Artificial Intelligence I

Dr Sean Holden

Notes on knowledge representation and reasoning using
first-order logic (FOL)

Copyright (© Sean Holden 2002-2010.



Knowledge representation and reasoning using FOL

We now look at how an agent might represent knowledge about
its environment using first order logic (FOL), and reason with this
knowledge to achieve its goals.

Aims:

e To show how FOL can be used to represent knowledge about
an environment in the form of both background knowledge and
knowledge derived from percepts.

e To show how this knowledge can be used to derive non-perceived
knowledge about the environment using a theorem prover.

e To introduce the situation calculus and demonstrate its applica-
tion in a simple environment as a means by which an agent can
work out what to do next.



Interesting reading

Reading: Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subject and can’t
be covered in full in the lectures.

In particular:

e Techniques for representing further kinds of knowledge.
e Techniques for moving beyond the idea of a situation.

e Reasoning systems based on categories.

e Reasoning systems using default information.

e Truth maintenance systems.

Happy reading :-)



Knowledge representation and reasoning

BEarlier in the course we looked at what an agent should be able to
do.

It seems that all of us—and all intelligent agents—should use logical
reasoning to help us interact successfully with the world.

Any intelligent agent should:

e Possess knowledge about the environment and about how its
actions affect the environment.

e Use some form of logical reasoning to maintain its knowledge as
percepts arrive.

e Use some form of logical reasoning to deduce actions to perform
in order to achieve goals.



Knowledge representation and reasoning

This raises some important questions:

e How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen parts of
the world?

e How does the world change as time passes?

e How does the world stay the same as time passes? (The frame
problem.)

e How do we know the effects of our actions? (The qualification
and ramaification problems.)

We'll now look at one way of answering some of these questions.



Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to represent
the required kinds of knowledge:

e [t 1s expressive—anything you can program can be expressed.
e It is concise.

e It i1s unambiguous

e It can be adapted to different contexts.

e It has an inference procedure, although a semidecidable one.

In addition is has a well-defined syntaz and semantics.



Logic for knowledge representation

Problem: 1t’s quite easy to talk about things like set theory using
FOL. For example, we can easily write axioms like

VS . VS’ . ((Vx.(x€S&exeS))=S=5)

But how would we go about representing the proposition that zf you
have a bucket of water and throw it at your friend they will get
wet, have a bump on theiwr head from being hit by a bucket, and
the bucket will now be empty and dented?

More importantly, how could this be represented within a wider
framework for reasoning about the world?

It’s time to introduce my friend, The Wumpus...



Wumpus world

As a simple test scenario for a knowledge-based agent we will make
use of the Wumpus World.

D
QO

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out
again un-scathed.



Wumpus world

The rules of Wumpus World:

e Unfortunately the cave contains a number of pits, which EVIL
ROBOT can fall into. Eventually his batteries will fail, and that’s
the end of him.

e The cave also contains the Wumpus, who i1s armed with state of
the art Evil Robot Obliteration Technology.

e The Wumpus itself knows where the pits are and never falls into
one.



Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the
following:

e In a position adjacent to the Wumpus, a stench is perceived.
(Wumpuses are famed for their lack of personal hygiene.)

e In a position adjacent to a pit, a breeze is perceived.
e In the position where the gold is, a 1s perceived.
e On trying to move into a wall, a bump 1s perceived.

e On killing the Wumpus a scream 1s perceived.

In addition, EVIL ROBOT has a single arrow, with which to try to
kill the Wumpus.

“Adjacent” in the following does not include diagonals.



Wumpus world

SO we have:
Percepts: stench, breeze, glitter, bump, scream.

Actions: forward, turnLeft, turnRight, grab, release, shoot,
climb.

Of course, our aim now 1s not just to design an agent that can perform
well in a single cave layout.

We want to design an agent that can usually perform well regardless
of the layout of the cave.



Some nomenclature

The choice of knowledge representation language tends to lead to two
important commitments:

e Ontological commitments: what does the world consist of?

e Epistemological commaitments: what are the allowable states of
knowledge?

Propositional logic 1s useful for introducing some fundamental ideas,
but its ontological commitment—that the world consists of facts—
sometimes makes 1t too limited for further use.

