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Advanced Graphics Lecture Notes

Neil Dodgson∗

University of Cambridge Computer Laboratory

Overview

This first half of the course provides students with a solid grounding in a variety of

three-dimensional modelling mechanisms.

Why Advanced Graphics? The title “Advanced Graphics” dates from the year in

which the course was first proposed. At this time a 16 lecture course on various ad-

vanced topics in graphics was envisaged. The course is now 12 lectures long. Today, it

is mainly concerned with 3D modelling techniques, so the course title is, perhaps, a lit-

tle misleading. Computer Laboratory policy is, however, to minimize changes to course

titles. 3D modelling is important because it underpins all of the practical uses of 3D

computer graphics.

What’s examinable? Everything except where explicitly noted otherwise. This means

that anything that is covered in the lectures is examinable, even if it is not in the notes,

unless I say otherwise, and that anything that is in the notes is examinable, unless noted

otherwise.

Lecture handouts and supervision material Some of the lecture course material

is available on the web1. This material is also printed out to provide these lecture notes.

Other material is bound in with these notes (this material cannot be put on the web

for copyright reasons). There are exercises scattered throughout the notes. These can

usually be found at the end of sections. My thanks to Dr Jonathan Pfautz and Dr Andy

Penrose for some of the exercises.

Book list and their abbreviations The following books are referred to in the course.

Each is preceded by the abbreviation used in these notes to refer to that book.

• FvDFH Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer
Graphics: Principles and Practice. Addison-Wesley (2nd ed.). The traditional

“bible” of Computer Graphics. It tends to be terse but it has wide coverage of

all of the basics.

∗Written 10/99, modifications made 09/00, 10/02, 09/04, 04/06, 03/07, 01/10. c©1999, 2000, 2002, 2004,
2006, 2007, 2010 Neil A. Dodgson

1http://www.cl.cam.ac.uk/Teaching/current/AdvGraph
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2 Advanced Graphics Lecture Notes

• F&vD Foley J.D. & van Dam, A. (1984). Fundamentals of Interactive Computer
Graphics. Addison-Wesley (1st ed.). The earlier version of FvDFH. It contains

only about half of the material of the second edition, but is still comprehensive

about the basics of computer graphics.

• SSC Slater, M., Steed, A. & Chrysanthou, Y. (2002). Computer Graphics & Virtual
Environments. Addison Wesley. A more recent book which covers all the basics.

Also has sections on Constructive Solid Geometry (Ch. 18), Quadrics (also Ch. 18),

Radiosity (Ch. 15), and an introduction to Bézier and B-Spline curves and surfaces

(Ch. 19).

• Buss Buss, S.R. (2003). 3-D Computer Graphics. Cambridge University Press.
Another recent book which has the best description of radiosity (Ch. XI) that I

have ever read. It also contains chapters on Bézier curves (VII), B-Splines (VIII),

ray tracing (IX and X) and animation (XII).

• R&A Rogers, D.F. & Adams, J.A. (1990). Mathematical Elements for Computer
Graphics. McGraw-Hill (2nd ed.). A good coverage of the mathematics of the 2D

and 3D representation of shape as it was understood in the year of publication.

Explains Bézier, B-spline, and NURBS curves and surfaces in great detail. Also

covers conics and quadrics.

• Farin Farin, G. (2002, 5th ed.; 1997, 4th ed.). Curves and Surfaces for CAGD.
Morgan Kaufmann (5th ed.). Academic Press (4th ed.). A good alternative source

for information on Bézier, B-Spline, NURBS, and conics. Regularly updated since

its original publication in 1988.

• W&WWarren, J. & Weimer, H. (2002). Subdivision Methods for Geometric Design.
Morgan Kaufmann. The first book on the market devoted entirely to subdivision

methods.

• GG I-V Graphics Gems I (1990) to Graphics Gems V (1995). Academic Press. A
collection of five books containing a wide variety of algorithms for use in computer

graphics. A wide range of tips, tricks and techniques is included.

Note on copyright material I have included, in this handout, an extract from Rogers

and Adams (R&A), which consists of parts of sections 5-8 (Bézier curves), 5-9 (B-splines),

and 5-13 (NURBS). This is provided under the University of Cambridge’s license from

the Copyright Licensing Agency. This allows us to make one copy for each student and

supervisor (“tutor”) on the course within certain limits. These are: no more than three

works and no more than 5% or one whole article or chapter from each work. This mate-

rial is provided solely for the student’s own study. Further copying of this handout is a

breach of copyright.

Be warned: to fit inside these limits I have heavily edited the extracts from R&A. In

particular, I have included none of the worked examples. To thoroughly understand the

material I suggest that you read this extract and then borrow (or buy) a copy of R&A in

order to go through the examples.
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Figure 1: A basic ray traced model showing refraction and shadowing.

1 Basic 3D modelling

1.1 Ray tracing vs polygon scan conversion

These are the two standard methods of producing images of three-dimensional solid ob-

jects. They were covered in some detail in the Part IB course. If you want to revise them

then check out FvDFH sections 14.4, 15.10 and 15.4 or F&vD sections 16.6 and 15.5.

Line drawing is also used for representing three-dimensional objects in some applica-

tions. It is briefly covered later on.

1.1.1 Ray tracing

Ray tracing has the tremendous advantage that it can produce realistic looking images.

The technique allows a wide variety of lighting effects to be implemented. It also permits

a range of primitive shapes that is limited only by the ability of the programmer to write

an algorithm to intersect a ray with the shape. It is considered by many to be the natural

or obvious way to render 3D objects.

Ray tracing works by firing one or more rays from the eye point through each pixel.

The colour assigned to a ray is the colour of the first object that it hits, determined by

the object’s surface properties at the ray-object intersection point, the illumination at

that point, and contributions from any reflection or refraction that occurs at that point.

The colour of a pixel is some average of the colours of all the rays fired through it. The

power of ray tracing lies in the fact that secondary rays are fired from the ray-object

intersection point to determine its exact illumination (and hence colour). This spawning

of secondary rays allows reflection, refraction, and shadowing to be handled with ease.

A simple raytraced image can be seen in Figure 1.

Ray tracing’s big disadvantage is that it is slow. It takes minutes, or hours, to render

a reasonably detailed scene. Ray tracing was first implemented in hardware by a Cam-

bridge company, Advanced Rendering Technologies2, in the late 1990s. The quality of

the images that they can produce is high compared with polygon scan conversion. This

2http://www.artvps.com/
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Figure 2: A ray traced model of a kitchen design.

Figure 3: A close up of the kitchen sink.

is their main selling point. However, ray tracing is so computationally intensive that it

is not possible to produce images at the same speed as hardware assisted polygon scan

conversion. Other researchers are trying to do this by using multiple processors (dozens

to hundreds), but ray tracing will always be slower than polygon scan conversion.

Ray tracing therefore is only used where the visual effects cannot be obtained us-

ing polygon scan conversion. This means that it is, in practice, used by a minority of

movie and television special effects companies, advertising companies, and enthusiastic

amateurs.

1.1.2 Example

The kitchen in Figure 2 was rendered using the ray tracing programRayshade3. Rayshade

has not been updated for over a decade. An alternative ray tracer, which is kept up to

date, is POVray4, with which you may like to experiment. It is worth visiting the POVray

website to see the stunning imagery which has been produced using the ray tracer .

The close-ups of the kitchen scene in Figures 3 and 4 show some of the power of ray

tracing. The kitchen sink reflects the wall tiles. The bench top in front of the kitchen

sink has a specular highlight on its curved front edge. The washing machine door is a

perfectly curved object (impossible to achieve with polygons). The inner curve is part

3http://graphics.stanford.edu/˜cek/rayshade/rayshade .html
4http://www.povray.org/
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Figure 4: Close up views of the washing machine door and the grill on the stove.

Figure 5: A scan converted model of a city (courtesy of Jon Sewell).

of a cone, the outer curve is a cylinder. You can see the floor tiles reflected in the door.

Both the washing machine door and the sink basin were made using computational solid

geometry. The grill on the stove casts interesting shadows (there are two lights in the

scene). This sort of thing is much easier to do with ray tracing than with polygon scan

conversion.

1.1.3 Polygon scan conversion

This term encompasses a range of algorithms where polygons are rendered, normally

one at a time, into a frame buffer. The term scan comes from the fact that an image on

a CRT is made up of scan lines. Examples of polygon scan conversion algorithms are

the painter’s algorithm, the z-buffer, and the A-buffer (see your Part IB lecture notes,

FvDFH chapter 15, or F&vD chapter 15). In this course we will generally assume that

polygon scan conversion refers to the z-buffer algorithm or one of its derivatives, such as

the A-buffer.

The advantage of polygon scan conversion is that it is fast. Polygon scan conversion

algorithms are used in computer games, flight simulators, and other applications where

interactivity is important. To give a human the illusion that they are interacting with
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Figure 6: An SGI O2 computer and components drawn with and without texture maps.

a 3D model in real time, you need to present the human with animation running at

10 frames per second or faster for passive viewing on a monitor, TV, or movie screen.

Research at the University of North Carolina5 has experimentally shown that for im-

mersive virtual reality applications this is not high enough and at least 15 frames per

second is a minimum. Polygon scan conversion is capable of providing this sort of speed.

