Artificial Intelligence I

Dr Sean Holden

Notes on constraint satisfaction problems (CSPs)

Copyright © Sean Holden 2002-2010.

The search scenarios examined so far seem in some ways unsatisfactory.

- States were represented using an *arbitrary* and *problem-specific* data structure.
- Heuristics were also *problem-specific*.
- It would be nice to be able to *transform* general search problems into a *standard format*.

CSPs *standardise* the manner in which states and goal tests are represented...

By standardising like this we benefit in several ways:

- We can devise *general purpose* algorithms and heuristics.
- We can look at general methods for exploring the *structure* of the problem.
- Consequently it is possible to introduce techniques for *decomposing* problems.
- We can try to understand the relationship between the *structure* of a problem and the *difficulty of solving it*.

Note: another method of interest in AI that allows us to do similar things involves transforming to a *propositional satisfiability* problem. We'll see an example of this in AI II.

We now return to the idea of problem solving by search and examine it from this new perspective.

Aims:

- To introduce the idea of a constraint satisfaction problem (CSP) as a general means of representing and solving problems by search.
- To look at a *backtracking algorithm* for solving CSPs.
- To look at some *general heuristics* for solving CSPs.
- To look at more intelligent ways of backtracking.

Reading: Russell and Norvig, chapter 5.

Constraint satisfaction problems

We have:

- A set of n *variables* V_1, V_2, \ldots, V_n .
- For each V_i a *domain* D_i specifying the values that V_i can take.
- A set of m *constraints* C_1, C_2, \ldots, C_m .

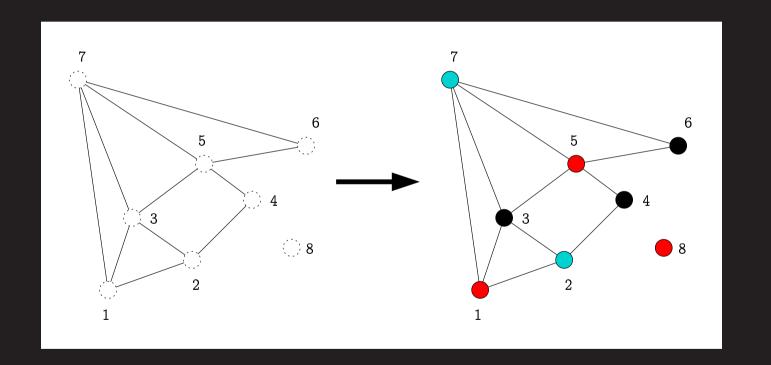
Each constraint C_i involves a set of variables and specifies an *allow*able collection of values.

- A *state* is an assignment of specific values to some or all of the variables.
- An assignment is *consistent* if it violates no constraints.
- An assignment is *complete* if it gives a value to every variable.

A *solution* is a consistent and complete assignment.

Example

We will use the problem of *colouring the nodes of a graph* as a running example.



Each node corresponds to a *variable*. We have three colours and <u>directly connected nodes</u> should have different colours.

Example

This translates easily to a CSP formulation:

• The variables are the nodes

 $V_i = node i$

• The domain for each variable contains the values black, red and cyan

 $D_i = \{B, R, C\}$

• The constraints enforce the idea that directly connected nodes must have different colours. For example, for variables V_1 and V_2 the constraints specify

 $(B, R), \overline{(B, C), (R, B), (R, C), (C, B)}, \overline{(C, R)}$

• Variable V_8 is unconstrained.

Different kinds of CSP

This is an example of the simplest kind of CSP: it is *discrete* with *finite domains*. We will concentrate on these.

We will also concentrate on *binary constraints*; that is, constraints between *pairs of variables*.

- Constraints on single variables—*unary constraints*—can be handled by adjusting the variable's domain. For example, if we don't want V_i to be *red*, then we just remove that possibility from D_i .
- *Higher-order constraints* applying to three or more variables can certainly be considered, but...
- ...when dealing with finite domains they can always be converted to sets of binary constraints by introducing extra *auxiliary vari*-*ables*.