FOL has a different ontological commitment—the world consists of
facts, objects and relations.



Logic for knowledge representation

The fundamental aim is to construct a knowledge base KB containing
a collection of statements about the world—expressed in FOL—
such that useful things can be derived from it.

Our central aim i1s to generate sentences that are true, if the sen-
tences in the KB are true.

This process is based on concepts familiar from your introductory
logic courses:

e Entailment: KB = o means that the KB entails «.

e Proof: KB ; o means that « is derived from the KB using 1. If 1 1s
sound then we have a proof.

e i 1s sound if it can generate only entailed «.

e 1 1s complete if it can find a proof for any entailed «.



Example: Prolog

You have by now learned a little about programming in Prolog. For
example:

concat([],L,L).
concat([H|T],L,[H|L2]) :- concat(T,L,L2).

1s a program to concatenate two lists. The query
concat([1,2,3],[4,5],X).
results in

X =11, 2, 3, 4, 5].

What's happening here? Well, Prolog 1s just a more limited form of
FOL so...



Example: Prolog

.. we are 1n fact doing inference from a KB:

e The Prolog programme itself is the KB. It expresses some know!-
edge about lists.

e The query is expressed in such a way as to derive some new
knowledge.

How does this relate to full FOL? First of all the list notation is
nothing but syntactic sugar. It can be removed: we define a constant
called empty and a function called cons.

Now [1,2,3] just means cons(1l, cons(2, cons(3, empty)))) which
1s a term in FOL.

I unll assume the use of the syntactic sugar for lists from mow
on.



Prolog and FOL

The program when expressed in FOL, says

Vx . concat(empty, x,x) /A
Vh,t,1;,1;.concat(t, l;,l,) = concat(cons(h,t), 1, cons(h,1,))

The rule 1s simple—given a Prolog program:

e Unwersally quantify all the unbound variables in each line of
the program and ...

e ... form the conjunction of the results.

If the universally quantified lines are L;,L,,...,L,, then the Prolog
programme corresponds to the KB

KB=LiALA---AL,

Now, what does the query mean?



Prolog and FOL

When you give the query

concat([1,2,3],[4,5],X).

to Prolog it responds by trying to prove the following statement
KB — dx.concat([1, 2, 3], [4, 5], x)

So: it tries to prove that the KB implies the query, and variables in
the query are existentially quantified.

When a proof is found, it supplies a value for x that makes the
inference true.



Prolog and FOL

Prolog differs from FOL in that, amongst other things:

e It restricts you to using Horn clauses.
e Its inference procedure is not a full-blown proof procedure.

e It does not deal with negation correctly.

However the central 1dea also works for full-blown theorem provers.

If you want to experiment, you can obtain Prover9 from
http://www.cs.unm.edu/~mccune/maced/

We'll see a brief example now, and a more extensive example of its
use later, time permitting...



Prolog and FOL

Expressed in Prover9, the above Prolog program and query look like
this:

set (prolog_style_variables).

%» This is the translated Prolog program for list concatenation.
%» Prover9 has its own syntactic sugar for lists.

formulas (assumptions) .

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).
end_of_1list.

% This is the query.
formulas(goals) .

exists X concat([1, 2, 3], [4, 5], X).
end_of_list.

Note: 1t 1s assumed that unbound variables are universally quan-
tified.



Prolog and FOL

You can try to infer a proof using

prover9 -f file.in

and the result is (in addition to a lot of other information):

concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].
(exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goall].
concat([],A,A). [assumption].

-concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].
-concat([1,2,3],[4,5],A). [deny(2)].

concat([A],B,[A:B]). [ur(4,a,3,a)].

-concat([2,3],[4,5],A). [resolve(5,a,4,b)].

concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

©O© 00 N O O W N -

This shows that a proof is found but doesn’t explicitly give a value
for X—we’ll see how to extract that later...



The fundamental 1dea

So the basic idea is: build a KB that encodes knowledge about the
world, the effects of actions and so on.

The KB 1s a conjunction of pieces of knowledge, such that:

e A query regarding what our agent should do can be posed in the
form
JactionList.Goal(... actionList ...)

e Proving that
KB —> dactionList.Goal(... actionList ...)

instantiates actionlList to an actual list of actions that will
achieve a goal represented by the Goal predicate.

