
Arti�ial Intelligene IDr Sean Holden

Notes on knowledge representation and reasoning using�rst-order logi (FOL)

Copyright Sean Holden 2002-2010.

Knowledge representation and reasoning using FOLWe now look at how an agent might represent knowledge aboutits environment using �rst order logi (FOL), and reason with thisknowledge to ahieve its goals.Aims:� To show how FOL an be used to represent knowledge aboutan environment in the form of both bakground knowledge andknowledge derived from perepts .� To show how this knowledge an be used to derive non-pereivedknowledge about the environment using a theorem prover .� To introdue the situation alulus and demonstrate its applia-tion in a simple environment as a means by whih an agent anwork out what to do next.

Interesting readingReading: Russell and Norvig, hapters 7 to 10.Knowledge representation based on logi is a vast subjet and an'tbe overed in full in the letures.In partiular:� Tehniques for representing further kinds of knowledge .� Tehniques for moving beyond the idea of a situation .� Reasoning systems based on ategories .� Reasoning systems using default information .� Truth maintenane systems .Happy reading :-)

Knowledge representation and reasoningEarlier in the ourse we looked at what an agent should be able todo.It seems that all of us|and all intelligent agents|should use logialreasoning to help us interat suessfully with the world.Any intelligent agent should:� Possess knowledge about the environment and about how itsations a�et the environment .� Use some form of logial reasoning to maintain its knowledge asperepts arrive.� Use some form of logial reasoning to dedue ations to performin order to ahieve goals .

Knowledge representation and reasoningThis raises some important questions:� How do we desribe the urrent state of the world?� How do we infer from our perepts, knowledge of unseen parts ofthe world?� How does the world hange as time passes?� How does the world stay the same as time passes? (The frameproblem .)� How do we know the e�ets of our ations? (The quali�ationand rami�ation problems .)We'll now look at one way of answering some of these questions.

Logi for knowledge representationFOL (arguably?) seems to provide a good way in whih to representthe required kinds of knowledge:� It is expressive|anything you an program an be expressed.� It is onise .� It is unambiguous� It an be adapted to di�erent ontexts .� It has an inferene proedure , although a semideidable one.In addition is has a well-de�ned syntax and semantis .

Logi for knowledge representationProblem: it's quite easy to talk about things like set theory usingFOL. For example, we an easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S ⇔ x ∈ S ′)) ⇒ S = S ′)But how would we go about representing the proposition that if youhave a buket of water and throw it at your friend they will getwet, have a bump on their head from being hit by a buket, andthe buket will now be empty and dented?More importantly, how ould this be represented within a widerframework for reasoning about the world?It's time to introdue my friend, The Wumpus ...

Wumpus worldAs a simple test senario for a knowledge-based agent we will makeuse of the Wumpus World .
Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based ave.EVIL ROBOT wants to enter the ave, �nd some gold, and get outagain un-sathed.

Wumpus worldThe rules of Wumpus World :� Unfortunately the ave ontains a number of pits, whih EVILROBOT an fall into. Eventually his batteries will fail, and that'sthe end of him.� The ave also ontains the Wumpus, who is armed with state ofthe art Evil Robot Obliteration Tehnology .� The Wumpus itself knows where the pits are and never falls intoone.

Wumpus worldEVIL ROBOT an move around the ave at will and an pereive thefollowing:� In a position adjaent to the Wumpus, a stenh is pereived.(Wumpuses are famed for their lak of personal hygiene .)� In a position adjaent to a pit, a breeze is pereived.� In the position where the gold is, a glitter is pereived.� On trying to move into a wall, a bump is pereived.� On killing the Wumpus a sream is pereived.In addition, EVIL ROBOT has a single arrow, with whih to try tokill the Wumpus.\Adjaent" in the following does not inlude diagonals.

Wumpus worldSo we have:Perepts: stench, breeze, glitter, bump, scream.Ations: forward, turnLeft, turnRight, grab, release, shoot,

climb.Of ourse, our aim now is not just to design an agent that an performwell in a single ave layout.We want to design an agent that an usually perform well regardlessof the layout of the ave.