The NVIDIA6 GeForce8 graphics processing unit (GPU) architecture, for example, has

up to 128 parallel stream processors running at 1.35GHz. It can render up to 36.8 billion

textured pixels per second, and can render scenes containing several million triangles in

real time. While we might hope that scientific or medical applications were considered

important applications of computer graphics, it is the game industry that is driving the

development of graphics card technology.

One problem with polygon scan conversion is that it can only support simplistic light-

ing models, so images do not necessarily look realistic. For example: transparency can

be supported, but refraction requires the use of a texture-mapping technique called “re-

fraction mapping”; reflections can be supported, at the expense of rendering a “reflection

map” before rendering the scene; shadows can be produced using “shadow maps”. All of

these are more complicated methods than those used in ray tracing. Where ray tracing

is a clean and simple algorithm, polygon scan conversion uses a variety of tricks of the

trade to get the desired results. The other limitation of polygon scan conversion is that

it only has a single primitive: the polygon, which means that everything is made up

of flat surfaces. This is especially unrealistic when modelling natural objects such as

humans or animals, unless you use polygons that are no bigger than a pixel, which is

indeed what happens these days. An image generated using a polygon scan conversion

algorithm, even one which makes heavy use of texture mapping, will still tend to look

computer generated.

1.1.4 Examples

Texture mapping is a simple way of making a polygon scan conversion (or a ray tracing)

scene look better without introducing lots of polygons. The images in Figure 6 show a

scene both with and without any texture maps. Obviously this scene was designed to be

viewed with the texture maps turned on. This example shows that texture mapping can

5http://www.cs.unc.edu
6http://www.nvidia.com/
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Figure 7: Left: some floating objects in a simulated environment. Right: a close up of

the red ball showing the reflection of the ball in the shiny floor.

Figure 8: An example of environment mapping: a silvered SGI O2 computer reflecting

an environment map of the interior of a cafe.

make simple geometry look interesting to a human observer.

The images in Figure 7 were generated using polygon scan conversion. Texture map-

ping has been used to make the back and side walls more interesting. All the objects

are reflected in the floor. This reflection is achieved by duplicating all of the geometry,

upside-down, under the floor, and making the floor partially transparent. The close-up

shows the reflection of the red ball, along with a circular “shadow” of the ball. This

shadow is, in fact, a polygonal approximation to a circle drawn on the floor polygon and

bears no relationship to the lights whatsoever. You may need to look at the version of

these images on the Lab’s website to see the images more clearly and in colour.

Environment mapping (Figure 8) is another clever idea which makes polygon scan

conversion images look more realistic. In environment mapping we have a texture map
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Figure 9: Screen shots from commercial flight simulators (circa 1995).

of the environment which can be thought of as wrapping completely around the entire

scene (you could think of it as six textures on the six inside faces of a big box). The

environment map itself is not drawn, but if any polygon is reflective then the normal to

the polygon is found at each pixel (this normal is needed for Gouraud shading anyway)

and from this, and a vector pointing to the eye, the appropriate point (and therefore

colour) on the environment map can be located. You may note that finding the correct

point on the environment map is actually a simple (and easily optimised) piece of ray

tracing.

1.1.5 Line drawing

An alternative to the above methods is to draw the 3D model as a wire frame outline.

This is obviously unrealistic, but is useful in particular applications. The wire frame

outline can be either see through or hidden lines can be removed (FvDFH section 15.3

or F&vD section 14.2.6). In general, the lines that are drawn will be the edges of the

polygons which would be drawn by a polygon scan conversion algorithm.

Line drawing was historically faster than polygon scan conversion. However, mod-

ern graphics cards can handle both lines and polygons at about the same speed. Line

drawing of 3D models is used in Computer Aided Design (CAD) and in 3D model design.

The software which people use to design 3D models tends to use line drawing in its user

interface with polygon scan conversion providing preview images of the model. I find it

interesting that, whenR&A was first written in 1976, the authors had only line drawing

algorithms with which to illustrate their 3D models. Only one figure in the entire book

did not use exclusively line drawing: Fig. 6-52, which had screen shots of a prototype

polygon scan conversion system. Technology has moved on enormously since then.

1.1.6 Applications of computer graphics

Visualisation generally does not require realistic looking images. In science we are usu-

ally visualising complex three dimensional structures, such as protein molecules, which

have no “realistic” visual analogue. In medicine we generally prefer an image that helps

in diagnosis over one which looks beautiful. Polygon scan conversion is therefore nor-

mally used in visualisation (although some data require voxel rendering).
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Figure 10: The real cockpit of a commercial flight simulator: an exact replica of the

equivalent airplane’s cockpit.

Simulation uses polygon scan conversion because it can generate images at interac-

tive speeds. At the high (and very expensive) end a great deal of computer power is used.

In 1990, the most expensive flight simulators (those with full hydraulic suspension and

other fancy stuff) cost about £10M, of which £1M went on the graphics kit. Similar ren-

dering power is available today on a graphics card which costs a hundred pounds and fits

in a PC. Figure 9 shows screen shots from two commercial flight simulators in the mid-

1990s; Figure 10 shows the simulator’s cockpit, which is an exact physical replica of the

cockpit on a real aircraft. Although the cost of the graphics has dropped dramatically,

the cost of the physical kit has not.

3D games (for example Quake7 and Unreal8) use polygon scan conversion because it

gives interactive speeds. A lot of other “3D” games (for example SimCity9, Civilisation,

Diablo10) use pre-drawn sprites (small images) which they simply copy to the appropri-

ate position on the screen. This essentially reduces the problem to an image compositing

operation, requiring much less processor time. The sprites can be hand drawn by an

artist or created in a 3D modelling package and rendered to sprites in the company’s

design office. Donkey Kong Country (mid-1990s), for example, was the first game to use

sprites which were ray traced from 3D models.

7http://www.idsoftware.com/games/quake/quake3-gold/
8http://www.unreal.com
9http://www.simcity.com/
10http://www.blizzard.com/diablo2/
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You may have noticed that the previous sentence is the first mention of ray tracing

in this section. It transpires that the principal uses of ray tracing, in the commercial

world, are in producing a small quantity of super-realistic images for advertising and in

producing a small proportion of the special effects for film and television. Despite what

you may have expected, most special effects are done using sophisticated polygon scan

conversion algorithms.

The first movie to use 3D computer graphics was Star Wars11 [1977]. Graphics were

not used for the space ships , animals or sets, however. You may recall that there were

some line drawn computer graphics toward the end of the movie in the targeting inter-

fere on the X-wing fighter. All of the spaceship shots, and all of the other fancy effects,

were done using models, mattes (hand-painted backdrops), and hand-painting on the

actual film. Computer graphics technology has progressed incredibly since then. The

twenty-fifth anniversary re-release25th of the Star Wars trilogy included a number of
computer graphic enhancements, all of which were composited into the original movie.

Twenty years on we saw computer graphics effects of the kind found in movies such

as the (rather bloodythirsty) Starship Troopers12 [1997]. Most of the giant insects in

the movie are completely computer generated. The spaceships are a combination of

computer graphic models and real models. The largest of these real models was 18’ (6m)

long: so it was obviously still worthwhile spending a lot of time and energy on the real

thing.

Special effects are not necessarily computer generated. Compare King Kong [1933]13

with King Kong [2005]14. The plot has barely changed, but the special effects have

improved enormously: changing from hand animation (and a man in a monkey suit) to

swish computer generated imagery. Not every special effect you see in a modern movie

is computer generated. In Starship Troopers, for example, the explosions are real. They

were set off by a pyrotechnics expert against a dark background (probably the night

sky), filmed, and later composited into the movie. In Titanic15 [1997] the scenes with

actors in the water were shot in the warm Gulf of Mexico. In order that they look as if

they were shot in the freezing North Atlantic, cold breaths had to be composited in later.

These were filmed in a cold room over the course of one day by a special effects studio.

Film makers obviously need to balance quality, ease of production, and cost. They will

use whatever technology gives them the best trade off. This is increasingly computer

graphics, but computer graphics is still not useful for everything by quite a long way.

In the three Lord of the Rings movies16, almost anything which could be shot in live

action was shot this way. Computer graphics were used only where they were easier

or cheaper or the only feasible way to do something. For example, in Return of the

King, the lava was originally to be produced by computer graphics simulation. When

the results were found to be not realistic enough, some of the shots were re-done using

real gunk flowing down a real model of a mountainside. Helms Deep, in The Two Towers,

consisted of some computer graphics, a small-scale model of the whole thing, a quarter-

scale model of the wall and citadel and a full-scale model of parts of the citadel for real

11http://www.starwars.com/
12http://www.imdb.com/title/tt0120201/
13http://www.imdb.com/title/tt0024216/
14http://www.imdb.com/title/tt0360717/
15http://www.titanicmovie.com/
16http://www.lordoftherings.net/
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actors to perform on. Compositing all the component of any given shot is an interesting

image processing task. In a typical movie, each frame (at 24 frames per second) will have

anything from twenty to over a hundred separate elements which need to be composted

to make the final image.

Completely computer-generated movies have been with us for over a decade. Toy

Story17 [1995] was the world’s first feature length computer generated movie. Two more

were released in 1998 (A Bug’s Life18 [1998] and Antz19 [1998]). These were followed by

Toy Story 220 [1999], Dinosaur [2000], Shrek21 [2001], Monsters Inc22 [2001], Ice Age23

[2002], Finding Nemo [2003], and Shrek 2 [2004]. The genre is now well established and

there are several recent examples, with more in the pipeline. Note the subject matter

of these movies (toys, bugs, dinosaurs, monsters, sea life, fairytale characters). It is

still very difficult to model humans realistically and much research is being undertaken

in the field of realistic human modelling. Final Fantasy24 [2001] was the first serious

attempt to represent fully human characters in a fully computer-generated movie.