We sometimes use the notation ask and tell to refer to querying
and adding to the KB.



Using FOL in AI: the triumphant return of the Wumpus

We want to be able to speculate about the past and about possible

futures. So:

O

O

O

O

Evil Robot

Wumpus

e We include situations in the logical language used by our KB.

e We include azioms in our KB that relate to situations.

This gives rise to situation calculus.



Situation calculus

In situation calculus:

e The world consists of sequences of situations.
e Over time, an agent moves from one situation to another.

e Situations are changed as a result of actions.

In Wumpus World the actions are: forward, shoot, grab, climb,
release, turnRight, turnlLeft.

e A situation argument i1s added to items that can change over
time. For example
At(location, s)

Items that can change over time are called fluents.

e A situation argument is not needed for things that don’t change.
These are sometimes referred to as eternal or atemporal.



Representing change as a result of actions

Situation calculus uses a function
result(action, s)

to denote the new situation arising as a result of performing the
specified action in the specified situation.

result(grab, so) = 7
result(turnLeft,s;) = s

(

(
result(shoot, s;) = s3
result(forward, s3) = s4



Axioms I: possibility axioms

The first kind of axiom we need in a KB specifies when particular
actions are possible.

We introduce a predicate
Poss(action, s)

denoting that an action can be performed in situation s.

We then need a possibility axiom for each action. For example:
At(1,s) A\ Available(gold, l,s) = Poss(grab, s)

Remember that unbound variables are uniwversally quantified.



Axioms II: effect axioms

Given that an action results in a new situation, we can introduce
effect arioms to specify the properties of the new situation.

For example, to keep track of whether EEVIL ROBOT has the gold
we need effect axioms to describe the effect of picking it up:

Poss(grab, s) = Have(gold, result(grab, s))

Eiffect axioms describe the way in which the world changes.

We would probably also include
—Have(gold, sp)

in the KB, where s( 1s the starting state.

Important: we are describing what 1s true in the situation that
results from performing an action in a gwven situation.



Axioms III: frame axioms

We need frame azxioms to describe the way in which the world
stays the same.

BExample:
Have(o,s) /A
—(a =release Ao =gold) A —(a = shoot /A o = arrow)
— Have(o, result(a, s))

describes the effect of having something and not discarding it.

In a more general setting such an axiom might well look different.
For example

—Have(o,s) /A
(a # grab(o) V —(Available(o,s) /A Portable(o)))
— —Have(o, result(a,s))

describes the effect of not having something and not picking 1t up.



The frame problem

The frame problem has historically been a major issue.

Representational frame problem: a large number of frame axioms
are required to represent the many things in the world which will not
change as the result of an action.

We will see how to solve this in a moment.

Inferential frame problem: when reasoning about a sequence of sit-
uations, all the unchanged properties still need to be carried through
all the steps.

This can be alleviated using planning systems that allow us to reason
efficiently when actions change only a small part of the world. There
are also other remedies, which we will not cover.



Successor-state axioms

Effect axioms and frame axioms can be combined into successor-
state axioms.

One 1s needed for each predicate that can change over time.

Action a is possible —
(true in new situation <
(you did something to make it true V
it was already true and you didn’t make it false))

For example

Poss(a,s) —
(Have(o,result(a,s)) < ((a = grab /\ Available(o,s)) V
(Have(o,s) /A —(a = release /\ 0 =gold) A
—(a = shoot A 0 = arrow))))



Knowing where you are

If sy 1s the initial situation we know that
At((]a1)>80)

I am assuming that we've added axioms allowing us to deal with the
numbers O to 5 and pairs of such numbers. (Ezercise: do this.)

We need to keep track of what way we're facing. Say north is 0, south
1s 2, east is 1 and west is 3.

facing(sg) =0
We need to know how motion affects location
forwardResult((x,y),north) = (x,y + 1)
forwardResult((x,y),east) = (x + 1,y)

and
At(l,s) = goForward(s) = forwardResult(l, facing(s))



Knowing where you are

The concept of adjacency is very important in the Wumpus world
Adjacent(l;,1,) <= dd forwardResult(l;,d) =1,
We also know that the cave is 4 by 4 and surrounded by walls
WallHere((x,y)) <& (x=0Vy=0Vx=5Vy=>5)

It 1s only possible to change location by moving, and this only works
if you're not facing a wall. So...