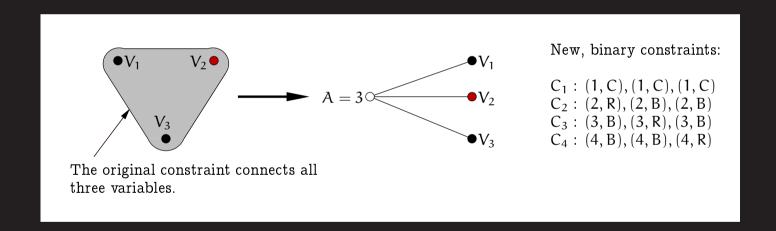
How does that work?

Auxiliary variables

Example: three variables each with domain $\{B, R, C\}$.

A single constraint

(C, C, C), (R, B, B), (B, R, B), (B, B, R)



Introducing auxiliary variable A with domain $\{1, 2, 3, 4\}$ allows us to convert this to a set of binary constraints.

Consider what happens if we try to solve a CSP using a simple technique such as *breadth-first search*.

The branching factor is nd at the first step, for n variables each with d possible values.

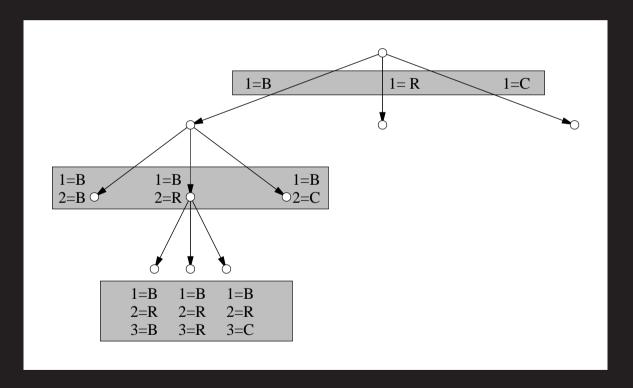
 $\begin{array}{ccc} \text{Step 2:} & (n-1)d \\ \text{Step 3:} & (n-2)d \\ & & \vdots \\ \text{Step n:} & 1 \end{array} \end{array} \right\} \quad \begin{array}{c} \text{Number of leaves} = nd \times (n-1)d \times \cdots \times 1 \\ = n!d^n \end{array}$

BUT: only d^n assignments are possible.

The order of assignment doesn't matter, and we should assign to one variable at a time.

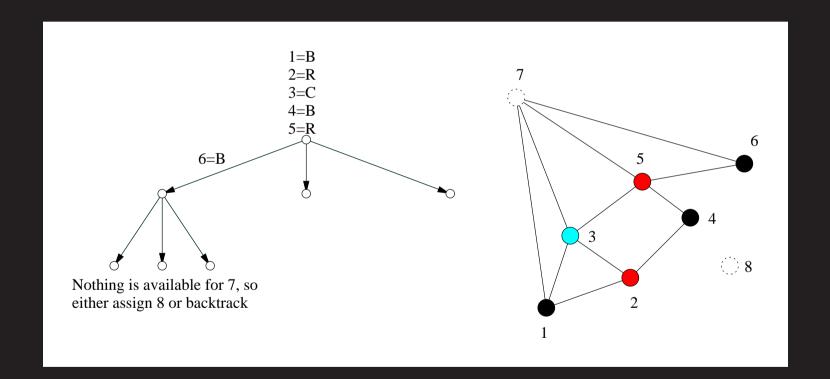
Using the graph colouring example:

The search now looks something like this...



...and new possibilities appear.

Backtracking search searches depth-first, assigning a single variable at a time, and backtracking if no valid assignment is available.



