
Arti�ial Intelligene IDr Sean Holden

Notes on onstraint satisfation problems (CSPs)

Copyright Sean Holden 2002-2010.

Constraint satisfation problems (CSPs)The searh senarios examined so far seem in some ways unsatisfa-tory.� States were represented using an arbitrary and problem-spei�data struture.� Heuristis were also problem-spei�.� It would be nie to be able to transform general searh problemsinto a standard format .CSPs standardise the manner in whih states and goal tests arerepresented...

Constraint satisfation problems (CSPs)By standardising like this we bene�t in several ways:� We an devise general purpose algorithms and heuristis.� We an look at general methods for exploring the struture of theproblem.� Consequently it is possible to introdue tehniques for deompos-ing problems.� We an try to understand the relationship between the strutureof a problem and the diÆulty of solving it .Note: another method of interest in AI that allows us to do similarthings involves transforming to a propositional satis�ability prob-lem. We'll see an example of this in AI II.

Introdution to onstraint satisfation problemsWe now return to the idea of problem solving by searh and examineit from this new perspetive.Aims:� To introdue the idea of a onstraint satisfation problem (CSP)as a general means of representing and solving problems by searh.� To look at a baktraking algorithm for solving CSPs.� To look at some general heuristis for solving CSPs.� To look at more intelligent ways of baktraking .Reading: Russell and Norvig, hapter 5.

Constraint satisfation problemsWe have:� A set of n variables V1, V2, . . . , Vn.� For eah Vi a domain Di speifying the values that Vi an take.� A set of m onstraints C1, C2, . . . , Cm.Eah onstraint Ci involves a set of variables and spei�es an allow-able olletion of values .� A state is an assignment of spei� values to some or all of thevariables.� An assignment is onsistent if it violates no onstraints.� An assignment is omplete if it gives a value to every variable.A solution is a onsistent and omplete assignment.

ExampleWe will use the problem of olouring the nodes of a graph as arunning example.
1 2 8

653 4
7 7

5 643
1 2 8

Eah node orresponds to a variable . We have three olours anddiretly onneted nodes should have di�erent olours.

ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for eah variable ontains the values blak, red andyan

Di = {B, R,C}� The onstraints enfore the idea that diretly onneted nodesmust have di�erent olours. For example, for variables V1 and V2the onstraints speify
(B, R), (B, C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is unonstrained.

Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is disrete with�nite domains . We will onentrate on these.We will also onentrate on binary onstraints ; that is, onstraintsbetween pairs of variables .� Constraints on single variables|unary onstraints|an be han-dled by adjusting the variable's domain. For example, if we don'twant Vi to be red , then we just remove that possibility from Di.� Higher-order onstraints applying to three or more variables anertainly be onsidered, but...� ...when dealing with �nite domains they an always be onvertedto sets of binary onstraints by introduing extra auxiliary vari-ables .How does that work?

Auxiliary variablesExample: three variables eah with domain {B, R,C}.A single onstraint

(C,C, C), (R, B, B), (B, R, B), (B, B, R)

V1 V1V2

V3The original onstraint onnets allthree variables.

V2

V3

A = 3

New, binary onstraints:
C1 : (1, C), (1, C), (1, C)

C3 : (3, B), (3, R), (3, B)
C4 : (4, B), (4, B), (4, R)

C2 : (2, R), (2, B), (2, B)

Introduing auxiliary variable A with domain {1, 2, 3, 4} allows us toonvert this to a set of binary onstraints.

Baktraking searhConsider what happens if we try to solve a CSP using a simple teh-nique suh as breadth-�rst searh .The branhing fator is nd at the �rst step, for n variables eah with
d possible values.Step 2: (n − 1)dStep 3: (n − 2)d...Step n: 1

Number of leaves = nd × (n − 1)d × · · · × 1

= n!dn

BUT: only dn assignments are possible.The order of assignment doesn't matter, and we should assign to onevariable at a time.

Baktraking searhUsing the graph olouring example:The searh now looks something like this...
1=B1=B1=B

2=R 2=R2=R
3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.