Some nomenlatureThe hoie of knowledge representation language tends to lead to twoimportant ommitments:� Ontologial ommitments : what does the world onsist of?� Epistemologial ommitments : what are the allowable states ofknowledge?Propositional logi is useful for introduing some fundamental ideas,but its ontologial ommitment|that the world onsists of fats|sometimes makes it too limited for further use.FOL has a di�erent ontologial ommitment|the world onsists offats , objets and relations .

Logi for knowledge representationThe fundamental aim is to onstrut a knowledge base KB ontaininga olletion of statements about the world|expressed in FOL|suh that useful things an be derived from it.Our entral aim is to generate sentenes that are true , if the sen-tenes in the KB are true .This proess is based on onepts familiar from your introdutorylogi ourses:� Entailment: KB |= α means that the KB entails α.� Proof: KB ⊢i α means that α is derived from the KB using i. If i issound then we have a proof .� i is sound if it an generate only entailed α.� i is omplete if it an �nd a proof for any entailed α.

Example: PrologYou have by now learned a little about programming in Prolog . Forexample:

concat([],L,L).

concat([H|T],L,[H|L2]) :- concat(T,L,L2).is a program to onatenate two lists. The query
concat([1,2,3],[4,5],X).results in

X = [1, 2, 3, 4, 5].What's happening here? Well, Prolog is just a more limited form ofFOL so...

Example: Prolog... we are in fat doing inferene from a KB:� The Prolog programme itself is the KB. It expresses some knowl-edge about lists .� The query is expressed in suh a way as to derive some newknowledge .How does this relate to full FOL? First of all the list notation isnothing but syntati sugar . It an be removed: we de�ne a onstantalled empty and a funtion alled cons.Now [1,2,3] just means cons(1, cons(2, cons(3, empty))))whihis a term in FOL.I will assume the use of the syntati sugar for lists from nowon.

Prolog and FOLThe program when expressed in FOL, says

∀x . concat(empty, x, x)∧

∀h, t, l1, l2 . concat(t, l1, l2) =⇒ concat(cons(h, t), l1, cons(h, l2))The rule is simple|given a Prolog program:� Universally quantify all the unbound variables in eah line ofthe program and ...� ... form the onjuntion of the results .If the universally quanti�ed lines are L1, L2, . . . , Ln then the Prologprogramme orresponds to the KB
KB = L1 ∧ L2 ∧ · · · ∧ LnNow, what does the query mean?

Prolog and FOLWhen you give the query

concat([1,2,3],[4,5],X).to Prolog it responds by trying to prove the following statement

KB =⇒ ∃x . concat([1, 2, 3], [4, 5], x)So: it tries to prove that the KB implies the query , and variables inthe query are existentially quanti�ed.When a proof is found, it supplies a value for x that makes theinferene true .

Prolog and FOLProlog di�ers from FOL in that, amongst other things:� It restrits you to using Horn lauses .� Its inferene proedure is not a full-blown proof proedure .� It does not deal with negation orretly.However the entral idea also works for full-blown theorem provers .If you want to experiment, you an obtain Prover9 from
http://www.cs.unm.edu/∼mccune/mace4/We'll see a brief example now, and a more extensive example of itsuse later, time permitting...

Prolog and FOLExpressed in Prover9, the above Prolog program and query look likethis:

set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.

% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).

end_of_list.Note: it is assumed that unbound variables are universally quan-ti�ed .

Prolog and FOLYou an try to infer a proof using

prover9 -f file.inand the result is (in addition to a lot of other information):

1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].

2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].

3 concat([],A,A). [assumption].

4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a,3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

9 $F. [resolve(8,a,7,a)].This shows that a proof is found but doesn't expliitly give a valuefor X|we'll see how to extrat that later...