Rather than using problem-specific heuristics to try to improve searching, we can now explore heuristics applicable to *general* CSPs.

```
Result backTrack(problem)
{
  return bt ([], problem);
}
Result bt(assignmentList, problem)
{
  if (assignmentList is complete)
    return assignmentList;
  nextVar = getNextVar(assignmentList, problem);
  for (every value v in orderVariables(nextVar, assignmentList, problem))
  ſ
    if (v is consistent with assignmentList)
    {
      add "nextVar = v" to assignmentList;
      solution = bt(assignmentList, problem);
      if (solution is not "fail")
        return solution;
      remove "nextVar = v" from assignmentList;
    }
  }
  return "fail";
}
```

Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain general CSP-based heuristics:

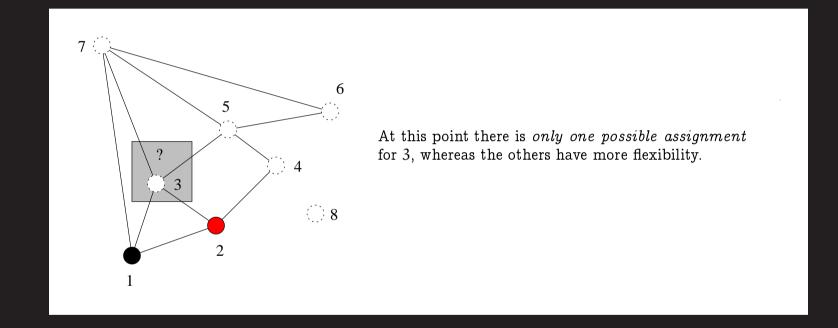
- In what order should we try to *assign variables*?
- In what order should we try to *assign possible values* to a variable?

Or being a little more subtle:

- What effect might the values assigned so far have on later attempted assignments?
- When forced to backtrack, is it possible to avoid the same failure later on?

Heuristics I: Choosing the order of variable assignments and values

Say we have 1 = B and 2 = R



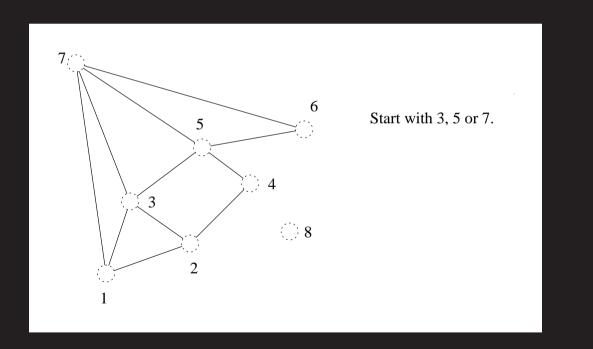
Assigning such variables first is called the minimum remaining values (MRV) heuristic.

(Alternatively, the *most constrained variable* or *fail first* heuristic.)

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

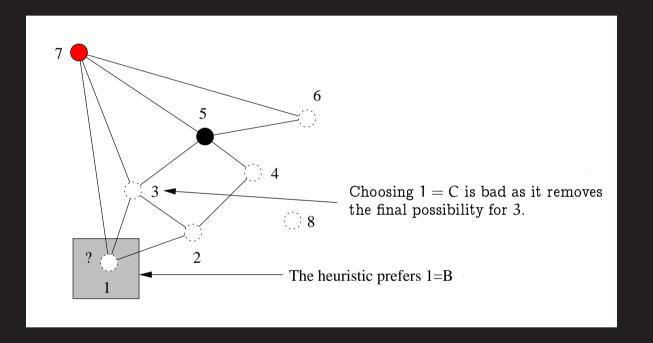
The *degree heuristic* chooses the variable involved in the most constraints on as yet unassigned variables.



MRV is usually better but the degree heuristic is a good tie breaker.