Baktraking searhBaktraking searh searhes depth-�rst, assigning a single variableat a time, and baktraking if no valid assignment is available.

1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-spei� heuristis to try to improve searh-ing, we an now explore heuristis appliable to general CSPs.

Baktraking searh

Result backTrack(problem)

{

return bt ([], problem);

}

Result bt(assignmentList, problem)

{

if (assignmentList is complete)

return assignmentList;

nextVar = getNextVar(assignmentList, problem);

for (every value v in orderVariables(nextVar, assignmentList, problem))

{

if (v is consistent with assignmentList)

{

add "nextVar = v" to assignmentList;

solution = bt(assignmentList, problem);

if (solution is not "fail")

return solution;

remove "nextVar = v" from assignmentList;

}

}

return "fail";

}

Baktraking searh: possible heuristisThere are several points we an examine in an attempt to obtaingeneral CSP-based heuristis:� In what order should we try to assign variables?� In what order should we try to assign possible values to a vari-able?Or being a little more subtle:� What e�et might the values assigned so far have on later at-tempted assignments?� When fored to baktrak, is it possible to avoid the same failurelater on?

Heuristis I: Choosing the order of variable assignments and valuesSay we have 1 = B and 2 = R

1

2

3
4

5
6

8

?

7

At this point there is only one possible assignmentfor 3, whereas the others have more exibility.

Assigning suh variables �rst is alled the minimum remaining val-ues (MRV) heuristi.(Alternatively, themost onstrained variable or fail �rst heuristi.)

Heuristis I: Choosing the order of variable assignments and valuesHow do we hoose a variable to begin with?The degree heuristi hooses the variable involved in the most on-straints on as yet unassigned variables.
1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristi is a good tie breaker.

Heuristis I: Choosing the order of variable assignments and valuesOne a variable is hosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removesthe �nal possibility for 3.

The least onstraining value heuristi hooses �rst the value thatleaves the maximum possible freedom in hoosing assignments for thevariable's neighbours.

Heuristis II: forward heking and onstraint propagationContinuing the previous slide's progress, now add 1 = C.
3

4

5
6

8

2 and 3.

7

C is ruled out as an assignment to

2

1

Eah time we assign a value to a variable, it makes sense to delete thatvalue from the olletion of possible assignments to its neighbours .This is alled forward heking . It works niely in onjuntion withMRV.

Heuristis II: forward heking and onstraint propagationWe an visualise this proess as follows:1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRCAt the fourth step 7 has no possible assignments left .However, we ould have deteted a problem a little earlier...

Heuristis II: forward heking and onstraint propagation...by looking at step three.1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC� At step three, 5 an be C only and 7 an be C only.� But 5 and 7 are onneted.� So we an't progress, but this hasn't been deteted.� Ideally we want to do onstraint propagation .Trade-o�: time to do the searh, against time to explore onstraints.

Constraint propagationAr onsisteny:Consider a onstraint as being direted . For example 4→ 5.In general, say we have a onstraint i→ j and urrently the domainof i is Di and the domain of j is Dj.

i→ j is onsistent if

∀d ∈ Di,∃d ′ ∈ Dj suh that i→ j is valid

Constraint propagationExample:In step three of the table, D4 = {R, C} and D5 = {C}.� 5→ 4 in step three of the table is onsistent .� 4→ 5 in step three of the table is not onsistent .
4→ 5 an be made onsistent by deleting C from D4.Or in other words, regardless of what you assign to i you'll be ableto �nd something valid to assign to j.

Enforing ar onsistenyWe an enfore ar onsisteny eah time a variable i is assigned.� We need to maintain a olletion of ars to be heked .� Eah time we alter a domain, we may have to inlude further arsin the olletion.This is beause if i→ j is inonsistent resulting in a deletion from Diwe may as a onsequene make some ar k→ i inonsistent.Why is this?

Enforing ar onsisteny

i→ j is not onsistent sodelete R from the domainof i.

{B} kK→ i is onsistent but

kK = B an only be pairedwith i = R. {B} kK→ i is no longer onsistentbeause kK = B an only be pairedwith i = R, and R is no longer available.
i→ j is now onsistent.