1.1.7 Polygon scan conversion or ray tracing for special effect?

While ray tracing gives a better range of lighting effects than polygon scan conversion,

we usually get acceptable results with polygon scan conversion through the use of tech-

niques such as environment mapping and the use of enormous numbers of tiny poly-

gons. The special effects industry still dithers over whether to jump in and use ray

tracing. Many special effects are done using polygon scan conversion, with maybe a bit

of ray tracing for special things (giving a hybrid ray tracing/polygon scan conversion

algorithm).

Toy Story [1995], for example, used Pixar’s proprietary polygon scan conversion algo-

rithm. It took between one and three hours to render each frame (these frames have a

resolution of 1526×922 pixels) and over 800,000 CPU hours were absorbed in the making
of the movie (roughly a CPU century). More expensive algorithms can be used in less

time if you are rendering for television (I estimate that about one sixth of the pixels are

needed compared to a movie) or if you are only rendering a small part of a big image for

compositing into live action.

At the ACM SIGGRAPH25 conference in 1998 I had the chance to hear about the

software that some real special effects companies were using. Two of these companies

used ray tracing and two were pretty happy using polygon scan conversion.

BlueSky—ViFX Ray traced everything using CGI-Studio.

Digital Domain26 Used ray tracing provided by commercial software, except when

17http://www.pixar.com/featurefilms/ts/index.html
18http://www.pixar.com/featurefilms/abl/index.html
19http://www.imdb.com/title/tt0120587/
20http://www.pixar.com/featurefilms/ts2/index.html
21http://www.shrek.com/
22http://www.pixar.com/featurefilms/inc/index.html
23http://www.iceagemovie.com/
24http://www.imdb.com/title/tt0173840/
25http://www.siggraph.org/
26http://www.d2.com/
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the commercial software cannot do what they want. Used MentalRay27 on Fifth

Element [1997]; used Alias28 models (NURBS) passed to Lightwave29 (polygons)

for one advertisement; used MentalRay30 plus Renderman31 for another advertise-

ment.

Rhythm + Hues32 Used a proprietry renderer, which was about ten years old in 1998.

It has been rewritten many times. They made only limited use of ray tracing.

Station X Used Lightwave33 plus an internally developed renderer which is a hybrid

between ray tracing and z-buffer.

At Eurographics 2002 and SIGGRAPH 2002, it was apparent that little had changed

over the intervening four years: the computers had got faster and artists were producing

more detailed work but polygon scan conversion is still the technology of choice for al-

most all commercial applications of computer graphics. Eight years further on, polygon

scan conversion is still the algorithm of choice.

1.2 Exercises

1. Compare and contrast the capabilities and uses of ray tracing and polygon scan

conversion.

2. In what circumstances is line drawing more useful than either ray tracing or poly-

gon scan conversion.

3. (a) When is realism critical? (b) Give 5 examples of applications where different

levels of visual realism are necessary and explain what sort of rendering is needed

for each and why.

4. “The quality of the special effects cannot compensate for a bad script.” Discuss with

reference to movies that you have seen.

2 The polyyon

2.1 Polygon mesh management

In order to do polygon scan conversion or line drawing we need to know how to handle

polygon meshes.

27http://www.mentalray.com/
28http://www.aliaswavefront.com/
29http://www.newtek.com/
30http://www.mentalray.com/
31http://www.pixar.com/renderman/
32http://www.rhythm.com/
33http://www.newtek.com/
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2.1.1 Drawing polygons

In order to draw a polygon, you obviously need to know its vertices. To get the shading

correct you also need to know its normal. The direction of the normal tells you which

side is the front of the polygon and which is the back. Many systems assume one-sided

polygons: the front side is shaded and the back side either is coloured matt grey or black

or is not even considered. This is sensible if the polygon is part of a closed polyhedron.

In many applications, all objects consist of closed polyhedra; but you cannot guarantee

that this will always be the case, which means that you will get unexpected results if the

back sides of polygons are actually visible on screen.

The normal vector does not need to be specified independently of the polygon’s ver-

tices because it can be calculated from the vertices. As an example: assume a poly-

gon has three vertices, A, B and C. The normal vector can be calculated as: N =
(C − B) × (A − B).

Any three adjacent vertices in a polygon can be used to calculate the normal vector

but the order in which the vertices are specified is important: it changes whether the

vector points up or down relative to the polygon. In a right-handed co-ordinate system

the three vertices must be specified anti-clockwise round the polygon as you look down

the desired normal vector (i.e. as you look at the front side of the polygon). If there are

more than three vertices in the polygon, they must all lie in the same plane, otherwise

the shape will not be a polygon.

Thus, for drawing purposes, we need to know only the vertices and surface properties

of the polygon. The vertices naturally give us both edge and orientation information.

The surface properties are such things as the specular and diffuse colours, and details of

any texture mapping which may be applied to the polygon. These things are generally

specified at the vertices (diffuse colour, specular colour, texture co-ordinates) for use in

Gouraud or Phong shading.

2.1.2 Interaction with polygon mesh data

The above is fine for drawing but, if you wish to manipulate the polygon mesh (for ex-

ample, in a 3D modelling package), then it is useful to know quite a lot more about the

connectivity of the mesh. For example: if you want to move a vertex, which is shared by

four polygons, you do not want to have to search through all the polygons in your data

structure trying to find the ones which contain a vertex which matches your vertex data,

you want some data structure which allows easy access to the relevant information.

The various versions of the winged-edge data structure are particularly useful for

handling polygon mesh data. The version shown in Figure 11 contains explicit links

for all of the relationships between vertices, edges and polygons, thus making it easy to

find, for example, which polygons are attached to a given vertex, or which polygons are

adjacent to a given polygon (by traversing the edge list for the given polygon, and finding

which polygon lies on the other side of each edge).

The vertex object contains the vertex’s co-ordinates, a pointer to a list of all edges

of which this vertex is an end-point, and a pointer to a list of all polygons of which the

vertex is a vertex. It also has a pointer to the vertex’s surface properties (such as colour

and texture coordinates).

The polygon object contains (a pointer to) the polygon’s surface property information
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Figure 11: One version of the winged edge data structure.

(such as its texture map), a pointer to a list of all edges which bound this polygon, and a

pointer to an ordered list of all vertices of the polygon.

The edge object contains pointers to its start and end vertices, and pointers to the

polygons which lie to the left and right of it.

Figure 11 shows just one possible implementation of a polygon mesh data struc-

ture. FvDFH section 12.5.2 describes another winged-edge data structure which con-

tains slightly less information, and therefore requires more accesses than the one shown

here to find certain pieces of information. The implementation that would be chosen de-

pends on the needs of the particular application which is using the data structure. The

trade-off is between ease of extracting information and ease of updating the data struc-

ture. F&vD section 13.2 and SSC pp. 170–172 also contain some information on polygon

meshes.

In general, we will want a polygon mesh to form a manifold surface. This is where

the surface is what a human would naturally think of as a surface, without any three-

way joins or other peculiar features; a surface which you could flatten onto a plane given

sufficiently many cuts and a bit of stretching here and there. Mathematically, a manifold

surface is where the neighbourhood of every point is topologically equivalent to a disc

(except at the edges of the manifold, where it is topologically equivalent to a half disc).

The principal upshot of this is that each edge in the polygon mesh can be the edge of

either one or two polygons, no more and no less.
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2.2 Hardware polygon scan conversion quirks

A piece of polygon scan conversion hardware, such as the Silicon Graphics34 Reality

Engine or the NVIDIA35 GeForce family of graphics cards, has generally consisted of a

geometry engine and a rendering engine. The geometry engine will handle the transfor-

mations of all vertices and normals, and some of the shading calculations. The rendering

engine will implement the polygon scan conversion algorithm on the transformed data.

Modern graphics cards allow for user programming in both the geometry and rendering

engine. Machine instructions are provided for the usual operations (addition, multipli-

cation), and also for such necessary things as taking the dot product of two vectors. The

geometry and rendering engines both have multiple copies of the same hardware to al-

low for multiple vertices and polygons to be processed in parallel. These are generally

built with a SIMD (single instruction, multiple data) parallel processor architecture.

The architecture is optimised for processing graphics, so the user is somewhat limited is

what he or she can program. However, the most recent graphics cards allow for a good

deal of flexibility. Early generations of cards allowed a limited number of instructions.

For example, the NVIDIA GeForce 3 card (2001) had a maximum of 256 instructions in

the whole program, no more than twelve working registers, no jumps or loops, no ac-

cess to general memory. The latest NVIDIA GeForce 8 cards (2007) have thousands of

registers and allow up thousands of instructions, with jumps and loops. The introduc-

tion of jumps and loops causes interesting issues with the SIMD architecture, requiring

different pipes to be able to chose whether or not to execute any given instruction.

To give you an idea of the complexity which is possible, on the GeForce4 generation of

NVIDIA cards (2002), the information that is passed to the geometry engine, for a single

vertex, is position, weight, normal, primary and secondary colour, fog coordinate, and

eight texture coordinates; all sixteen of these are floating-point four-component vectors.

