
LG3: SoC System Design (SD)

Topics: System Design, SoC Tour: Typical Structure and Components.

• LG3.1 - SD System On Chip:
System Design

• LG3.2 - SD Microcomputer Pro-
cessor Bus

• LG3.3 - SD Microcontroller
• LG3.4 - SD Switch/LED I/O
• LG3.5 - SD Programmed I/O
• LG3.6 - SD Interrupt Structure
• LG3.7 - SD GPIO
• LG3.8 - SD Keyboard Controller
• LG3.9 - SD Counter/Timer

• LG3.10 - SD Video Controller
• LG3.11 - SD DMA Controller
• LG3.12 - SD Network Device
• LG3.13 - SD Bus Bridge
• LG3.14 - SD Clock Tree
• LG3.15 - SD Clock Domain

Crossing

1

LG3.1 - SD: System On Chip: System Design

System on a Chip = SoC design.

Ethernet
block

USB
block

UART(s)

PCI bus
interface

I/O
Processor

ARM

DSP
processor

Special peripheral
function

DRAM
Interface

DRAM

Cache

Local
RAM

for DSP

Local
IO/BUS

Misc Peripherals
on the same PCB

Counter
Timer
Block

AtoD
channels

DtoA
channels

Bus
Bridge

FIFO Bus Bridge

DRAM
Interface

10/100/1G
Ethernet

USB

Serial lines

PCI Bus

I/O pins
for special
peripheral
function

Analog Input

Analog Output
(e.g.) L/R audio

PSU
and test logic

etc

Control
Processor

ARM

Cache

Counter
Timer
Block

Bus
Bridge

Microcontoller
style GPIO

DSP
processor

DMA
Controller

A D R/W

Platform Chip: Example Virata Helium 210
www.icfinder.co.kr/pdfview.asp?id=2965.

2

LG1.1 - SD: Platform Chip Description

Our platform chip has two ARM processors and two DSP processors. Each ARM has a
local cache and both store their programs and data in the same offchip DRAM.

The left-hand-side ARM is used as an I/O processor and so is connected to a variety of
standard peripherals. In any typical application, many of the peripherals will be unused and
so held in a power down mode.

The right-hand-side ARM is used as the system controller. It can access all of the chip’s
resources over various bus bridges. It can access off-chip devices, such as an LCD display or
keyboard via a general purpose A/D local bus.

The bus bridges map part of one processor’s memory map into that of another so that
cycles can be executed in the other’s space, allbeit with some delay and loss of
performance. A FIFO bus bridge contains its own transaction queue of read or write
operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAM may dominate
the die area of the chip. If both are fetching instructions from the same port of the same
RAM, then they had better be executing the same program in lock-step or else have some
own local cache to avoid huge loss of performance in bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is

denoted with the ‘special function periperhal.’ This would be the one part of the design

that varies from product to product. The same core set of components would be used for

all sorts of different products, from iPODs, digital cameras or ADSL modems.

3

LG3.2 - SD: Microcomputer: Processor Bus Structure

Logic Symbol

Address

Data
N

A

System Clock

Reset Input

Interrupt Request
Operation
Request

Read/Notwrite

Wait

I

W

R/Wb

Opreq

R

Microprocessor

System
Clock

Operation Request

Read/notwrite

Data Bus

Address Bus

Bus Control

Clock

ALU

MUX

Addresses

Dual Port
Register

File

Write

Execution Unit

Control Unit

Instruction
Register

Instruction
Decoder

Control Wires To
All Other Sections

Mux 2

Program
Counter

Execution address
incrementor

Clock

Clock
Clock

MUX2

Function code Load or Store

Reset
PC

Reset

OPERAND EA
IR

A microprocessor logic symbol and simplified internal structure.

This device is a bus master: or initiator in ESL terms.

4

LG3.2c - SD: A D8/A16 Computer

Control
Unit

Execution
Unit

+ ALU

Memory

Static RAM

16 kByte

UART
Serial Port

Address bus
(16 bits)

Data bus
(8 bits)

(Micro-)Processor

Rs232 Serial Connection

Register File
(including PC)

D0-7

D0-7

D0-7

Clock Reset

R/Wb

Memory Map
decoder circuit

Often a ‘PAL’
single chip device.

A15

A14

A13

R/Wb
R/Wb

A0-13

Enb

Enb

Enb

1 K Byte ROM
Read Only Memory

A0-9

A0-2

R/Wb
R/Wb

ROM_ENABLE_BAR

UART_ENABLE_BAR

RAM_ENABLE_BAR

D0-7

5

LG3.2c -SD: Memory Address Mapping and Decode

ROM /CS

RAM /CS

UART /CS

A14

A15

------- ----- -----------------------
Start End Resource
------- ----- -----------------------
0000 03FF EPROM
0400 3FFF Unused images of EPROM
4000 7FFF RAM
8000 BFFF Unused
C000 C001 Registers in the UART
C002 FFFF Unused images of the UART
------- ----- -----------------------

module address_decode(abus, rom_cs, ram_cs, uart_cs);
input [15:14] abus;
output rom_cs, ram_cs, uart_cs;

assign rom_cs = (abus == 2’b00); // 0x0000
assign ram_cs = (abus == 2’b01); // 0x4000
assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule

6

LG3.3 - SD: : A Basic Micro-Controller

Microprocessor
(8 bit generally)

RAM
(e.g. 2 Kbytes)

OTP
EPROM

(e.g.