Heuristics I: Choosing the order of variable assignments and values

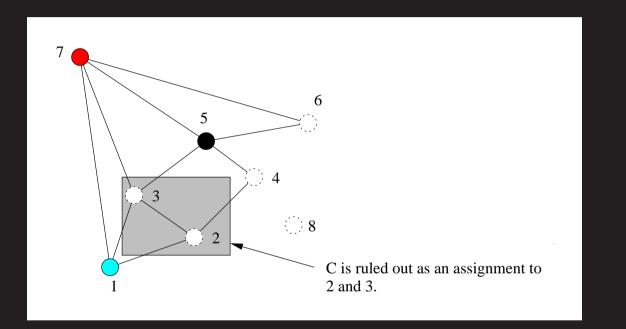
Once a variable is chosen, in *what order should values be assigned*?



The *least constraining value* heuristic chooses first the value that leaves the maximum possible freedom in choosing assignments for the variable's neighbours.

Heuristics II: forward checking and constraint propagation

Continuing the previous slide's progress, now add 1 = C.



Each time we assign a value to a variable, it makes sense to delete that value from the collection of *possible assignments to its neighbours*.

This is called *forward checking*. It works nicely in conjunction with MRV.

We can visualise this process as follows:

	1	2	3	4	5	6	7	8
Start	BRC							
2 = B	RC	= B	RC	RC	BRC	BRC	BRC	BRC
3 = R	С	= B	= R	RC	BC	BRC	BC	BRC
6 = B	С	= B	= R	RC	С	= B	С	BRC
5 = C	С	= B	= R	R	= C	= B	!	BRC

At the fourth step 7 has no possible assignments left.

However, we could have detected a problem a little earlier...

...by looking at step three.

	1	2	3	4	5	6	7	8
Start	BRC							
2 = B	RC	= B	RC	RC	BRC	BRC	BRC	BRC
3 = R	С	= B	= R	RC	ВС	BRC	ВС	BRC
6 = B	С	= B	= R	RC	С	= B	С	BRC
5 = C	С	= B	= R	R	= C	= B	!	BRC

- At step three, 5 can be C only and 7 can be C only.
- But 5 and 7 are connected.
- So we can't progress, but this hasn't been detected.
- Ideally we want to do *constraint propagation*.

Trade-off: time to do the search, against time to explore constraints.

Constraint propagation

Arc consistency:

Consider a constraint as being *directed*. For example $4 \rightarrow 5$.

In general, say we have a constraint $i \to j$ and currently the domain of i is D_i and the domain of j is D_j .

 $i \rightarrow j$ is consistent if

 $\forall d \in D_i, \exists d' \in D_j \text{ such that } i \rightarrow j \text{ is valid}$

Constraint propagation

Example:

In step three of the table, $D_4 = \{R, C\}$ and $D_5 = \{C\}$.

- $5 \rightarrow 4$ in step three of the table *is consistent*.
- $4 \rightarrow 5$ in step three of the table *is not consistent*.
- $4 \rightarrow 5$ can be made consistent by deleting C from D_4 .

Or in other words, regardless of what you assign to i you'll be able to find something valid to assign to j.

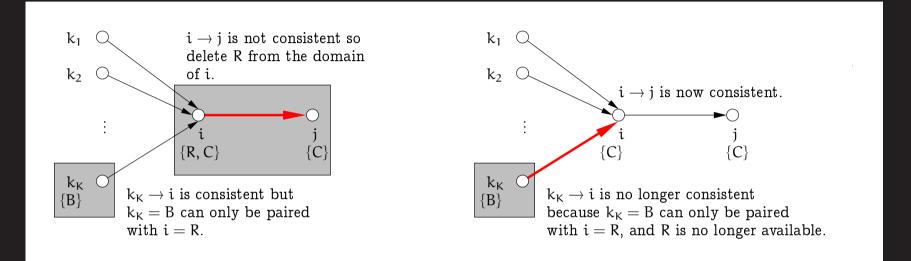
We can enforce arc consistency each time a variable i is assigned.

- We need to maintain a *collection of arcs to be checked*.
- Each time we alter a domain, we may have to include further arcs in the collection.