...we need a successor-state axiom:
Poss(a,s) —
At(1, result(a,s)) < (1l = goForward(s)
A\ a = forward
/\ —WallHere(1))
V (At(l,s) /\ a # forward)



Knowing where you are

It 1s only possible to change orientation by turning. Again, we need
a successor-state axiom
Poss(a,s) —
facing(result(a,s)) = d <
(a = turnRight A d = mod(facing(s) + 1,4))
V (a = turnLeft /A d = mod(facing(s) — 1,4))
V (facing(s) = d A a # turnRight /A a # turnLeft)

and so on...



The qualification and ramification problems

Qualification problem: we are in general never completely certain
what conditions are required for an action to be effective.

Consider for example turning the key to start your car.

This will lead to problems if important conditions are omitted from
axioms.

Ramafication problem: actions tend to have implicit consequences
that are large in number.

For example, if I pick up a sandwich in a dodgy sandwich shop, I will
also be picking up all the bugs that live in it. I don’t want to model
this explicitly.



Solving the ramification problem

The ramification problem can be solved by modifying successor-
state axrioms.

For example:

Poss(a,s) —
(At(o, 1, result(a,s)) <
(a=go(l,1) A
lo = robot V Has(robot,o0,s)]) V
(At(o,1,s) A
3" L a=go(L,L1") A TAT' A
{o = robot V Has(robot, o, s)}))

describes the fact that anything EVIL ROBOT is carrying moves
around with him.



Deducing properties of the world: causal rules

If you know where you are, then you can think about places rather
than just situations.

Synchronic rules relate properties shared by a single state of the
world.

There are two kinds: causal and diagnostic.

Causal rules: some properties of the world will produce percepts.
WumpusAt(l;) /A Adjacent(l, 1) = StenchAt(1,)
PitAt(ly) /\ Adjacent(l;,1,) — BreezeAt(1,)

Systems reasoning with such rules are known as model-based reason-
ing systems.



Deducing properties of the world: diagnostic rules

Diagnostic rules: infer properties of the world from percepts.

For example:

At(1,s) /\ Breeze(s) — BreezeAt(1)
At(1l,s) A Stench(s) = StenchAt(l)

These may not be very strong.

The difference between model-based and diagnostic reasoning can be
important. For example, medical diagnosis can be done based on
symptoms or based on a model of disease.



General axioms for situations and objects

Note: 1n FOL, if we have two constants robot and gold then an
interpretation is free to assign them to be the same thing.

This 1s not something we want to allow.

Unique names axioms state that each pair of distinct items in our
model of the world must be different

robot # gold
robot # arrow
robot # wumpus

wumpus # gold



General axioms for situations and objects

Unique actions azxioms state that actions must share this property,
so for each pair of actions

go(l,1') # grab
go(1,1") # drop(o)

drop(o) # shoot

and in addition we need to define equality for actions, so for each

action
go(L,l') =go(l",1") <= 1=1"Al=1"

drop(o) = drop(o’) & o0 =0’



General axioms for situations and objects

The situations are ordered so
sp # result(a,s)
and situations are distinct so
result(a,s) =result(a’,s’) & a=a'As=5s’

Strictly speaking we should be using a many-sorted version of FOL.

In such a system variables can be divided into sorts which are im-
plicitly separate from one another.



The start state

Finally, we're going to need to specify what’s true in the start state.

For example
At(robot, [1,1], sp)

At(wumpus, [3, 4], so)
Has(robot, arrow, sg)

and so on.



Sequences of situations

We know that the function result tells us about the situation resulting
from performing an action in an earlier situation.

How can this help us find sequences of actions to get things done?