The output from the geometry engine is homogeneous clip space position, primary and

secondary colours for front and back faces of the polygon, fog coordinate, point size, and

texture coordinate set; where they are all again floating-point four-component vectors

except for the output fog coordinate and the point size36. Both geometry and rendering

engines have read access to the texture buffers. Graphics cards are now so powerful

that they are being used as general purpose co-processors for a variety of mathematics-

intense computation tasks, using texture buffers for storing intermediate results.

The latest (2007) generations of NVIDIA GeForce graphics cards (the GeForce 8 fam-

ily) and ATI chips (the Xenos chip used in the Xbox 360) have progressed (or reverted?)

to a unified shader model of processing, where any processor can handle either the ge-

ometry processing or the pixel processing. This allows more efficient distribution of the

processing load as appropriate to the objects being rendered on the screen.

2.2.1 Triangles only

When making a piece of hardware to render a polygon, it is much easier to make the

hardware handle a fixed number of vertices per polygon, than a variable number. Most

34http://www.sgi.com
35http://www.nvidia.com/
36You are not expected to remember all of these input and output registers, but they give you an idea of

the complexity of the processing which can go on inside a graphics card.
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Figure 12: Left: a triangle strip set. Right: a triangle fan set.

hardware implementations thus implement only triangle drawing. This is not a serious

drawback. Polygons with more vertices are simply split into triangles.

2.2.2 The triangle strip set and triangle fan set

In addition to simple triangle drawing, rendering hardware may also implement either

or both of the triangle strip set and triangle fan set to speed up processing through

the geometry engine (see Figure 12. Each triangle in the set has two vertices in common

with the previous triangle. Each vertex is transformed only once by the geometry engine,

giving a factor of three speed up in geometry processing.

For example, assume we have trianglesABC,BCD,CDE andDEF. In naı̈ve triangle

rendering, the vertices would be sent to the geometry engine in the order ABC BCD

CDE DEF; each triangle’s vertices being sent separately. With a triangle strip set the

vertices are sent as ABCDEF; the adjacent triangles’ vertices overlapping.

A triangle fan set is similar. In the four triangle case we would have triangles ABC,

ACD, ADE and AEF. The vertices would again be sent just as ABCDEF. It is obviously

important that the rastering engine be told whether it is drawing standard triangles or

a triangle strip set or a triangle fan set.

2.2.3 The vertex cache

The triangle strip and fan sets work because there is a vertex cache which can hold

all the relevant data about two vertices. Around 2000, a vertex cache was introduced

to graphics cards. On the NVIDIA family of cards, the initial version held the twenty

most recently used vertices, hence obviating the need to be explicitly specify fan sets and

strip sets, although you still need to send the triangles to the card in some reasonably

coherent order and you do need to let the graphics card know that the triangles form

a set with the same surface properties. You also need to index the vertices so that you

refer to each by its index rather than by sending the (x, y, z) coordinates again.

2.3 Exercises

1. Calculate both surface normal vectors (left-handed and right-handed) for a triangle

with points (1, 1, 0), (2, 0, 1), (-1, -2, -1).
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2. Confirm that the following statements provide a definition of a polygon mesh which

represents a manifold surface:

(a) A vertex belongs to at least two edges.

(b) A vertex is a vertex of at least one polygon.

(c) An edge has exactly two end points.

(d) An edge is an edge of either one or two polygons.

(e) A polygon has at least three vertices.

(f) A polygon has at least three edges.

3. Work out the algorithm that is required to modify a winged-edge data structure

when an edge is split. You may ignore surface property information for the poly-

gons and you may assume that the edge that is split is split exactly in half. The

algorithm could by called by the function call:

split_edge( vertex_list v, edge_list e,
polygon_list p, edge edge_to_split )

where the winged-edge data structure is made up of the three linked lists of objects

(vertices, edges, and polygons).

4. [2002/7/9]Describe the situations in which it is sensible to use a winged-edged data
structure to represent a polygon mesh and, conversely, the situations in which a

winged-edged data structure is not a sensible option for representing a polygon

mesh. What is the minimum information which is required to successfully draw a

polygon mesh using Gouraud shading? [4 marks]

3 Introduction to splines

While the above primitives allow us to specify particular types of curved surface, we find

ourselves in need of some more general way of specifying arbitrary curved surfaces. We

want some mechanism which allows us to specify any smooth curved surface which we

desire. This problem was first faced in the 1960s for the design of aeroplanes and cars.

We will look at three solutions: Bézier surfaces, B-spline surfaces (including NURBS)

and subdivision surfaces. It transpires that one of the most important problems is get-

ting different patches of surface to connect together smoothly, that is: with continuity

of position (C0), slope (C1) and curvature (C2). These are continuity of the function, its
first and its second derivatives, respectively. Much of the ensuing discussions consider

how to achieve such continuity.

The course handout contains a slide presentation introducing the concepts in this

part of the course.

4 Bézier curves

Bézier curves were covered in the Part IB Computer Graphics and Image Processing

course. This section gives some of the mathematical details, as does R&A Section 5-8.

Parts of this Section of R&A are included in the handout.
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If you want to experiment with Bézier curves then there are a number of on-line

tutorials. One such is available from the Technion in Israel37.

A Bézier curve is a weighted sum of n + 1 control points, P0,P1, . . . ,Pn, where the

weights are the Bernstein polynomials:

P(t) =
n
∑

i=0

(

n
i

)

(1 − t)n−itiPi, 0 ≤ t ≤ 1 (1)

The Bézier curve of order n + 1 (degree n) has n + 1 control points. Below are the first
three orders of Bézier curve definitions.

linear P(t) = (1 − t)P0 + tP1 (2)

quadratic P(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2 (3)

cubic P(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3 (4)

4.1 Ways of thinking about Bézier curves

There are several useful ways in which you can think about Bézier curves. Here are the

ones that I use.

Linear interpolation. Equation 2 is obviously a linear interpolation between two points.

Equation 3 can be rewritten as a linear interpolation between linear interpolations

between points:

P(t) = (1 − t)[(1 − t)P0 + tP1] + t[(1 − t)P1 + tP2] (5)

Equation 4 can be rewritten as a linear interpolation between linear interpolations

between linear interpolations between points. This is left as an exercise for the

reader.

Weighted average. A Bézier curve can be seen as a weighted average of all of its con-

trol points. Because all of the weights are positive, and because the weights sum

to one, the Bézier curve is guaranteed to lie within the convex hull of its control

points.

Refinement of the control polygon. A Bézier curve can be seen as some sort of re-

finement of the polygon made by connecting its control points in order. The Bézier

curve starts and ends at the two end points and its shape is determined by the rel-

ative positions of the n − 1 other control points, although it will generally not pass
through any of these other control points. The tangent vectors at the start and end

of the curve pass through the end point and the immediately adjacent point.

Rogers and Adams list the properties of the Bézier curve on page 291.

37http://www.cs.technion.ac.il/˜cs234325/Homepage/App lets/applets/bezier/html/
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4.2 Continuity

You should note that each Bézier curve is independent of any other Bézier curve. If we

wish two Bézier curves to join with any type of continuity, then we must explicitly posi-

tion the control points of the second curve so that they bear the appropriate relationship

with the control points in the first curve.

Any Bézier curve is infinitely differentiable within itself, and is therefore continu-

ous to any degree (Cn-continuous, ∀n). We therefore only need concern ourselves with
continuity across the joins between curves. Assume that we have two Bézier curves of

the same order: P(t), defined by (P0,P1, . . . ,Pn), and Q(t), defined by (Q0,Q1, . . . ,Qn).
C0-continuity (continuity of position) can be achieved by setting P(1) = Q(0). This gives
a formula for Q0 in terms of the Pis:

Q0 = Pn. (6)

Similarly for C1-continuity, we need C0-continuity and P′(1) = Q′(0), giving:

Q1 − Q0 = Pn − Pn−1 (7)

Combining Equations 7 and 6 gives a formula for Q1 in terms of the Pis:

Q1 = 2Pn − Pn−1 (8)

= Pn + (Pn − Pn−1) (9)

Continuing in this vein, we find that the requirements forC2-continuity (i.e. C1-continuity

and P′′(1) = Q′′(0)) give:

Q2 − 2Q1 + Q0 = Pn − 2Pn−1 + Pn−2 (10)

Combining Equations 10, 7, and 6 gives a formula for Q2 in terms of the Pis:

Q2 = 4Pn − 4Pn−1 + Pn−2 (11)

= Pn−2 + 4(Pn − Pn−1) (12)

4.3 Bézier surfaces

We learnt in the IB course that the simplest way to construct a Bézier surface is as the

tensor product of Bézier curves. A tensor product Bézier surface of order n + 1 is defined
by (n + 1)2 control points. It is called a Bézier patch.

P(s, t) =
n
∑

i=0

(

n
i

)

(1 − s)n−isi
n
∑

j=0

(

n
j

)

(1 − t)n−jtjPi,j (13)

You can think about this as moving the control points of one Bézier curve along a set of

Bézier curves to sweep out a surface. Continuity across a boundary between two Bézier

patches is only guaranteed if each of the Bézier curves across the join obey the curve

continuity conditions. Again, this was covered in the IB course.
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4.4 Exercises

1. Explain what C0-, C1-, C2-, Cn-continuity mean.

2. Derive the constraints on control point positions which ensure that two quartic

Bézier curves join with (a) C0-continuity, (b) C1-continuity, and (c) C2-continuity.