This is because if $i \rightarrow j$ is inconsistent resulting in a deletion from D_i we may as a consequence make some arc $k \rightarrow i$ inconsistent.

Why is this?

Enforcing arc consistency



- $i \rightarrow j$ inconsistent means removing a value from D_i .
- $\exists d \in D_i$ such that there is no valid $d' \in D_j$ so delete $d \in D_i$.

However some $d'' \in D_k$ may only have been pairable with d.

We need to continue until all consequences are taken care of.

```
NewDomains AC-3 (problem)
{
  Queue toCheck = all arcs i->j;
  while (toCheck is not empty) {
    i->j = next(toCheck);
    if (removeInconsistencies(Di,Dj)) {
      for (each k that is a neighbour of i)
        add k->i to toCheck;
   }
Bool removeInconsistencies (domain1, domain2)
  Bool result = false;
  for (each d in domain1) {
    if (no d' in domain2 valid with d) {
      remove d from domain1;
      result = true;
    }
  }
  return result;
}
```

Complexity:

- A binary CSP with n variables can have $O(n^2)$ directional constraints $i \rightarrow j$.
- Any $i \to j$ can be considered at most d times where $d = \max_k |D_k|$ because only d things can be removed from D_i .
- Checking any single arc for consistency can be done in $O(d^2)$.

So the complexity is $O(n^2d^3)$.

Note: this setup includes 3SAT.

Consequence: we can't check for consistency in polynomial time, which suggests this doesn't guarantee to find all inconsistencies.

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

- Given: any k-1 variables and any consistent assignment to these.
- *Then:* We can find a consistent assignment to any kth variable.

This is known as k-*consistency*.

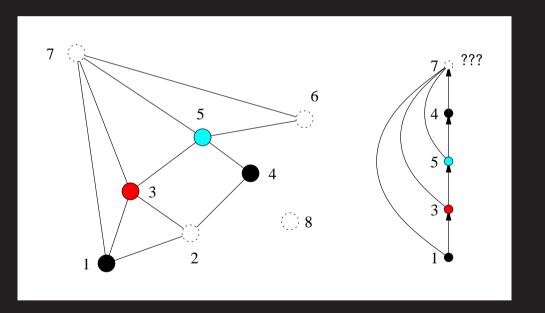
Strong k-consistency requires the we be k-consistent, k-1-consistent etc as far down as 1-consistent.

If we can demonstrate strong n-consistency (where as usual n is the number of variables) then an assignment can be found in O(nd).

Unfortunately, demonstrating strong n-consistency will be *worst-case exponential*.

Backjumping

The basic backtracking algorithm backtracks to the *most recent assignment*. This is known as *chronological backtracking*. It is not always the best policy:



Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we want to assign something to 7. This isn't possible so we backtrack, however re-assigning 4 clearly doesn't help.

Backjumping

With some careful bookkeeping it is often possible to *jump back multiple levels* without sacrificing the ability to find a solution.

We need some definitions:

- When we set a variable V_i to some value $d \in D_i$ we refer to this as the *assignment* $A_i = (V_i \leftarrow d)$.
- A partial instantiation $I_k = \{A_1, A_2, \dots, A_k\}$ is a consistent set of assignments to the first k variables...
- ... where *consistent* means that no constraints are violated.

Henceforth we shall assume that variables are assigned in the order V_1, V_2, \ldots, V_n when formally presenting algorithms.

