
Algorithms I
Dr Robert Harle

CST Paper I
(IA NST CS, PPS CS and CST)

Easter 2009/10

Algorithms I

 This course was developed by Dr Frank Stajano, who is
on sabbatical this year

 I'm the “substitute teacher” :-)

 Dr Stajano's notes are very good: you have a copy of
those as the handout. Those and the course textbook
are probably all you need.

 However, I will post an annotated PDF of the notes I
make in lectures as we go: check the course web page

 Three Parts
 Sorting Algorithms

 Algorithm Design

 Data Structures

The CLR(S) Book
 Intro. To Algorithms

 Cormen, Lieverson, Rivest,
(Stein)

 The course is loosely
based on this book
 Definitely read the relevant

bits of this book
 Most libraries should have

a copy
 It contains some good

exercises

Exercises

 There are some exercises dispersed
throughout the notes
 They aren't numbered
 Most are just meant to be done as you read,

rather than detailed problems

 There will be an exercise sheet available as a
PDF on the course website that you may wish to
use for supervisions.

Algorithms

 At its core, CS is really just about puzzle solving. But we
aren't just interested in finding a solution (or “algorithm”),
we're interested in finding the best solution given some
definition of 'best'

 Everything else (programming, maths) is just a set of tools
that turn out to be useful in supporting our puzzle solving.

 There is no “universal algorithm”; nor will there be.
 But you can learn a lot from studying how to solve a

variety of problems since many problems can be
broken down into smaller problems to which
established algorithms (or variants of) are appropriate

Algorithms Optimize Something

 We choose algorithms based on:
 How soon they give us output (performance)
 How much resource they use (space)
 How good the output is (quality)
 Combinations of the above

Algorithm
(magic)

Input Output

Example: Digital Cameras (JPEG)

 Digital cameras read in a load of pixels and
have to convert them into a JPEG image
 Performance: Need to do the conversion

quickly so you can take another picture
 Space: Need to do the conversion with

minimal space overheads (to keep camera
cost and size down)

 Quality: Need to produce a small file that is
still a good representation of the original
data

Example: Search Engines

Pages: A B C D E F G H I J K L

Index
GET A B F H
A G D K I J B D
FIRST G A
THIS E F I G A
YEAR C

 Algorithms:
 Look up the search term in the index
 Optionally combine the results (AND, OR)
 Arrange the results in some useful order

Part I: Sorting Algorithms

Why Sorting?

 There is an objective correct result
 Many sorting algorithms are available

 Some really simple
 Some more complex

 Sorting (and searching) are needed for most
large-scale algorithms

 You have already met some of this in FoCS,
but I'll recap anyway (it is revision time after
all)
 Plus you concentrated on sorting lists in

FoCS: here we look at sorting arrays

Memory Model

 We'll use the simple model from OOP

 Key points:
 Memory is addressed using numerical addresses

and therefore random access
 We will assume that we never run out of memory
 We will not worry about the capacity of each

memory slot (we'll assume any number can be
represented in any slot)

Memory

0 1 2 3 4 5 6 7 8

Insertion Sort

Insertion Sort

How 'good' is any algorithm?

 It's hard to put numbers to anything since the
performance is presumably heavily dependent
on the input

 As you know we usually study the limiting
behaviour using the asymptotic notation you
met in FoCS

Complexity Notations

Big-O: 0 ≤ f(n) ≤ k.g(n)

Θ: 0 ≤ k
1
.g(n) ≤ f(n) ≤ k

2
.g(n)

Ω: 0 ≤ k.g(n) ≤ f(n)

For n>N
K, k

1
, k

2
, N > 0

Notes

 log
a
(x) = log

b
(x)/log

b
(a)

 So the base of any logarithm in g(n) is
irrelevant

 The value of N above which the
bound holds could be very big
 i.e. Take care when comparing two

complexities for small n.

Examples

 Show (x+5)lg(3x2+7) is O(xlgx)

Examples

 Show n3+20n is Ω(n2)

Examples

 Show n2-3n is Θ(n2)

Relating to Running Time

 We assume:
 Any memory access takes unit time
 Any arithmetic takes unit time

 Thus the running time is linked to the
number of operations the algorithm
requires.

 Problem: this is often dependent on
the input

Worst, Average and Amortized costs

 Worst-case
 Analyse for the worst possible input. This gives you an

upper bound for the performance.

 Average-case
 Analyse for an 'average' input. Problem here is that

the notion of average assumes some probability
distribution of inputs, which we rarely have (and
which is application specific of course).

 Amortized analysis
 Sometimes we have a sequence of operations that

occur: in this case we may amortize the total cost to
run the sequence of operations so we get an
average cost per operation. e.g. Garbage collection.