The fundamental ideaSo the basi idea is: build a KB that enodes knowledge about theworld , the e�ets of ations and so on.The KB is a onjuntion of piees of knowledge, suh that:� A query regarding what our agent should do an be posed in theform

∃actionList . Goal(... actionList ...)� Proving that

KB =⇒ ∃actionList . Goal(... actionList ...)instantiates actionList to an atual list of ations that willahieve a goal represented by the Goal prediate.We sometimes use the notation ask and tell to refer to queryingand adding to the KB.

Using FOL in AI: the triumphant return of the WumpusWe want to be able to speulate about the past and about possiblefutures . So:
Evil Robot

Wumpus

� We inlude situations in the logial language used by our KB.� We inlude axioms in our KB that relate to situations.This gives rise to situation alulus .

Situation alulusIn situation alulus :� The world onsists of sequenes of situations .� Over time, an agent moves from one situation to another.� Situations are hanged as a result of ations .In Wumpus World the ations are: forward, shoot, grab, climb,
release, turnRight, turnLeft.� A situation argument is added to items that an hange overtime. For example At(loation, s)Items that an hange over time are alled uents .� A situation argument is not needed for things that don't hange.These are sometimes referred to as eternal or atemporal .

Representing hange as a result of ationsSituation alulus uses a funtionresult(action, s)to denote the new situation arising as a result of performing thespei�ed ation in the spei�ed situation.result(grab, s0) = s1result(turnLeft, s1) = s2result(shoot, s2) = s3result(forward, s3) = s4...

Axioms I: possibility axiomsThe �rst kind of axiom we need in a KB spei�es when partiularations are possible .We introdue a prediate Poss(action, s)denoting that an ation an be performed in situation s.We then need a possibility axiom for eah ation. For example:At(l, s) ∧Available(gold, l, s) =⇒ Poss(grab, s)Remember that unbound variables are universally quanti�ed .

Axioms II: e�et axiomsGiven that an ation results in a new situation, we an introduee�et axioms to speify the properties of the new situation.For example, to keep trak of whether EVIL ROBOT has the goldwe need e�et axioms to desribe the e�et of piking it up:Poss(grab, s) =⇒ Have(gold, result(grab, s))E�et axioms desribe the way in whih the world hanges .We would probably also inlude
¬Have(gold, s0)in the KB, where s0 is the starting state .Important : we are desribing what is true in the situation thatresults from performing an ation in a given situation .

Axioms III: frame axiomsWe need frame axioms to desribe the way in whih the worldstays the same .Example:Have(o, s) ∧

¬(a = release∧ o = gold) ∧ ¬(a = shoot∧ o = arrow)

=⇒ Have(o, result(a, s))desribes the e�et of having something and not disarding it .In a more general setting suh an axiom might well look di�erent.For example

¬Have(o, s) ∧

(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))

=⇒ ¬Have(o, result(a, s))desribes the e�et of not having something and not piking it up.

The frame problemThe frame problem has historially been a major issue.Representational frame problem : a large number of frame axiomsare required to represent the many things in the world whih will nothange as the result of an ation.We will see how to solve this in a moment.Inferential frame problem : when reasoning about a sequene of sit-uations, all the unhanged properties still need to be arried throughall the steps.This an be alleviated using planning systems that allow us to reasoneÆiently when ations hange only a small part of the world. Thereare also other remedies, whih we will not over.

Suessor-state axiomsE�et axioms and frame axioms an be ombined into suessor-state axioms .One is needed for eah prediate that an hange over time.Ation a is possible =⇒

(true in new situation ⇐⇒

(you did something to make it true ∨it was already true and you didn't make it false))For examplePoss(a, s) =⇒

(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧Available(o,s)) ∨

(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧

¬(a = shoot ∧ o = arrow))))

Knowing where you areIf s0 is the initial situation we know thatAt((1, 1), s0)I am assuming that we've added axioms allowing us to deal with thenumbers 0 to 5 and pairs of suh numbers. (Exerise: do this.)We need to keep trak of what way we're faing. Say north is 0, southis 2, east is 1 and west is 3.faing(s0) = 0We need to know how motion a�ets loationforwardResult((x, y), north) = (x, y + 1)forwardResult((x, y), east) = (x + 1, y)...and At(l, s) =⇒ goForward(s) = forwardResult(l, faing(s))