5 B-splines

B-splines are covered in some detail below and also in R&A Section 5-9. Parts of this

Section of R&A are included in the handout. Beware that none of the worked examples

are in the handout. These may come in useful, and you will need to get hold of a real

copy of R&A if you wish to work your way through them.

B-splines are a more general type of curve than Bézier curves. In a B-spline each

control point is associated with a basis function,Ni,k.

P(t) =
n+1
∑

i=1

Ni,k(t)Pi, tmin ≤ t < tmax (14)

There are n + 1 control points, P1,P2, . . . ,Pn+1. The Ni,k basis functions are of order k
(degree k − 1). k must be at least 2 (linear), and can be no more than n + 1 (the number
of control points). The important point here is that the order of the curve (2 [linear],

3 [quadratic], 4 [cubic],. . . ) is therefore not dependent on the number of control points

(which it is for Bézier curves, where k must always equal n + 1).

Equation 14 defines a piecewise continuous function. The Ni,k are defined by a knot

vector, (t1, t2, . . . , tk+(n+1)), must be specified. This determines the values of t at which
the pieces of curve join, like knots joining bits of string. It is necessary that:

ti ≤ ti+1,∀i (15)

The Ni,k depend only on the value of k and the values, ti, in the knot vector. Ni,k is

defined recursively as:

Ni,1(t) =

{

1, ti ≤ t < ti+1

0, otherwise

Ni,k(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t) (16)

This is essentially a modified version of the idea of taking linear interpolations of linear

interpolations of linear interpolations. . .

At this point it would be instructive for you to work out N1,1, N2,1, N3,1, N1,2, N2,2,

N1,3 for the knot vector [0, 2, 3, 6]. It helps if you draw the graphs for these functions.

There are several things that you should note about these equations. Each Ni,k(t)
depends only on the k + 1 knot values from ti to ti+k. Ni,k(t) = 0 for t < ti or t ≥ ti+k so

Pi only influences the curve for ti ≤ t < ti+k. Formally, P(t) is a polynomial of order k
(degree k − 1) on each interval ti ≤ t < ti+1. Across the knots P(t) is Ck−2-continuous.

P(t) is, of course, continuous in all its derivatives between the knots. A weighted sum of
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points only makes sense if the weights sum to one. P(t) is therefore validly defined only
where

n+1
∑

i=1

Ni,k(t) = 1. (17)

This is the range tmin ≤ t < tmax where tmin = tk and tmax = tn+2. Even more properties

of B-splines are described in Rogers and Adams pp. 306–7.

5.1 The knot vector

The above explanation shows that the knot vector is very important. The knot vector

can, by its definition, be any sequence of numbers provided that each one is greater than

or equal to the preceding one. Some types of knot vector are more useful than others.

Knot vectors are generally placed into one of three categories: uniform, open uniform,

and non-uniform.

Uniform. These are knot vectors for which

ti+1 − ti = constant,∀i (18)

For example:

[1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5,−1.4,−0.3, 0.8, 1.9, 3.0]

All of the basis functions are just shifted versions of one another and so the imple-

mentation is very easy.

Open Uniform. These are uniform knot vectors which have k equal knot values at each
end:

ti = t1, i ≤ k
ti+1 − ti = constant, k ≤ i < n + 2

ti = tk+(n+1), i ≥ n + 2
(19)

For example:

[0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1, 1, 1, 2, 3, 4, 5, 6, 6, 6] (k = 3)
[0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)

This is essentially just a simple modification to the uniform case which allows the

curve to go through its two end points.

Non-uniform. This is the general case, the only constraint being the standard ti ≤
ti+1,∀i (Equations 15). For example:

[1, 3, 7, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]
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The shapes of the Ni,k basis functions are determined entirely by the relative spacing

between the knots. Scaling (t′i = αti,∀i) or translating (t′i = ti + ∆t,∀i) the knot vector
has no effect on the shapes of the Ni,k nor on the shape of the actual curve P(t).

The above gives a description of the various types of knot vector but it doesn’t really

give you any insight into how the knot vector determines the shape of the curve. The

following subsections look at the different types of knot vector in more detail. However,

the best way to get to feel for these is to derive and draw the basis functions yourself.

5.1.1 Uniform knot vector

For simplicity, let ti = i (this is allowable given that the scaling or translating the
knot vector has no effect on the shapes of the Ni,k). The knot vector thus becomes

[1, 2, 3, . . . , k + (n + 1)] and Equation 16 simplifies to:

Ni,1(t) =

{

1, i ≤ t < i + 1
0, otherwise

Ni,k(t) =
t − i

k − 1
Ni,k−1(t) +

i + k − t

k − 1
Ni+1,k−1(t) (20)

You should be easily able to graph the first few of these for yourself. The principle thing

to note about the uniform basis functions is that, for a given order k, the basis functions
are all simply shifted versions of one another. See Rogers and Adams Figure 5-36.

5.1.2 Things you can change about a uniform B-spline

With a uniform B-spline, you obviously cannot change the basis functions (they are fixed

because all the knots are equispaced). However you can alter the shape of the curve by

modifying a number of things:

Moving control points. Moving the control points obviously changes the shape of the

curve.

Multiple control points. Sticking two adjacent control points on top of one another

causes the curve to pass closer to that point. Stick enough adjacent control points

on top of one another and you can make the curve pass through that point (Rogers

and Adams, Figure 5-45).

Order. Increasing the order k increases the continuity of the curve at the knots, in-
creases the smoothness of the curve, and tends to move the curve farther from its

defining polygon. (Rogers and Adams, Figure 5-44).

Joining the ends. You can join the ends of the curve to make a closed loop. Say you

have M points, P1, . . . ,PM . You want a closed B-spline defined by these points.

For a given order, k, you will need M + (k − 1) control points (repeating the first
k − 1 points): P1, . . . ,PM ,P1, . . . ,Pk−1. Your knot vector will thus haveM + 2k − 1
uniformly spaced knots.
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5.1.3 Open uniform knot vector

The previous section intimated that uniform B-splines can be used to describe closed

curves: all you have to do is join the ends as described above. If you do not want a closed

curve, and you use a uniform knot vector, you find that you need to specify control points

at each end of the curve which the curve doesn’t go near (e.g. Rogers and Adams, Figure

5-44, the order 4 curve).

If you wish your B-spline to start and end at your first and last control points then

you need an open uniform knot vector (e.g. Rogers and Adams, Figure 5-41). The only

difference between this and the uniform knot vector being that the open uniform version

has k equal knots at each end.

An order k open uniform B-spline with n+1 = k points is the Bézier curve of order k.
It would be a useful exercise for you to prove this for k = 3. For ease of calculation take
the knot vector to be [0, 0, 0, 1, 1, 1].

5.1.4 The difference between uniform and open uniform

It may help, at this stage, to compare a particular uniform and an equivalent open

uniform knot vector. This is a uniform knot vector for n + 1 = 7, k = 3:

1 2 3 4 5 6 7 8 9 10P1

P2

P3

P4

P5

P6

P7

overall

The lines show the range of t over which each Pi is non-zero. The B-spline itself (the

overall line in the diagram) is defined over the range t3 ≤ t < t8, i.e. over the range
3 ≤ t < 8.

By comparison an open uniform knot vector for n + 1 = 7, k = 3 is:

1 1 1 2 3 4 5 6 6 6P1

P2

P3

P4

P5

P6

P7

overall

The B-spline itself is defined over the range t3 ≤ t < t8, i.e. over the range 1 ≤ t < 6. By
the definition of a open uniform knot vector t3 = t1 and t8 = t10 and so an open uniform
B-spline is defined over the full range of t from t1 to tk + n + 1.
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5.1.5 Non-uniform knot vector

Any B-spline whose knot vector is neither uniform nor open uniform is non-uniform.

Non-uniform knot vectors allow any spacing of the knots, including multiple knots (ad-

jacent knots with the same value). We need to know how this non-uniform spacing

affects the basis functions in order to understand where non-uniform knot vectors could

be useful. It transpires that there are only three cases of any interest: (1) multiple

knots (adjacent knots equal); (2) adjacent knots more closely spaced than the next knot

in the vector; and (3) adjacent knots less closely spaced than the next knot in the vector.

Obviously, case (3) is simply case (2) turned the other way round.

Multiple knots. A multiple knot reduces the degree of continuity at that knot value.

Across a normal knot the continuity is Ck−2. Each extra knot with the same value

reduces continuity at that value by one. This is the only way to reduce the conti-

nuity of the curve at the knot values. If there are k − 1 (or more) equal knots then
you get a discontinuity in the curve.

Close knots. As two knots’ values get closer together, relative to the spacing of the

other knots, the curve moves closer to the related control point.

Distant knots. As two knots’ values get further apart, relative to the spacing of the

other knots, the curve moves further away from the related control point.

5.1.6 Use of non-uniform knot vectors

Standard procedure is to use uniform or open uniform B-splines unless there is a very

good reason not to do so. Moving two knots closer together tends to move the curve only

slightly and so there is usually little point in doing it. This leads to the conclusion that

the main use of non-uniform B-splines is to allow for multiple knots, which adjust the

continuity of the curve at the knot values.

