es of program. This is knownas pro
edural atta
hment . The fragment might be exe
uted toreturn the slot's value, or update the values in other slots et
.

Rule-based systemsA rule-based system requires three things:1. A set of if-then rules . These denote spe
i�
 pie
es of knowledgeabout the world.They should be interpreted similarly to logi
al impli
ation.Su
h rules denote what to do or what 
an be inferred undergiven 
ir
umstan
es.2. A 
olle
tion of fa
ts denoting what the system regards as 
ur-rently true about the world.3. An interpreter able to apply the 
urrent rules in the light of the
urrent fa
ts.

Forward 
hainingThe �rst of two basi
 kinds of interpreter begins with establishedfa
ts and then applies rules to them .This is a data-driven pro
ess. It is appropriate if we know the initialfa
ts but not the required 
on
lusion.Example: XCON|used for 
on�guring VAX 
omputers.In addition:� We maintain a working memory , typi
ally of what has been in-ferred so far.� Rules are often 
ondition-a
tion rules , where the right-hand sidespe
i�es an a
tion su
h as adding or removing something fromworking memory, printing a message et
.� In some 
ases a
tions might be entire program fragments.



Forward 
hainingThe basi
 algorithm is:1. Find all the rules that 
an �re, based on the 
urrent workingmemory.2. Sele
t a rule to �re. This requires a 
on
i
t resolution strategy .3. Carry out the a
tion spe
i�ed, possibly updating the workingmemory.Repeat this pro
ess until either no rules 
an be used or a halt ap-pears in the working memory.

Example
dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty

ExampleProgress is as follows:1. The rule

dry mouth =⇒ ADD thirsty�res adding thirsty to working memory.2. The rule

thirsty =⇒ ADD get drink�res adding get drink to working memory.3. The rule

working =⇒ ADD no work�res adding no work to working memory.4. The rule

get drink AND no work =⇒ ADD go bar�res, and we establish that it's time to go to the bar.

Con
i
t resolutionClearly in any more realisti
 system we expe
t to have to deal witha s
enario where two or more rules 
an be �red at any one time :� Whi
h rule we 
hoose 
an 
learly a�e
t the out
ome.� We might also want to attempt to avoid inferring an abundan
eof useless information.We therefore need a means of resolving su
h 
on
i
ts .



Con
i
t resolutionCommon 
on
i
t resolution strategies are:� Prefer rules involving more re
ently added fa
ts.� Prefer rules that are more spe
i�
. For example

patient coughing =⇒ ADD lung problemis more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.This allows us to de�ne ex
eptions to general rules.� Allow the designer of the rules to spe
ify priorities.� Fire all rules simultaneously|this essentially involves followingall 
hains of inferen
e at on
e.

Reason maintenan
eSome systems will allow information to be removed from the workingmemory if it is no longer justi�ed .For example, we might �nd that

patient coughingand

patient smokerare in working memory, and hen
e �re
patient coughing AND patient smoker =⇒ ADD lung cancerbut later infer something that 
auses patient coughing to be with-drawn from working memory.The justi�
ation for lung cancer has been removed, and so it shouldperhaps be removed also.

Pattern mat
hingIn general rules may be expressed in a slightly more 
exible form in-volving variables whi
h 
an work in 
onjun
tion with pattern mat
h-ing .For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)
ontains the variable X.If the working memory 
ontains coughs(neddy) and smoker(neddy)then

X = neddyprovides a mat
h and

lung cancer(neddy)is added to the working memory.

Ba
kward 
hainingThe se
ond basi
 kind of interpreter begins with a goal and �nds arule that would a
hieve it.It then works ba
kwards , trying to a
hieve the resulting earlier goalsin the su

ession of inferen
es.Example: MYCIN|medi
al diagnosis with a small number of 
ondi-tions.This is a goal-driven pro
ess. If you want to test a hypothesis oryou have some idea of a likely 
on
lusion it 
an be more eÆ
ient thanforward 
haining.



Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. This

so we're done.

Working memory Goal

go bar


an be done by establishing thirsty.

These are the new goals.establish get drink and no work.To establish go bar we have to

thirsty 
an be established by establishing

dry mouth. This is in the working memoryFinally, we 
an establish no work byestablishing working. This is in the workingmemory so the pro
ess has �nished.

Example with ba
ktra
kingIf at some point more than one rule has the required 
on
lusion thenwe 
an ba
ktra
k .Example: Prolog ba
ktra
ks, and in
orporates pattern mat
hing. Itorders attempts a

ording to the order in whi
h rules appear in theprogram.Example: having added

up early =⇒ ADD tiredand

tired AND lazy =⇒ ADD go barto the rules, and up early to the working memory:

Example with ba
ktra
king

thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Pro
ess pro
eeds as before

go bar

lazy

lazy
up early

lazy
tired

di�erent approa
h.
by establishing tired andAttempt to establish go bar

lazy.This 
an be done by establishing

up early and lazy.so we're done.up early is in the working memoryWe 
an not establisg lazyand so we ba
ktra
k and try a
GoalWorking memory
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