Gaschnig's algorithm

Gaschnig's algorithm works as follows. Say we have a partial instantiation I_k :

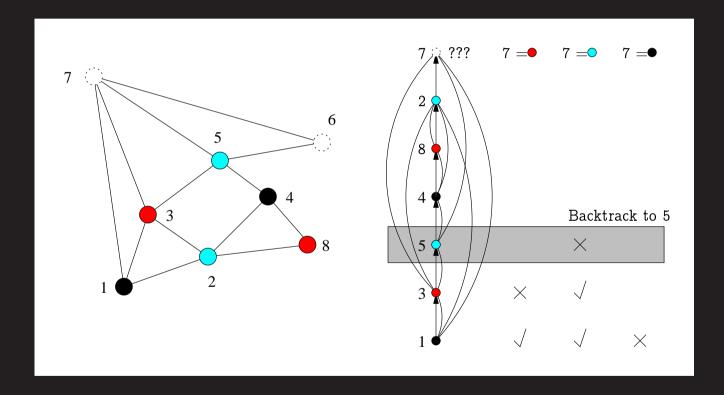
- When choosing a value for V_{k+1} we need to check that any candidate value $d \in D_{k+1}$, is consistent with I_k .
- \bullet When testing potential values for d, we will generally discard one or more possibilities, because they conflict with some member of I_k
- We keep track of the *most recent assignment* A_j for which this has happened.

Finally, if **no** value for V_{k+1} is consistent with I_k then we backtrack to V_j .

If there are no possible values left to try for V_j then we backtrack *chronologically*.

Gaschnig's algorithm

Example:



If there's no value left to try for 5 then backtrack to 3 and so on.

This allows us to jump back multiple levels when we initially detect a conflict.

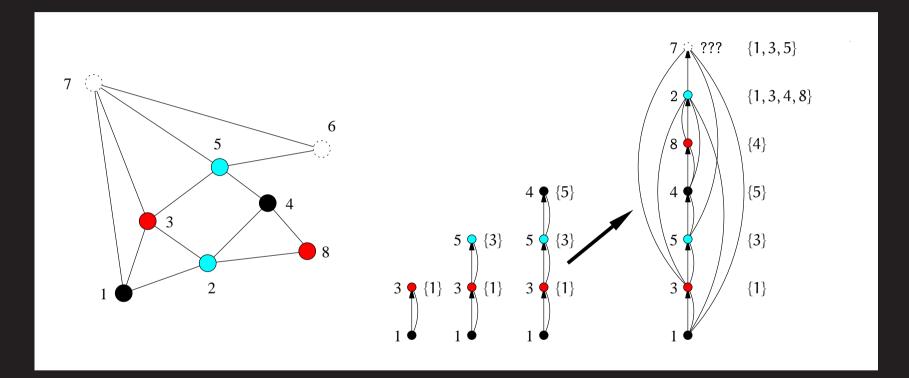
Can we do better than chronological backtracking *thereafter*?

Some more definitions:

- We assume an ordering V_1, V_2, \ldots, V_n for the variables.
- Given $V' = \{V_1, V_2, \dots, V_k\}$ where k < n the *ancestors* of V_{k+1} are the members of V' connected to V_{k+1} by a constraint.
- The *parent* P(V) of V_{k+1} is its most recent ancestor.

The ancestors for each variable can be accumulated as assignments are made.

Graph-based backjumping backtracks to the parent of V_{k+1} .



At this point, backjump to the *parent* for 7, which is 5.

Backjumping and forward checking

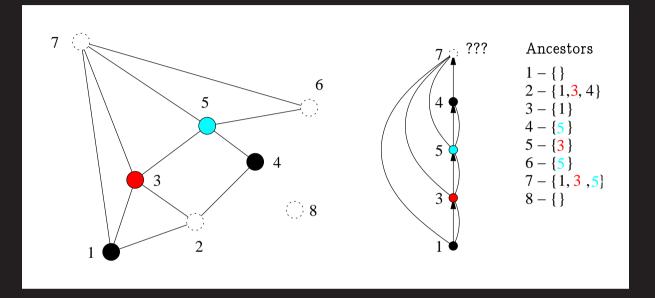
If we use *forward checking*: say we're assigning to V_{k+1} by making $V_{k+1} = d$:

- Forward checking removes d from the D_i of all V_i connected to V_{k+1} by a constraint.
- \bullet When doing graph-based backjumping, we'd also add V_{k+1} to the ancestors of $V_i.$

In fact, use of forward checking can make some forms of backjumping *redundant*.