Knowing where you areThe onept of adjaeny is very important in the Wumpus worldAdjaent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2We also know that the ave is 4 by 4 and surrounded by wallsWallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)It is only possible to hange loation by moving, and this only worksif you're not faing a wall. So......we need a suessor-state axiom:Poss(a, s) =⇒At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)

Knowing where you areIt is only possible to hange orientation by turning. Again, we needa suessor-state axiomPoss(a, s) =⇒faing(result(a, s)) = d ⇐⇒

(a = turnRight∧ d = mod(faing(s) + 1, 4))

∨ (a = turnLeft∧ d = mod(faing(s) − 1, 4))

∨ (faing(s) = d ∧ a 6= turnRight∧ a 6= turnLeft)and so on...

The quali�ation and rami�ation problemsQuali�ation problem : we are in general never ompletely ertainwhat onditions are required for an ation to be e�etive.Consider for example turning the key to start your ar.This will lead to problems if important onditions are omitted fromaxioms.Rami�ation problem : ations tend to have impliit onsequenesthat are large in number.For example, if I pik up a sandwih in a dodgy sandwih shop, I willalso be piking up all the bugs that live in it. I don't want to modelthis expliitly.

Solving the rami�ation problemThe rami�ation problem an be solved by modifying suessor-state axioms .For example:Poss(a, s) =⇒

(At(o, l, result(a, s)) ⇐⇒

(a = go(l ′, l) ∧

[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧

[¬∃l ′′ . a = go(l, l ′′) ∧ l 6= l ′′ ∧

{o = robot ∨ Has(robot, o, s)}]))desribes the fat that anything EVIL ROBOT is arrying movesaround with him.

Deduing properties of the world: ausal rulesIf you know where you are, then you an think about plaes ratherthan just situations .Synhroni rules relate properties shared by a single state of theworld.There are two kinds: ausal and diagnosti.Causal rules : some properties of the world will produe perepts.WumpusAt(l1) ∧ Adjaent(l1, l2) =⇒ StenhAt(l2)PitAt(l1) ∧ Adjaent(l1, l2) =⇒ BreezeAt(l2)Systems reasoning with suh rules are known as model-based reason-ing systems.

Deduing properties of the world: diagnosti rulesDiagnosti rules : infer properties of the world from perepts.For example: At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)At(l, s) ∧ Stench(s) =⇒ StenchAt(l)These may not be very strong.The di�erene between model-based and diagnosti reasoning an beimportant. For example, medial diagnosis an be done based onsymptoms or based on a model of disease.

General axioms for situations and objetsNote : in FOL, if we have two onstants robot and gold then aninterpretation is free to assign them to be the same thing.This is not something we want to allow.Unique names axioms state that eah pair of distint items in ourmodel of the world must be di�erent

robot 6= gold

robot 6= arrow

robot 6= wumpus...

wumpus 6= gold...

General axioms for situations and objetsUnique ations axioms state that ations must share this property,so for eah pair of ations

go(l, l ′) 6= grab

go(l, l ′) 6= drop(o)...

drop(o) 6= shoot...and in addition we need to de�ne equality for ations, so for eahation

go(l, l ′) = go(l ′′, l ′′′) ⇐⇒ l = l ′′ ∧ l ′ = l ′′′

drop(o) = drop(o ′) ⇐⇒ o = o ′...

General axioms for situations and objetsThe situations are ordered so

s0 6= result(a, s)and situations are distint soresult(a, s) = result(a ′, s ′) ⇐⇒ a = a ′ ∧ s = s ′Stritly speaking we should be using a many-sorted version of FOL.In suh a system variables an be divided into sorts whih are im-pliitly separate from one another.

The start stateFinally, we're going to need to speify what's true in the start state .For example At(robot, [1, 1], s0)At(wumpus, [3, 4], s0)Has(robot, arrow, s0)...and so on.