{R, C} {C} {C}{C}
ji

...

k1

k2

kK

ji

...

k1

k2

kK

� i→ j inonsistent means removing a value from Di.� ∃d ∈ Di suh that there is no valid d ′ ∈ Dj so delete d ∈ Di.However some d ′′ ∈ Dk may only have been pairable with d.We need to ontinue until all onsequenes are taken are of.

The AC-3 algorithm

NewDomains AC-3 (problem)

{

Queue toCheck = all arcs i->j;

while (toCheck is not empty) {

i->j = next(toCheck);

if (removeInconsistencies(Di,Dj)) {

for (each k that is a neighbour of i)

add k->i to toCheck;

}

}

}

Bool removeInconsistencies (domain1, domain2)

{

Bool result = false;

for (each d in domain1) {

if (no d’ in domain2 valid with d) {

remove d from domain1;

result = true;

}

}

return result;

}

Enforing ar onsistenyComplexity:� A binary CSP with n variables an have O(n2) diretional on-straints i→ j.� Any i→ j an be onsidered at most d times where d = maxk |Dk|beause only d things an be removed from Di.� Cheking any single ar for onsisteny an be done in O(d2).So the omplexity is O(n2d3).Note: this setup inludes 3SAT.Consequene: we an't hek for onsisteny in polynomial time,whih suggests this doesn't guarantee to �nd all inonsistenies.

A more powerful form of onsistenyWe an de�ne a stronger notion of onsisteny as follows:� Given: any k−1 variables and any onsistent assignment to these.� Then: We an �nd a onsistent assignment to any kth variable.This is known as k-onsisteny .Strong k-onsisteny requires the we be k-onsistent, k−1-onsistentet as far down as 1-onsistent.If we an demonstrate strong n-onsisteny (where as usual n is thenumber of variables) then an assignment an be found in O(nd).Unfortunately, demonstrating strong n-onsisteny will be worst-ase exponential .

BakjumpingThe basi baktraking algorithm baktraks to the most reent as-signment . This is known as hronologial baktraking . It is notalways the best poliy:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now wewant to assign something to 7. This isn't possible so we baktrak,however re-assigning 4 learly doesn't help.

BakjumpingWith some areful bookkeeping it is often possible to jump bakmultiple levels without sari�ing the ability to �nd a solution.We need some de�nitions:� When we set a variable Vi to some value d ∈ Di we refer to thisas the assignment Ai = (Vi ← d).� A partial instantiation Ik = {A1, A2, . . . , Ak} is a onsistent setof assignments to the �rst k variables...� ... where onsistent means that no onstraints are violated.Heneforth we shall assume that variables are assigned in the order

V1, V2, . . . , Vn when formally presenting algorithms.

Gashnig's algorithmGashnig's algorithm works as follows. Say we have a partial in-stantiation Ik:� When hoosing a value for Vk+1 we need to hek that any andi-date value d ∈ Dk+1, is onsistent with Ik.� When testing potential values for d, we will generally disard oneor more possibilities, beause they onit with some member of

Ik� We keep trak of the most reent assignment Aj for whih thishas happened.Finally, if no value for Vk+1 is onsistent with Ik then we baktrakto Vj.If there are no possible values left to try for Vj then we baktrakhronologially .

Gashnig's algorithmExample:

2

3
4

5
6

8

7

1

1

3

5

4

7

Baktrak to 5
7 = 7 = 7 =

82
???

If there's no value left to try for 5 then baktrak to 3 and so on.

Graph-based bakjumpingThis allows us to jump bak multiple levels when we initially deteta onit .Can we do better than hronologial baktraking thereafter?Some more de�nitions:� We assume an ordering V1, V2, . . . , Vn for the variables.� Given V ′ = {V1, V2, . . . , Vk} where k < n the anestors of Vk+1 arethe members of V ′ onneted to Vk+1 by a onstraint.� The parent P(V) of Vk+1 is its most reent anestor.The anestors for eah variable an be aumulated as assignmentsare made.Graph-based bakjumping baktraks to the parent of Vk+1.