However, non-uniform B-splines are the general form of the B-spline because they in-

corporate open uniform and uniform B-splines as special cases. Thus we will talk about

non-uniform B-splines when we mean the general case, incorporating both uniform and

open uniform.

5.1.7 What can you do to control the shape of a B-spline?

• Move the control points.

• Add or remove control points.

• Use multiple control points.

• Change the order, k.

• Change the type of knot vector.

• Change the relative spacing of the knots.

• Use multiple knot values in the knot vector.
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5.1.8 What should the defaults be?

If there are no pressing reasons for doing otherwise, your B-spline should be defined as

follows:

• k = 4 (cubic);

• no multiple control points;

• uniform (for a closed curve) or open uniform (for an open curve) knot vector.

5.2 B-spline patches

We generalise from B-spline curves to B-spline surfaces in the same way as we did for

Bézier patches. Take a tensor product of two versions of Equation 14.

P(s, t) =
m+1
∑

i=1

n+1
∑

j=1

Pi,jNi,k(s)Nj,l(t), smin ≤ s < smax, tmin ≤ t < tmax (21)

where it is usual for the patch to have the same order (i.e. k = l) in both directions.
Patches are thus defined by a quadrilateral grid of control points of size (m+1)× (n+1).

5.3 Why B-splines?

B-splines have many nice properties when compared to other families of curves which

could be used. They:

• minimise the order of the polynomial pieces (order k)

• maximise the continuity between pieces (continuity C(k − 2))

• minimise the number of control points controlling a piece (k points)

• have positive basis functions

• have basis functions which partition unity, implying that each piece lies inside its
control points’ convex hull

• are invarient with respect to affine transforms

5.4 Exercises

1. How many control points are required for a quartic Bézier and how many for a

quartic B-spline?

2. Why are cubics the default for B-spline use?

3. Explain the difference between Uniform, Open Uniform, and Non-Uniform knot

vectors. What are the advantages of each type?
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4. [2000/9/4] (b) A non-rational B-spline has knot vector [1, 2, 4, 7, 8, 10, 12]. Derive the
first of the third order (second degree) basis functions, N1,3(t), and graph it.
If this knot vector were used to draw a third order B-spline, how many control

points would be required? [7 marks]

5. [2001/8/4] (a) For a given order, k, there is only one basis function for uniform B-
splines. Every control point uses a shifted version of that one basis function. How

many different basis functions are there for open-uniform B-splines of order k with
n + 1 control points, where n >= 2k − 3? [6 marks]
(b) Explain what is different in the cases where n < 2k−3 compared with the cases
where n >= 2k − 3. [3 marks]
(c) Sketch the different basis functions for k = 2 and k = 3 (when n >= 2k − 3). [4
marks]

(d) Show that the open-uniform B-spline with k = 3 and knot vector [0, 0, 0, 1, 1, 1]
is equivalent to the quadratic Bézier curve. [7 marks]

6. [2002/7/9] (d) Derive the formula of and sketch a graph of N3,3(t), the third of the
quadratic B-spline basis functions, for the knot vector [0, 0, 0, 1, 3, 3, 4, 5, 5, 5]. [6
marks]

5.5 NURBS

NURBS are covered below and in some detail in R&A Section 5-13. Parts of this Section

of R&A are included in the handout.

Non-uniform rational B-splines are the curves that are currently used in any graph-

ics application that requires curves and surfaces with more functionality than Bézier

curves can offer. In most cases, you would actually use the special case of non-rational

B-splines (those described in the previous section) but it is useful to have the more gen-

eral rational versions available for certain types of curve and surface. In addition to

the features listed above for B-splines, NURBS are invariant with respect to perspective

transforms.

NURBS are generally rendered by converting them to lots of small polygons and then

using polygon scan conversion. They can also by ray traced, but a general analytic ray-

NURBS intersection algorithm is a nightmare, so numerical techniques are used to find

the intersection point.

NURBS curves incorporate – as special cases – uniform B-splines, non-rational B-

splines, Bézier curves, lines, and conics. NURBS surfaces incorporate planes, quadrics,

and tori. Note that this does not quite mean what it says. It is tricky to get NURBS

to represent infinite surfaces, but they can certainly represent finite sections of infinite

surfaces such as planes, paraboloids, and hyperboloids.

If you want to experiment with NURBS curves then there are a number of on-line

tutorials. One such is available from the Technion in Israel38.

Rational B-splines have all of the properties of non-rational B-splines plus the fol-

lowing two useful features:

• They produce the correct results under projective transformations (while non-rational
B-splines only produce the correct results under affine transformations).

38http://www.cs.technion.ac.il/˜cs234325/Homepage/App lets/applets/bspline/html/
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• They can be used to represent lines, conics, non-rational B-splines; and, when gen-
eralised to patches, can represent planes, quadrics, and tori.

In this case rational means “one polynomial divided by another” (see Equation 22).

The antonym of rational is non-rational (i.e. a non-rational B-spline is just a polynomial

(see Equation 14). Non-rational B-splines are a special case of rational B-splines, just

as uniform B-splines are a special case of non-uniform B-splines. Thus, non-uniform

rational B-splines encompass almost every other possible 3D shape definition. Non-

uniform rational B-spline is a bit of a mouthful and so it is generally abbreviated to

NURBS.

We have already learnt all about the the B-spline bit of NURBS and about the non-

uniform bit. So now all we need to know is the meaning of the rational bit and we will

fully(?) understand NURBS.

Rational B-splines are defined simply by applying the B-spline equation (Equation 14)

to homogeneous coordinates, rather than normal 3D coordinates. We discussed homo-

geneous coordinates in the IB course. You will remember that these are 4D coordinates

where the transformation from 4D to 3D is:

(x′, y′, z′, w) →
(

x′

w
,
y′

w
,
z′

w

)

(22)

Last year we said that the inverse transform was:

(x, y, z) → (x, y, z, 1) (23)

This year we are going to be more cunning and say that:

(x, y, z) → (xh, yh, zh, h) (24)

Thus our 3D control point, Pi = (xi, yi, zi), becomes the homogeneous control point,
Ci = (xihi, yihi, zihi, hi).
A NURBS curve is thus defined as:

PH(t) =
n+1
∑

i=1

Ni,k(t)Ci, tmin ≤ t < tmax (25)

Compare Equation 25 with Equation 14 to see just how easy this is!

We now want to see what a NURBS curve looks like in normal 3D coordinates, so we

need to apply Equation 22 to Equation 25. In order to better explain what is going on, we

first write Equation 25 in terms of its individual components. Equation 25 is equivalent

to:

x′(t) =
n+1
∑

i=1

xihiNi,k(t) (26)

y′(t) =
n+1
∑

i=1

yihiNi,k(t) (27)

z′(t) =
n+1
∑

i=1

zihiNi,k(t) (28)

h(t) =
n+1
∑

i=1

hiNi,k(t) (29)
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Equation 22 tells us that, in 3D:

x(t) = x′(t)/h(t) (30)

y(t) = y′(t)/h(t) (31)

z(t) = z′(t)/h(t) (32)

Thus the 4D to 3D conversion gives us the curve in 3D:

P(t) =

∑n+1
i=1 Ni,k(t)Pihi
∑n+1

i=1 Ni,k(t)hi

, tmin ≤ t < tmax (33)

This looks a lot more fierce than Equation 25, but is simply the same thing written a

different way.

So now, we need to define an additional parameter, hi, for each control point, Pi. The

default is to set hi = 1,∀i. This results in the denominator of Equation 33 becoming one,
and the NURBS equation (Equation 33) therefore reducing to the non-rational B-spline

equation (Equation 14).

Increasing hi pulls the curve closer to point Pi. Decreasing hi pushes the curve far-

ther from point Pi. Setting hi = 0 means that Pi has no effect on the curve at all.

See Rogers and Adams Figure 5-58 for an example, and play with an on-line NURBS

tutorials such as the one mentioned above.

5.6 An example: a circle defined by NURBS

This subsection provides an example of a shape which cannot be represented by non-

rational B-splines: a circle. A non-rational B-spline or a Bézier curve cannot exactly

represent a circle. An interesting exercise is to place a cubic Bézier curve’s end points at

(0, 1) and (1, 0), with the other control points at (α, 1) and (1, α). Now see how close this
“quarter circle” comes to the real quarter circle defined by x2 + y2 = 1, i.e. what is the
value of α for which the Bézier curve most closely matches the quarter circle. You will
find that you can get a match which is almost, but not quite, circular.

NURBS can be used to represent circles, and all of the other conics. NURBS surfaces

can be used to represent quadric surfaces. As an example, let us consider one way in

which NURBS can be used to describe a true circle. Rogers and Adams cover this on

pages 371–375. The ways in which this is done require the designer to specify several

things correctly at the same time, as we shall see. The details are so complicated that

I would not expect you to remember it in an exam but I would expect you to remember

that it can be done and have some idea of where to look it up if you needed it.

The method is as follows. Construct eight control points in a square. Let P1, P3, P5,

and P7 be the vertices of the square. Let P0, P2, P4, and P6 be the midpoints of the

respective sides, so that the vertices are numbered sequentially as you proceed around

the square. Finally, you need a ninth point to join up the curve, so let P8 = P0.