Define
Sequence([],s,s’) =s' =s
Sequence(lal,s,s’) = Poss(a,s) A's’ =result(q, s)
Sequence(a :: as,s,s’) = 3t . Sequence([al, s, t) /A Sequence(as, t,s’)

To obtain a sequence of actions that achieves Goal(s) we can use
the query

Ja Js . Sequence(a, sg, s) /\ Goal(s)



Problems

1. There have in fact been fwo queries suggested in the notes for
obtaining a sequence of actions. The details for

Ja ds . Sequence(a, sg, s) /\ Goal(s)
were given on the last slide, but earlier in the notes the format
JactionList.Goal(... actionList ...)

was suggested. Explain how this alternative form of query might
be made to work.

2. Making correct use of the situation calculus, write the sentences
in FOL required to implement the following actions in Wumpus

World:

e Climb
e Shoot



Problems

Paper 9, Question 8, 2003 - part 2

You wish to construct a robotic pet cat for the purposes of entertain-
ment. One purpose of the cat is to scratch valuable objects when the
owner 1s not present. Give a brief general description of situation
calculus and describe how 1t might be used for knowledge represen-
tation by the robot. Include in your answer one example each of a
frame axiom, an effect axiom, and a successor-state ariom, along
with example definitions of suitable predicates and functions. [12
marks]



Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference
in FOL i1s highly non-trivial.

Ideally we’d like to maintain an expressive language while restricting
1t enough to be able to do inference efficiently.

Further aims:

e To give a brief introduction to semantic networks and frames
for knowledge representation.

e To see how 2nheritance can be applied as a reasoning method.

e To look at the use of rules for knowledge representation, along
with forward chaining and backward chaining for reasoning.

Further reading: The FEssence of Artifictal Intelligence, Alison
Cawsey. Prentice Hall, 1998.



Frames and semantic networks

Frames and semantic networks represent knowledge in the form of
classes of objects and relationships between them:

e The subclass and instance relationships are emphasised.

e We form class hierarchies in which inheritance is supported and
provides the main inference mechanism.

As a result inference 1s quite limited.
We also need to be extremely careful about semantics.

The only major difference between the two ideas i1s notational.



Example of a semantic network

Person

subclasd
Musician
subclass subclass volume
Ear problem has
volume - - . .\ has
Rock musician Classical musiciaj

hair_length hair_length

instance
instance

Jake Mayhe

has
has Violet Scroot

Oboe



Frames

Frames once again support inheritance through the subclass rela-
tionship.

Rock musician .
Musician
subclass: Musician

has: ear problems

hairlength: long
volume:  loud

subclass: Person
has: instrument

has, hairlength, volume etc are slots.
long, loud, instrument etc are slot values.

These are a direct predecessor of object-oriented programmang lan-
guages.



Defaults

Both approaches to knowledge representation are able to incorporate
defaults:

Rock musician : :
Dementia Evilperson

SUbFIaSS: Musician subclass: Rock musiciar
T _ear problems hairlength: short
hairlength: long image: gothic

* yolume: loud

Starred slots are typical values associated with subclasses and in-
stances, but can be overridden.



Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

Rock musician Classical musician
instak\ instance

Cornelius Cleverchap

e What is hairlength for Cornelius if we're trying to use inheri-
tance to establish 1t?

e This can be overcome initially by specifying which class is inher-
ited from wn preference when there’s a conflict.

e But the problem 1s still not entirely solved—what if we want to
prefer inheritance of some things from one class, but inheritance
of others from a different one?



Other 1ssues

e Slots and slot values can themselves be frames. For example
Dementia may have an instrument slot with the value Electric harp,
which itself may have properties described in a frame.

e Slots can have specified attributes. For example, we might specify
that instrument can have multiple values, that each value can
only be an instance of Instrument, that each value has a slot
called owned by and so on.

e Slots may contain arbitrary pieces of program. This is known
as procedural attachment. The fragment might be executed to
return the slot’s value, or update the values in other slots etc.



Rule-based systems

A rule-based system requires three things:

1. A set of i f-then rules. These denote specific pieces of knowledge
about the world.

They should be interpreted similarly to logical implication.
Such rules denote what to do or what can be inferred under
given circumstances.

2. A collection of facts denoting what the system regards as cur-
rently true about the world.

3. An interpreter able to apply the current rules in the light of the
current facts.



Forward chaining

The first of two basic kinds of interpreter begins with established
facts and then applies rules to them.