Note: there are in fact many ways of combining *constraint propagation* with *backjumping*, and we will not explore them in further detail here.

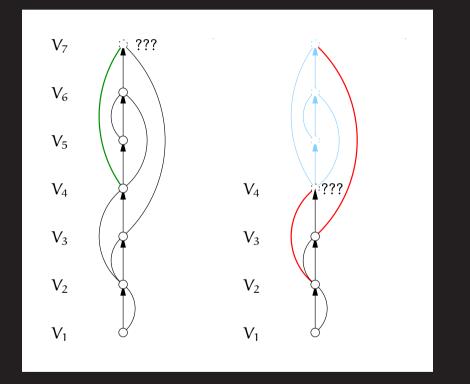
Backjumping and forward checking



	1	2	3	4	5	6	7	8
Start	BRC							
1 = B	= B	RC	RC	BRC	BRC	BRC	RC	BRC
3 = R	= B	С	= R	BRC	BC	BRC	C	BRC
5 = C	= B	С	= R	BR	= C	BR	!	BRC
4 = B	= B	С	= R	BR	= C	BR	!	BRC

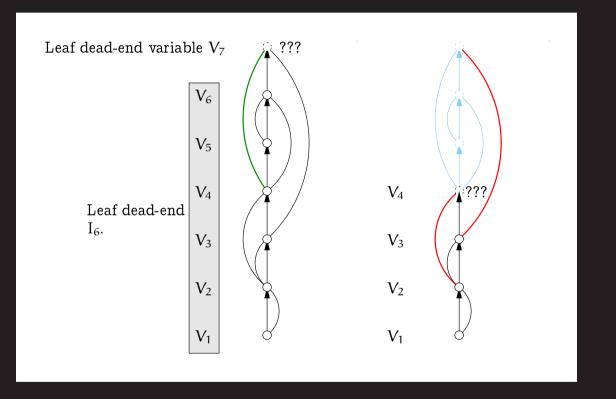
Forward checking finds the problem *before backtracking does*.

We're not quite done yet though. What happens when there are no assignments left for the parent we just backjumped to?



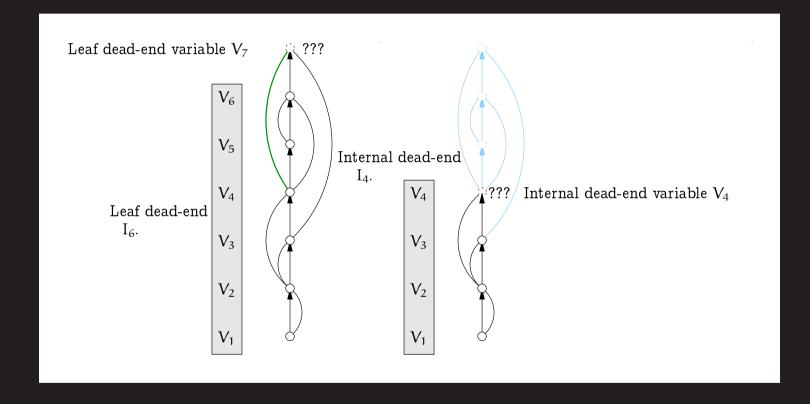
Backjumping from V_7 to V_4 is fine. However we shouldn't then just backjump to V_2 , because changing V_3 could fix the problem at V_7 .

To describe an algorithm in this case is a little involved.



Given an instantiation I_k and V_{k+1} , if there is no consistent $d \in D_{k+1}$ we call I_k a *leaf dead-end* and V_{k+1} a *leaf dead-end variable*.