Sequenes of situationsWe know that the funtion result tells us about the situation resultingfrom performing an ation in an earlier situation.How an this help us �nd sequenes of ations to get things done?De�neSequene([], s, s ′) = s ′ = sSequene([a], s, s ′) = Poss(a, s) ∧ s ′ = result(a, s)Sequene(a :: as, s, s ′) = ∃t . Sequene([a], s, t) ∧ Sequene(as, t, s ′)To obtain a sequene of ations that ahieves Goal(s) we an usethe query

∃a ∃s . Sequene(a, s0, s) ∧ Goal(s)
Problems1. There have in fat been two queries suggested in the notes forobtaining a sequene of ations. The details for

∃a ∃s . Sequene(a, s0, s) ∧Goal(s)were given on the last slide, but earlier in the notes the format
∃actionList . Goal(... actionList ...)was suggested. Explain how this alternative form of query mightbe made to work.2. Making orret use of the situation alulus, write the sentenesin FOL required to implement the following ations in WumpusWorld:� Climb� Shoot

ProblemsPaper 9, Question 8, 2003 - part 2You wish to onstrut a roboti pet at for the purposes of entertain-ment. One purpose of the at is to srath valuable objets when theowner is not present. Give a brief general desription of situationalulus and desribe how it might be used for knowledge represen-tation by the robot. Inlude in your answer one example eah of aframe axiom , an e�et axiom , and a suessor-state axiom , alongwith example de�nitions of suitable prediates and funtions. [12marks℄

Knowledge representation and reasoningIt should be lear that generating sequenes of ations by inferenein FOL is highly non-trivial.Ideally we'd like to maintain an expressive language while restritingit enough to be able to do inferene eÆiently .Further aims :� To give a brief introdution to semanti networks and framesfor knowledge representation.� To see how inheritane an be applied as a reasoning method.� To look at the use of rules for knowledge representation, alongwith forward haining and bakward haining for reasoning.Further reading : The Essene of Arti�ial Intelligene , AlisonCawsey. Prentie Hall, 1998.

Frames and semanti networksFrames and semanti networks represent knowledge in the form oflasses of objets and relationships between them :� The sublass and instane relationships are emphasised.� We form lass hierarhies in whih inheritane is supported andprovides the main inferene mehanism .As a result inferene is quite limited.We also need to be extremely areful about semantis .The only major di�erene between the two ideas is notational .

Example of a semanti network
has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

FramesFrames one again support inheritane through the sublass rela-tionship.

volume: loud

has: ear problems
hairlength: long

subclass: Musician

Rock musician

subclass: Person
has: instrument

Musician

has, hairlength, volume et are slots .

long, loud, instrument et are slot values .These are a diret predeessor of objet-oriented programming lan-guages .

DefaultsBoth approahes to knowledge representation are able to inorporatedefaults :

has: ear problems
* hairlength: long

subclass: Musician

* volume: loud

subclass: Rock musician
hairlength: short
image: gothic

Rock musician
Dementia Evilperson

Starred slots are typial values assoiated with sublasses and in-stanes, but an be overridden .

Multiple inheritaneBoth approahes an inorporate multiple inheritane , at a ost:

instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

� What is hairlength for Cornelius if we're trying to use inheri-tane to establish it?� This an be overome initially by speifying whih lass is inher-ited from in preferene when there's a onit.� But the problem is still not entirely solved|what if we want toprefer inheritane of some things from one lass, but inheritaneof others from a di�erent one?

Other issues� Slots and slot values an themselves be frames. For example
Dementiamay have an instrument slot with the value Electric harp,whih itself may have properties desribed in a frame.� Slots an have spei�ed attributes . For example, we might speifythat instrument an have multiple values, that eah value anonly be an instane of Instrument, that eah value has a slotalled owned by and so on.� Slots may ontain arbitrary piees of program. This is knownas proedural attahment . The fragment might be exeuted toreturn the slot's value, or update the values in other slots et.

Rule-based systemsA rule-based system requires three things:1. A set of if-then rules . These denote spei� piees of knowledgeabout the world.They should be interpreted similarly to logial impliation.Suh rules denote what to do or what an be inferred undergiven irumstanes.2. A olletion of fats denoting what the system regards as ur-rently true about the world.3. An interpreter able to apply the urrent rules in the light of theurrent fats.