This 1s a data-driven process. It is appropriate if we know the initial
facts but not the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

e We maintain a working memory, typically of what has been in-
ferred so far.

e Rules are often condition-action rules, where the right-hand side
specifies an action such as adding or removing something from
working memory, printing a message etc.

e In some cases actions might be entire program fragments.



Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working
memory.

2. Select a rule to fire. This requires a conflict resolution strategy.

3. Carry out the action specified, possibly updating the working
memory.

Repeat this process until either no rules can be used or a halt ap-
pears in the working memory.



Example

Condition—action rules

dry_mouth —> ADD thirsty

thirsty —> ADD get_drink

get_drink AND no_work —> ADD go_bar
working —> ADD no_work

no_work —> DELETE working

Working memory Interpreter

dry_mouth
working




Example

Progress is as follows:

1. The rule
dry mouth =— ADD thirsty

fires adding thirsty to working memory.

2. The rule
thirsty = ADD get drink

fires adding get drink to working memory.

3. The rule
working = ADD no work

fires adding no_work to working memory.
4. The rule
get drink AND no work =— ADD go _bar

fires, and we establish that it’s time to go to the bar.



Conflict resolution

Clearly in any more realistic system we expect to have to deal with
a scenario where two or more rules can be fired at any one time:

e Which rule we choose can clearly affect the outcome.

e We might also want to attempt to avoid inferring an abundance
of useless information.

We therefore need a means of resolving such confiicts.



Conflict resolution

Common conflict resolution strategies are:

e Prefer rules involving more recently added facts.
e Prefer rules that are more specific. For example
patient coughing = ADD lung problem
1s more general than
patient coughing AND patient smoker —> ADD lung cancer.
This allows us to define exceptions to general rules.
e Allow the designer of the rules to specify priorities.

e Fire all rules simultaneously—this essentially involves following
all chains of inference at once.



Reason maintenance

Some systems will allow information to be removed from the working
memory if it is no longer justified.

For example, we might find that
patient_coughing

and
patient smoker

are 1n working memory, and hence fire
patient _coughing AND patient_smoker —> ADD lung cancer

but later infer something that causes patient coughing to be with-
drawn from working memory.

The justification for lung_cancer has been removed, and so it should
perhaps be removed also.



Pattern matching

In general rules may be expressed in a slightly more flexible form in-
volving variables which can work in conjunction with pattern match-
mng.

For example the rule

coughs(X) AND smoker(X) = ADD 1lung_cancer(X)

contains the variable X.

If the working memory contains coughs(neddy) and smoker(neddy)
then
X = neddy

provides a match and
lung_cancer(neddy)

1s added to the working memory.



Backward chaining

The second basic kind of interpreter begins with a goal and finds a
rule that would achieve it.

It then works backwards, trying to achieve the resulting earlier goals
in the succession of inferences.

Example: MYCIN—medical diagnosis with a small number of condi-
tions.

This is a goal-driven process. If you want to test a hypothesis or
you have some idea of a likely conclusion it can be more efficient than
forward chaining.



Example

Working memory

Goal
dry_mouth
working go bar
To establish go_bar we have to
EEEprlls establish get_drink and no_work.
no_work
These are the new goals.
: Try first to establish get_drink. This
thirsty - .
no_work can be done by establishing thirsty.
thirsty can be established by establishing
dry mouth dry_mouth. This is in the working memory
no_work
so we're done.
Finally, we can establish no_work by
, establishing working. This is in the working
working .
memory so the process has finished.




Example with backtracking

If at some point more than one rule has the required conclusion then
we can backtrack.

Example: Prolog backtracks, and incorporates pattern matching. It
orders attempts according to the order in which rules appear in the
program.

Example: having added
up early = ADD tired

and
tired AND lazy — ADD go_bar

to the rules, and up_early to the working memory:



€9

Example with backtracking

Working memory Goal
dry_mouth
working go-bar
up_early

tired
lazy

up_early
lazy

lazy

Attempt to establish go_bar

by establishing tired and

lazy.

get_drink
no_work

This can be done by establishing

Y

up_early and lazy.

up-early is in the working memory

thirsty
no_work

so we're done.

We can not establisg lazy

and so we backtrack and try a

different approach.

working

Process proceeds as before



