Part III: Data Structures
If you have been using the examples sheet on the web page, it has now been updated (and will be continually)
Data Structures

- In OOP we saw that there was an advantage in creating classes
 - Allowed us to group primitive types into one entity
 - Allowed us to group together data and the operations allowed on it

- Even without the OOP goodies (inheritance, etc) it is useful to do this for other languages
 - Rename to “data structures”
Why are they in this Course?

- Often we find that data structures provide natural support to parts of an algorithm
 - Think heapsort

- We will be looking at a range of data structures (some that you've already used) from a theoretical standpoint

- We start with a look at how to represent some fairly fundamental data structures
Abstract Data Types

- An ADT is a model of a data structure or type

- It defines the functionality expected of the data structure (but not the implementation)
 - Like a specification of the data structure
 - Maps to the interface notion in Java

- Frees us from implementation details and makes it easy to swap in new algorithms for the operations as they are discovered

- You can make your own of course, but there exists a set of ADTs that you should just know...
ADT 1: List

- A sequence of items
 - `add(item i, position p)`: insert item i into the list in position p.
 - `delete(position p)`: delete the item at p
 - `is_empty()`: returns true iff the list is empty
 - `get(position p)`: get the item at position p
List Types

- **Single**
 - Insert at front: $O(1)$
 - Insert at back: $O(n)$

- **Doubly-Linked**
 - Insert at front and back: $O(1)$
 - General insertion: $O(n)$

- **Circular**
Java List Interface

Part of Collections

List

interface

ArrayList

LinkedLIst

Vector

Array storage

Linked storage (references)
public class MyLinkedList {
 int payload;
 LinkedList next;
 LinkedList previous;
}

References
Linked List Costs

- **add**: Traverse the list to find the position, create object, then insert.
 - $O(n)$
 - $O(1)$
 - $O(1)$
 - $O(n)$

- **delete**: Traverse the list to find the position, then delete.
 - $O(n)$
 - $O(1)$
 - $O(n)$

- **isEmpty**: Check the head element.
 - $O(1)$

- **get**: Traverse the list to find the element.
 - $O(n)$
 - $O(n)$
- Think of these as the same thing, but \textbf{Vector} is 'synchronised' and hence slower in normal usage
 - i.e. threadsafe

\[\begin{array}{c}
 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}\]

- Memory overhead is zero
- Random access

\[\text{1st 2nd}\]
ArrayList: add to end

Increase array size.

\[1 2 3 4 \] \rightarrow \[1 2 3 4 \],

\[1 2 3 4 \]

Making + filling a new array
ArrayList: add to end

Most additions will just be direct \(O(1) \)

Some additions will require expansion \(O(n) \)

Add \(n \) elements in \(O(n) \) time

\(\Rightarrow \) Amortized cost \(O(1) \)
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]

\[
6
\]

1) There is space \(\Rightarrow \) move \(O(n-P) \) element-s

2) Create more space, then (i)
Which to use?

- Right now your default is probably to use LinkedList in java
- For a general usage, ArrayList is usually more efficient

LinkedList - good for insertion/deletion in a random pos.
- memory overhead + slow search

ArrayList - great for everything except insert in random pos.

Java array list Ξ 10 items initialize,

\[
\begin{array}{ll}
\text{200,000} & \text{LL} \\
\text{438ms} & \text{1458ms}
\end{array}
\]
ADT 2: Stack

- Analogy: A stack of plates (LIFO) - Last in first out
- Add and take from the top
 - push(item i): add i to the top
 - pop(): remove i from the top after returning it
 - top(): get the item on top
 - isEmpty(): return true iff stack is empty
Stack Implementations

- **Linked List**
 - Everything happens at the head so $O(p)$ is now $O(1)$
 - Still have a memory overhead associated with each node

- **Array**
 - Do everything at the tail of the array: good performance characteristics
 - Java's Stack uses Vector as its base
Stack Languages!

- Postscript (language for text and gfx layout on a page: printer speak)

```
7 9 add 2 mul
```

Reverse polish notation:

\[(7 + 9) \times 2\]
ADT 3: Queue

- Analogy: A queue (duh!) (FIFO)
 - put(item i): add i to the bottom
 - get(): Take top element out of the queue and return it
 - first(): get the item on top
 - isEmpty(): return true iff queue is empty
Aside: Deque

- Sometimes useful to have a double-ended queue (Deque)
 - putFront(item i)
 - putRear(item l)
 - getFront()
 - getRear()

- In many ways Stack and Queue are just crippled versions of Deque!
Deque Implementation

- Doubly linked lists work fine \(O(1)\) for everything
- Arrays need more thought...

\[\text{Circular buffer.}\]
Java's Queue

- As with List, the Queue interface is implemented by different classes
 - LinkedList is the most basic

- You are supposed to select the implementation that best suits your needs
ADT 4: Table

- A *dictionary* or some keys mapped to values
 - `set(key k, value v)`: add the mapping pair `(k->v)`
 - `get(key k)`: return the value for key `k`
 - `delete(key k)`: remove any pair or pairs with the key `k`
 - `isEmpty()`: return true iff table is empty

<table>
<thead>
<tr>
<th>keys</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁</td>
<td>V₁</td>
</tr>
<tr>
<td>K₂</td>
<td>V₂</td>
</tr>
<tr>
<td>K₃</td>
<td>V₃</td>
</tr>
</tbody>
</table>

"map"
Table Naïve Array Implementation

Keys: integers $0 \rightarrow N$

$0 \ 1 \ 2 \ 3 \ 4 \ \ldots \ N$

$\begin{array}{|c|c|c|c|c|}
\hline
V_1 & V_2 & V_3 & V_4 \\
\hline
\end{array}$

$\text{set}(i) \ \{O(1)\}$

$\text{get}(i) \ \{O(1)\}$

Space $O(\text{range})$
get() : Scan list \(O(n) \)
set() : \(O(1) \) iff duplicates
\[
\text{scan list, update or add at end} \quad \mathcal{O}(n)
\]
\(\mathcal{O}(n) \) space.
Smarter Table implementation: Array

\[
\begin{array}{|c|c|c|}
\hline
k_3, v_3 & k_1, v_1 & k_2, v_2 \\
\hline
\end{array}
\]

\[\text{get()} \rightarrow O(\log n)\]

\[\text{set()} \rightarrow O(\log n) \text{ and place shift may give expansion}\]

\[k_3 < k_1 < k_2\]

\[f(n) = f\left(\frac{n}{2}\right) + kn = O(\log n)\]