Forward hainingThe �rst of two basi kinds of interpreter begins with establishedfats and then applies rules to them .This is a data-driven proess. It is appropriate if we know the initialfats but not the required onlusion.Example: XCON|used for on�guring VAX omputers.In addition:� We maintain a working memory , typially of what has been in-ferred so far.� Rules are often ondition-ation rules , where the right-hand sidespei�es an ation suh as adding or removing something fromworking memory, printing a message et.� In some ases ations might be entire program fragments.

Forward hainingThe basi algorithm is:1. Find all the rules that an �re, based on the urrent workingmemory.2. Selet a rule to �re. This requires a onit resolution strategy .3. Carry out the ation spei�ed, possibly updating the workingmemory.Repeat this proess until either no rules an be used or a halt ap-pears in the working memory.

Example
dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty

ExampleProgress is as follows:1. The rule

dry mouth =⇒ ADD thirsty�res adding thirsty to working memory.2. The rule

thirsty =⇒ ADD get drink�res adding get drink to working memory.3. The rule

working =⇒ ADD no work�res adding no work to working memory.4. The rule

get drink AND no work =⇒ ADD go bar�res, and we establish that it's time to go to the bar.

Conit resolutionClearly in any more realisti system we expet to have to deal witha senario where two or more rules an be �red at any one time :� Whih rule we hoose an learly a�et the outome.� We might also want to attempt to avoid inferring an abundaneof useless information.We therefore need a means of resolving suh onits .

Conit resolutionCommon onit resolution strategies are:� Prefer rules involving more reently added fats.� Prefer rules that are more spei�. For example

patient coughing =⇒ ADD lung problemis more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.This allows us to de�ne exeptions to general rules.� Allow the designer of the rules to speify priorities.� Fire all rules simultaneously|this essentially involves followingall hains of inferene at one.

Reason maintenaneSome systems will allow information to be removed from the workingmemory if it is no longer justi�ed .For example, we might �nd that

patient coughingand

patient smokerare in working memory, and hene �re
patient coughing AND patient smoker =⇒ ADD lung cancerbut later infer something that auses patient coughing to be with-drawn from working memory.The justi�ation for lung cancer has been removed, and so it shouldperhaps be removed also.

Pattern mathingIn general rules may be expressed in a slightly more exible form in-volving variables whih an work in onjuntion with pattern math-ing .For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)ontains the variable X.If the working memory ontains coughs(neddy) and smoker(neddy)then

X = neddyprovides a math and

lung cancer(neddy)is added to the working memory.

Bakward hainingThe seond basi kind of interpreter begins with a goal and �nds arule that would ahieve it.It then works bakwards , trying to ahieve the resulting earlier goalsin the suession of inferenes.Example: MYCIN|medial diagnosis with a small number of ondi-tions.This is a goal-driven proess. If you want to test a hypothesis oryou have some idea of a likely onlusion it an be more eÆient thanforward haining.

Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. This

so we're done.

Working memory Goal

go bar

an be done by establishing thirsty.

These are the new goals.establish get drink and no work.To establish go bar we have to

thirsty an be established by establishing

dry mouth. This is in the working memoryFinally, we an establish no work byestablishing working. This is in the workingmemory so the proess has �nished.

Example with baktrakingIf at some point more than one rule has the required onlusion thenwe an baktrak .Example: Prolog baktraks, and inorporates pattern mathing. Itorders attempts aording to the order in whih rules appear in theprogram.Example: having added

up early =⇒ ADD tiredand

tired AND lazy =⇒ ADD go barto the rules, and up early to the working memory:

Example with baktraking

thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Proess proeeds as before

go bar

lazy

lazy
up early

lazy
tired

di�erent approah.
by establishing tired andAttempt to establish go bar

lazy.This an be done by establishing

up early and lazy.so we're done.up early is in the working memoryWe an not establisg lazyand so we baktrak and try a
GoalWorking memory

63