Use a quadratic B-spline basis function with the knot vector

[0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4]. This means that the curve will pass through P0, P2, P4, P6

and P8, and allows us to essentially treat each quarter of the circle independently. That

is, we can just examine P0, P1, and P2, along with the knot vector [0, 0, 0, 1, 1, 1]. If this
makes a quarter circle then the other three quarters will also be correct.
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We finally need to specify the homogeneous co-ordinates. As a circle is symmetrical

it should be obvious that that h1 = h3 = h5 = h7 = α and h0 = h2 = h4 = h6 = h8 = β. As
we would like the curve to pass through the even numbered points, the easiest thing to

do is set β = 1. All we therefore need to determine is α, the value of the odd numbered
homogeneous co-ordinates.

If α = 1 then the NURBS curve will bulge out more than a circle. If α = 0, it will bow
in. This gives us limits on the value of α. To find the exact value we take the NURBS
curve definition for the quarter circle:

P(t) =
(1 − t)2P0 + 2αt(1 − t)P1 + t2P2

(1 − t)2 + 2αt(1 − t) + t2
, 0 ≤ t < 1 (34)

Assume now that P0 = (0, 1), P1 = (1, 1), and P2 = (1, 0). Insert Equation 34 into the
equation for the unit circle (x(t)2 + y(t)2 = 1). The resulting equation is:

((1 − t)2 + 2αt(1 − t))2 + (2αt(1 − t) + t2)2

((1 − t)2 + 2αt(1 − t) + t2)2
= 1, 0 ≤ t < 1 (35)

Now solve this for α. Equation 35 is essentially:

aN t4 + bN t3 + cN t2 + dN t + eN

aDt4 + bDt3 + cDt2 + dDt + eD

= 1, 0 ≤ t < 1 (36)

From this we can conclude that we require aN = aD, bN = bD, cN = cD, dN = dD, and

eN = eD. The first three all solve to give the result that α = 1/
√

2, while the last two
cancel out totally to give the tautology 0 = 0. Thus39 α = 1/

√
2.

This derivation is not at all intuitive and similar cleverness is required to handle

representations of other conics. The beauty of NURBS is that they allow us to do this

sort of thing and unify all shapes into a single representation. The difficulty is that, in

order to achieve this unification, we need to have this rather complicated but general

mathematical mechanism.

5.7 Exercises

1. Review from IB: What are homogeneous coordinates and what are they used for in

computer graphics?

2. Explain how to use homogeneous coordinates to get rational B-splines given that

you know how to produce non-rational B-splines.

3. What are the advantages of NURBS over Bézier curves? (i.e. why have NURBS, in

general, replaced Bézier curves in CAD?)

4. Show that you understand why NURBS includes Uniform B-splines, Non-Rational

B-splines, Béziers, lines, conics, quadrics, and tori.

5. [1998/7/12] Consider the design of a user interface for a NURBS drawing system.
Users should have access to the full expressive power of the NURBS representa-

tion. What things should users be able to modify to give them such access and what

effect does each have on the resulting shape? [6 marks]

39If we had not set β = 1 above, then we would find that α = β/
√

2.
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6. For each of the items (in the previous question) that the user can edit: (i) Give sen-

sible default values; (ii) Explain how they would be constrained if a ‘demo’ version

of the software was to be limited to cubic Uniform Non-rational B-Splines.

7. [1999/7/11] (c) Show how to construct a circle using non-uniform rational B-splines
(NURBS). [8 marks]

Note: this question is ludicrously hard unless you remember the worked example

in these notes or R&A pages 371-375.

(d) Show how the circle definition from the previous part can be used to define a

NURBS torus. [4marks]

Note: you need explain only the general principle and the location of the torus’

control points.

6 Subdivision surfaces

Subdivision schemes work by taking a coarse polygon mesh and introducing new ver-

tices to create a finer mesh. Iterating this process several times creates a very fine mesh

of polygons. Given that we are interested in drawing things only to a certain level of

accuracy (there is no point in having polygons that are much smaller than pixels), the

easily understood subdivision idea has definite benefits over the mathematically com-

plicated B-spline methods. In fact, two of the standard subdivision schemes (Doo-Sabin

and Catmull-Clark) produce, in the limit, B-spline surfaces (uniform quadratic and uni-

form cubic respectively) except at their extraordinary points. Some of the mathematical

detail of subdivision surfaces is given below. W&W survey the field and the related

mathematical tools.

Subdivision schemes have been around for a long time. Subdivision methods for

curves were first mathematically analysed in 1947. Their use in computer graphics

dates from 1974 when Chaikin used them to derive a simple algorithm for generating

curves quickly. In 1978 Doo & Sabin and Catmull & Clark generalised Chaikin’s work

from curves to surfaces. Much work has been done since then, but it seems that it

is only since about 2000 that subdivision schemes have had widespread use owing to

Pixar’s adoption of them.

Subdivision schemes are increasingly being used as an alternative to NURBS. They

combinemathematical elegance with an exceptionally simple implementation. For curves,

given an arbitrary control polygon, we use the positions of the current vertices to deter-

mine the location of the new vertices in a new, refined, more detailed, control polygon.

Generally, each old vertex gives rise to two new vertices. For example, you could place

new vertices one-quarter and three-quarters of the way between each adjacent pair of

old vertices. Connecting all the new vertices together, in the appropriate order, produces

a more refined control polygon. Repeat this process several times and you produce a

very good approximation to the uniform quadratic B-spline curve defined by the original

set of vertices. In the limit, the refined control polygon becomes this uniform quadratic

B-spline curve. The Doo-Sabin subdivision method is the extension of this idea to sur-

faces, where the refined control polygon has four times as many vertices as the source

control polygon. Given the simplicity of the implementation and the fact that you can

stop whenever you like, you can see how attractive this method is for computer graphics.
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The course handout contains a slide presentation that presents the concepts from

this part of the course in an alternative way.

6.1 Mathematical details: curves

Take an arbitrary polygon defined by the sequence of control points:

Pi = (. . . ,pi
−1,p

i
0,p

i
1,p

i
2, . . .)

Subdivision maps this sequence of control points to a new sequence, Pi+1 by applying

subdivision rules. This process doubles40 the number of points, and there is one rule for

the odd numbered points and one for the even. For example, the subdivision rules on

which the Doo-Sabin method is based are:

pi+1
2j =

3

4
pi

j +
1

4
pi

j+1 (37)

pi+1
2j+1 =

1

4
pi

j +
3

4
pi

j+1 (38)

while the subdivision rules on which the Catmull-Clark method is based are:

pi+1
2j =

1

8
pi

j−1 +
6

8
pi

j +
1

8
pi

j+1 (39)

pi+1
2j+1 =

4

8
pi

j +
4

8
pi

j+1 (40)

As is the way with much mathematics, we can write it in a more compact, more

general, but less obvious, form as:

pi+1
j =

∞
∑

k=−∞

α2k−jp
i
k (41)

where the αj are coefficients depending on the subdivision rules. Note that the index

2k − j alternately selects the even indexed αj and the odd indexed αj . So, the two

schemes given above, can be compactly described as:

α =
1

4
(. . . , 0, 0, 1, 3, 3, 1, 0, 0, . . .) (42)

and

α =
1

8
(. . . , 0, 0, 1, 4, 6, 4, 1, 0, 0, . . .) (43)

respectively. You will recognise the sequences in parentheses as being two rows from

Pascal’s triangle.

It would now be constructive for you to draw an arbitrary control polygon and per-

form a couple of subdivision steps using the first of the two subdivision schemes. Once

you feel happy that you understand what is going on, you may like to try the second

scheme. For those for whom these two tasks seem simple, you may like to consider what

happens if you try to use the previous row from Pascal’s triangle (1,2,1) and, for even

more excitement, what happens if you try to use the next row (1,5,10,10,5,1). Both pro-

duce valid subdivision methods, but you will find that (1,2,1) has a minimal effect on the

shape of the control polygon.

40It doesn’t quite double the number of points when the sequence is open and of finite length, but we will

gloss over that at the moment.
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Figure 13: Doo-Sabin subdivision. On left a mesh (solid dots and solid lines) that has

been refined (open dots and dashed lines). At right the weights used to generated one of

the refined vertices.

6.2 Mathematical details: surfaces

The above subdivision methods can be easily extended from a control polygon to a

quadrilateral mesh. This is a mesh where every polygon is a quadrilateral and every

vertex is connected to four other vertices.

The Doo-Sabin subdivision method introduces four new vertices in each quadrilat-

eral, and connects up vertices accordingly. The new vertices are blended mixtures of

the old vertices in the proportions 9 : 3 : 3 : 1 (derived from the tensor product of the
univariate case: 3 × 3 : 3 × 1 : 1 × 3 : 1 × 1). This is illustrated in Figure 13.

Catmull-Clark subdivision is not much more difficult to understand. The only differ-

ence here is that is not all of the new vertices are created using the same weights. A

vertex is introduced in the centre of each quadrilateral, in the centre of each edge, and

near to each old vertex. Each of these three types of vertex has a different set of weights

as illustrated in Figure 14.

This all works beautifully for quadrilateral meshes. Now, suppose we have a quadri-

lateral mesh that contains extraordinary vertices, in other words a mesh that consists of

quadrilaterals but has occasional vertices with other than four immediate neighbours.