Also



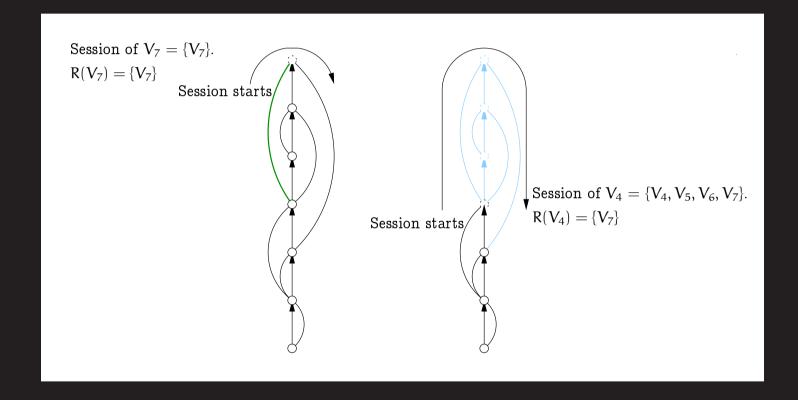
If V_i was backtracked to from a later leaf dead-end and there are no more values to try for V_i then we refer to it as an *internal dead-end variable* and call I_{i-1} an *internal dead-end*.

To keep track of exactly where to jump to we also need the definitions:

- The session of a variable V begins when the search algorithm visits it and ends when it backtracks through it to an earlier variable.
- The *current session* of a variable V is the set of all variables visiting during its session.
- In particular, the current session for any V contains V.
- The relevant dead-ends for the current session R(V) for a variable V are:
 - 1. If V is a leaf dead-end variable then $R(V) = \{V\}$.
 - 2. If V was backtracked to from a dead-end V' then $R(V)=R(V)\cup R(V').$

And we're not done yet...

Example:



As expected, the relevant dead-end for V_4 is $\{V_7\}$.

One more bunch of definitions before the pain stops. Say V_k is a dead-end:

• The *induced ancestors* $ind(V_k)$ of V_k are defined as

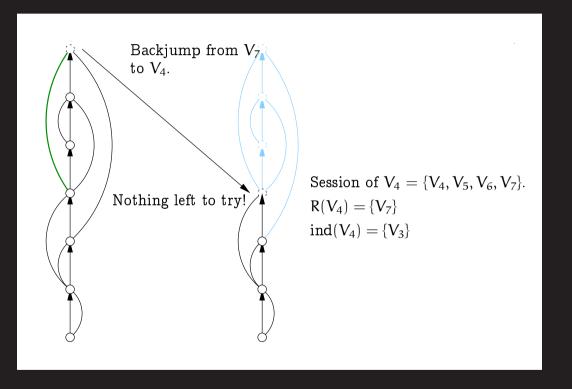
$$ind(V_k) = \{V_1, V_2, \dots, V_{k-1}\} \cap \left(\bigcup_{V \in R(V_k)} ancestors(V)\right)$$

• The *culprit* for V_k is the most recent $V' \in ind(V_k)$.

Note that these definitions depend on $R(V_k)$.

FINALLY: graph-based backjumping backjumps to the culprit.

Example:



As expected, we back jump to V_3 instead of V_2 . Hooray!

Conflict-directed backjumping

Gaschnig's algorithm and graph-based backjumping can be *combined* to produce *conflict-directed backjumping*.

We will not explore conflict-directed backjumping in this course.

For considerable further detail on algorithms for CSPs see:

"Constraint Processing," Rina Dechter. Morgan Kaufmann, 2003.

Varieties of CSP

We have only looked at *discrete* CSPs with *finite domains*. These are the simplest. We could also consider:

- 1. Discrete CSPs with *infinite domains*:
 - We need a *constraint language*. For example

 $V_3 \leq V_{10} + 5$

- Algorithms are available for integer variables and linear constraints.
- There is *no algorithm* for integer variables and nonlinear constraints.
- 2. Continuous domains—using linear constraints defining convex regions we have *linear programming*. This is solvable in polynomial time in n.
- 3. We can introduce *preference constraints* in addition to *absolute constraints*, and in some cases an *objective function*.