Graph-based bakjumping
2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

82
???

At this point, bakjump to the parent for 7, whih is 5.

Bakjumping and forward hekingIf we use forward heking : say we're assigning to Vk+1 by making
Vk+1 = d:� Forward heking removes d from the Di of all Vi onneted to

Vk+1 by a onstraint.� When doing graph-based bakjumping, we'd also add Vk+1 to theanestors of Vi.In fat, use of forward heking an make some forms of bakjumpingredundant .Note: there are in fat many ways of ombining onstraint propa-gation with bakjumping , and we will not explore them in furtherdetail here.

Bakjumping and forward heking
2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − { }

6 − { }
7 − {1, , }5

5
5 − { }3

5

32 − {1, , 4}

Anestors???

1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC

5 = C = B C = R BR = C BR ! BRC

4 = B = B C = R BR = C BR ! BRCForward heking �nds the problem before baktraking does .

Graph-based bakjumpingWe're not quite done yet though. What happens when there are noassignments left for the parent we just bakjumped to?
V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???
???

Bakjumping from V7 to V4 is �ne. However we shouldn't then justbakjump to V2, beause hanging V3 ould �x the problem at V7.

Graph-based bakjumpingTo desribe an algorithm in this ase is a little involved.

Leaf dead-end

I6.
Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

Given an instantiation Ik and Vk+1, if there is no onsistent d ∈ Dk+1we all Ik a leaf dead-end and Vk+1 a leaf dead-end variable .

Graph-based bakjumpingAlso
Leaf dead-end Internal dead-end

I4.

I6.
Leaf dead-end variable V7

Internal dead-end variable V4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

If Vi was baktraked to from a later leaf dead-end and there are nomore values to try for Vi then we refer to it as an internal dead-endvariable and all Ii−1 an internal dead-end .

Graph-based bakjumpingTo keep trak of exatly where to jump to we also need the de�nitions:� The session of a variable V begins when the searh algorithm vis-its it and ends when it baktraks through it to an earlier variable.� The urrent session of a variable V is the set of all variablesvisiting during its session.� In partiular, the urrent session for any V ontains V.� The relevant dead-ends for the urrent session R(V) for a vari-able V are:1. If V is a leaf dead-end variable then R(V) = {V}.2. If V was baktraked to from a dead-end V ′ then R(V) = R(V)∪

R(V ′).And we're not done yet...

Graph-based bakjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Session starts
Session starts

Session of V7 = {V7}.

R(V7) = {V7}

R(V4) = {V7}

As expeted, the relevant dead-end for V4 is {V7}.

Graph-based bakjumpingOne more bunh of de�nitions before the pain stops. Say Vk is adead-end:� The indued anestors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩

⋃

V∈R(Vk)

anestors(V)

� The ulprit for Vk is the most reent V ′ ∈ ind(Vk).Note that these de�nitions depend on R(Vk).FINALLY: graph-based bakjumping bakjumps to the ulprit .

Graph-based bakjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Bakjump from V7to V4.

R(V4) = {V7}ind(V4) = {V3}

Nothing left to try!

As expeted, we bak jump to V3 instead of V2. Hooray!

Conit-direted bakjumpingGashnig's algorithm and graph-based bakjumping an be ombinedto produe onit-direted bakjumping .We will not explore onit-direted bakjumping in this ourse.For onsiderable further detail on algorithms for CSPs see:\Constraint Proessing," Rina Dehter. Morgan Kaufmann,2003.

Varieties of CSPWe have only looked at disrete CSPs with �nite domains . Theseare the simplest. We ould also onsider:1. Disrete CSPs with in�nite domains :� We need a onstraint language . For example
V3 ≤ V10 + 5� Algorithms are available for integer variables and linear on-straints.� There is no algorithm for integer variables and nonlinear on-straints.2. Continuous domains|using linear onstraints de�ning onvex re-gions we have linear programming . This is solvable in polynomialtime in n.3. We an introdue preferene onstraints in addition to absoluteonstraints , and in some ases an objetive funtion .

44