The Doo-Sabin scheme will still worked quite happily, because every polygon in the mesh

is still quadrilateral. However, the Catmull-Clark subdivision scheme depends on every

vertex having exactly four neighbours for the generation of the new vertex that is near to

the old vertex position (the rightmost case in Figure 14). Catmull and Clark got around

this problem by creating a new set of weights, one set of weights for each vertex valence

(the valence of vertex is a number of other vertices to which it is connected). Instead of

weights of 1/64, 6/64, and 36/64 you can use weights of 1/4n2, 3/2n2, and 1−7/4n, where
n is the valence of the vertex. This particular set of weights was derived by Denis Zorin,
other values can also be used.

However, this is not the only type of mesh with which we can deal. The Doo-Sabin

scheme can be easily modified to cope with meshes in which some of the polygons are not

quadrilateral, while still maintaining C1-continuity everywhere. For a k-sided polygon,
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Figure 14: Catmull-Clark subdivision. Above: a mesh (solid dots and solid lines) that

has been refined (open dots and dashed lines). Below: the weights used to generated

each type of refined vertex: centre, edge, and modified old vertex.

the weights, αk on the k vertices can be shown to be:

α0 =
1

4
+

5

4k
(44)

αi =
1

4k

(

3 + 2 cos
2iπ

k

)

(45)

There are other schemes, notably the Loop scheme (named after Dr Loop) which

works on triangular meshes. My research group at the Computer Laboratory has been

working on the theory of subdivision since 2000 and has produced some interesting re-

sults including some rather whacky alternative subdivision schemes.

6.2.1 Exercises

1. Do the “constructive” exercises at the end of section 6.1.

2. Explain how Doo-Sabin subdivision works for an arbitrary polygon mesh.
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Advanced Graphics

©2002,2003,2004,2006 Neil Dodgson 1

1

Advanced Graphics 2006
� Subdivision curves & surfaces
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animations, which do not print well.
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Modelling smooth 3D surfaces
� Where are smooth 3D surfaces used?

� Computer Aided Design (CAD)
� First developed for cars & aeroplanes
� Adopted for other manufactured objects

� Computer animation

� What mechanisms exist?
� Bézier patches
� NURBS surfaces
� Subdivision surfaces

3

Desirable features
� Need to handle any surface
� Need guaranteed continuity

� C1-continuity
� Smooth surfaces

� C2-continuity
� Smoothly reflecting surfaces
� Required for some aerodynamics

� Need to allow discontinuities
� Edges, creases and holes

� Needs to be easy to use
4

History of 3D modelling 1/3
� Some mechanism was needed for 

modelling 3D surfaces
� Hermite interpolation was generalised 

to bivariate patches
� …but proved too difficult to use in practice

� Bézier patches
� Developed for car design around 1960

� Bézier (Renault), de Casteljau (Citreön), de 
Boor (GM)
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History of 3D modelling 2/3
� B-spline theory

� Developed in the 1960s and ’70s, led to:

� NURBS (Non-Uniform Rational B-Splines)
� More general than Bézier patches

� Béziers are special cases of NURBS

� NURBS quickly became the industry 
standard in CAD
� …and remain the industry standard today

� Adopted by the computer animation industry 
when it began

6

History of 3D modelling 3/3
� Subdivision surfaces

� Theory developed in 1970s and early ’80s
� Picked up by computer animation industry 

in late 1990s
� Now replaced NURBS in computer 

animation
� Solves one of the big problems of NURBS

� Still under active research for use in CAD
� Introduces new problems, not present in 

NURBS, which make it unsuitable for CAD in its 
present form

7

NURBS curve
� A curve is defined parametrically
� Its shape is determined by:

� control points, Pi
� and the NURBS basis functions, Ni,k

∑
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Basic properties of NURBS 1/3

� The basis functions must sum to 1 to 
produce a valid new point
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Basic properties of NURBS 2/3

� The basis functions are calculated from 
a knot vector
� Just a non-decreasing sequence of real 

numbers
� e.g. [0,0,0,1,1,1] or [1,2,3,4,5,6]

or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]

� See lecture notes or Rogers & Adams for 
details
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Basic properties of NURBS 3/3

� If the basis functions are Cm-continuous 
at t, then P(t) is guaranteed to be Cm-
continuous at t
� So continuity depends only on the basis 

functions, Ni,k
� Continuity does not depend on the 

locations of the control points
� you can sometimes get extra continuity by 

careful positioning of control points
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NURBS surface
� A bivariate

generalisation of the 
univariate NURBS 
curve
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The big constraint…
� NURBS surfaces require a quadrilateral 

mesh of (m+1)×(n+1) points
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The first problem
� Very few objects are made up of a single 

rectangular patch, so we need to join 
patches together

14

The second problem
� What do we do at special points where 

other than four patches meet?

� Either we cannot get C2
� Which means that curvature is not continuous

� Or we get C2 be forcing curvature to be zero
� Which produces a flat spot

� Or we get C2 using very high degree patches
� Which are very hard for a designer to control

15

Drawing a NURBS curve
� NURBS curves and surfaces are always 

drawn on a pixelated surface
� NURBS curves can be approximated by 

straight lines
� So long as each straight line deviates from 

the curve by less than half a pixel

16

Drawing a NURBS surface
� NURBS surfaces are sub-

divided and drawn as a 
series of planar polygons

� Each polygon is only one 
or two pixels in area on 
the screen

� Shading algorithms are 
used to ensure that the 
surfaces appear to be 
smoothly curved
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Subdivision surfaces

� Do away with the explicit parametric 
representation

� Base a curve or surface solely on its 
control points and their connectivity

� Provide a simple mechanism which 
produces a larger, more refined set of 
control points from the current set

� Iterate refinement until the 
appropriate level of detail is achieved

18

History of subdivision schemes

� A univariate (curve) scheme was 
described by de Rahm in 1947

� Rediscovered by Chaikin in 1974
� Extended to bivariate (surfaces)

� Doo-Sabin bi-quadratic patches (1978)
� Catmull-Clark bi-cubic patches (1978)

� Flurry of mathematical work in the
early 1980s
� Dyn & Levin at Tel Aviv University

19

Use of subdivision schemes
� Pixar picked up the ideas and tested 

them in Geri’s Game (1997)
� …then discarded its NURBS based 

software in favour of subdivision schemes

� NURBS
� Toy Story 1995
� A Bug’s Life 1998

� Subdivision surfaces
� Toy Story II 1999
� Monsters Inc. 2001
� Finding Nemo 2003

20

Subdivision basics

� An example: Catmull-
Clark subdivision
� Introduce new points

� At face-centres
� At mid-edges

� Adjust positions of 
original points

� Repeat until sufficiently 
detailed
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Chaikin curve subdivision
� Underlies Doo-Sabin surface subdivision
� C1-continuous in the limit
� Essentially just a ¼-¾ rule

22
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The limit curve
� It can be shown that the limit curve of 

the Chaikin scheme is the uniform 
quadratic B-spline, which is guaranteed 
to be C1

� When drawing curves in computer 
graphics, we draw a set of straight 
lines, so only need to subdivide until 
each segment is about a pixel long and 
we have a good enough approximation 
to the curve

24

C2 approximating scheme
� Underlies Catmull-Clark surface subdivision
� Can be described as: “Insert a midpoint 

and adjust the old control points”
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The maths of the C2 scheme
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Why this notation?
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� Easy to analyse
� Allows use of the z-transform

27

The analysis tools
� Generating function formalism

� Use the z-transform on the kernel, h
� Provides sufficient conditions for continuity

� Essentially checks that the differences between 
adjacent points decrease fast enough at each 
refinement step to produce a smooth curve

� There is also a matrix formalism
� Analyse stationary points
� Provides necessary conditions for 

continuity

� For details see our research papers ☺
28
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Useful subdivision kernels
� C1, approximating, limit curve is 

quadratic B-spline
� C2, approximating, limit curve is 

cubic B-spline

� C1, interpolating, “four-point 
scheme”

� There is also a C2 interpolating 
six-point scheme
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From Chaikin to Doo-Sabin
� Doo-Sabin scheme is bivariate

generalisation of Chaikin ¼-¾ scheme
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Extraordinary polygons

� Need special 
co-efficients for 
these

(Doo-Sabin)
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Catmull-Clark subdivision
� Catmull-Clark is based on the 

1/8[1,4,6,4,1] univariate scheme

32

Catmull-Clark rules

� This is easy: the rules are simply the 
tensor product of the univariate 
1/8[1,4,6,4,1] rules.
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Catmull-Clark special cases
� This is more difficult: we need to find 

co-efficients which maintain continuity
� It is only possible to get C1 continuity at 

these extraordinary points.

Extraordinary polygons: 
disappear after one step

Extraordinary vertices: 
remain in the mesh
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Subdivision vs NURBS
� Extraordinary points

� Subdivision handles them easily
� NURBS requires the use of other types of 

surface to fill in the holes

� Memory requirements
� Subdivision needs a lot (many MB)
� NURBS is very compact

� Artifacts
� Some artifacts present in both
� Subdivision has extra artifacts

35

The future
� Computers now have enough memory 

to handle subdivision easily
� Subdivision now standard for computer 

animation
� NURBS still standard for CAD
� Subdivision will eventually replaced 

NURBS for CAD if we can sort out the 
artifact problems

36

Our work at Cambridge
� Unifying NURBS and subdivision 

� "NURBS with extraordinary points"
� SIGGRAPH 2009

� Characterising the artefacts in
subdivision and NURBS
� CAGD papers, 2009 and 2010

� Geometrically-sensitive subdivision
� Modifying existing schemes to take 

account of geometric relationships