8 Kbytes)

Clock
Osc

Power Up
reset

Programmable IOCounters and
Timers

UART

I/O wires OR external bus

Reset capacitorClock

Serial TX and RX

Internal A and D busses

Introduced 1989-85.

Such a micro-controller has an D8/A16 architecture and would be used in a
mouse or smartcard.

7

LG3.4 - SD: Switch/LED Interfacing

GND

VCC

Pullup
resistors

Light emitting diodes
(LEDs)

Switches

Current limiting
resistors

D Q

GND

VCC
Broadside latch

Broadside
tri-state

Microprocessor

D0

D1

D2

Part of data
bus

Part of
address bus

A12

A13

A14

A15

R/Wbar

OPREQ

Pullup
resistors

Light emitting diodes
(LEDs)

Write to
leds

Read from
switches

D3

D4

D5 Switches

a) Example of electronic wiring for switches and LEDs.

b) Example of memory address decode and simple LED and switch
interfacing for programmed I/O (PIO) to a microprocessor.

8

LG3.5 - SD: Programmed I/O

Input and output operations where a program on a processor makes read or
write operations to the device.

Inefficient - too much polling for general use.

Interrupt driven I/O much better.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0x14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \
(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \
(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \
(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

char uart_polled_read()
{

while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();
}

uart_polled_write(char d)
{

while (!(UART_STATUS() &
UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;
}

9

LG3.6 - SD: Interrupt Structure

Control
Register

Interrupt
Enable

Other Interrupt
Sources

Processor Device

INT

D

Local Logic

wdata

wen ce

D Q

Request Ack

ren

Receiving device: Keep int enabled: dev interrupts when data ready.

Transmit device: Enable int when s/w output queue non-empty: dev
interrupts when h/w output queue has space.

Enchancement: Vectored interrupt tells processor which device and priority.

10

LG3.7 - SD: GPIO - General Purpose Input/Output Pins

GPIO

wdata

hwen

ce

D Q

I/O PADTristate
BufferDecoder

addr ce

D Q

ce

D Q

ce

D Q

ce

D Q

ddr

dout

imask

ipol

int_enable

D

Q
rdata

interrupt

32 similar
pads

Other
bits

Example
bit

reg [31:0] ddr; // Data direction reg
reg [31:0] pins_r; // regsiter’d pin data
reg [31:0] dout; // output regsiter
reg [31:0] imask; // interrupt mask
reg [31:0] ipol; // interrupt polarities

reg int_enable, // output register

always @(posedge clk) begin
pins_r <= pins;
if (hwen && addr==0) ddr <= wdata;
if (hwen && addr==4) dout <= wdata;
if (hwen && addr==8) imask <= wdata;
if (hwen && addr==12) ipol <= wdata;
if (hwen && addr==16) int_enable <= wdata[0];
end

bufif b0 (pins[0], dout[0], ddr[0]); // Tri-state buffers.
.. // thirty others here
bufif b31 (pins[31], dout[31], ddr[31]);

wire int_pending = (|((din ^ ipol) & imask));
assign rdata = pins_r;
assign interrupt = int_pending && int_enable;

Micro-controllers have a large number of GPIO. Platform chips have a few.

Ex: Show how to wire up a push button and write a device driver that
counts pressed.

11

LG3.9 - SD: Keyboard Scanning Controller

KeyScanner

wdata

hwen

addr

rdata

interrupt

4 to16
line

decoder

4

hren

scankey

pressed

Sixteen Push To Makes

output [3:0] scankey;
input pressed;
reg int_enable, pending;
reg [3:0] scankey, pkey;

always @(posedge clk) begin
if (!pressed) pkey <= scankey;
else scankey <= scankey + 1;

if (hwen) int_enable <= wdata[0]
pressed1 <= pressed;
if (!pressed1 && pressed) pending <= 1;
if (hren) pending <= 0;
end

assign interrupt = pending && int_enable;
assign rdata = { 28’b0, pkey };

In practice, scan more slowly and use extra register on asynchronous input
pressed.

Could use a separate microcontroller to scan keyboard.

This keyboard scanner generates an interrupt on each key press.

Standard PC keyboard generates an output byte on press and release and
implements a short FIFO.

12

LG3.8 - SD: Counters and Timers

Counter/Timer

wdata

hwen

addr

rdata

interrupt

hren

External Event

External Event

External Event

reg [31:0] prescale, prescalar;
reg [31:0] counter, reload;
reg int_enable, ovf, int_pending;

always @(posedge clk) begin
ovf <= (prescale == prescalar);
prescale <= (ovf) ? 0: prescale+1;
if (ovf) counter <= counter -1;
if (counter == 0) begin

int_pending <= 1;
counter <= reload;
end

if (host_op) int_pending <= 0;
end

wire host_op = hwen && addr == 32;
assign interrupt = int_pending && int_enable;

Re-load register accommodates poor interrupt latency.

Timer (illustrated) : counts pre-scaled system clock.

Counter: counts external input pulses (e.g. car rev counter).

Four to eight, versatile, configurable counter/timers provided in one block.

All registers also configured as bus slave read/write resources.

Interrupt cleared by host programmed I/O to host op.

13

LG3.10 - SD: Video Controller: Framestore

Framestore

wdata

hwen

addr

hsynch

vsynch

video

LCD Panel
or CRT

reg [3:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [3:0] video;
output reg hsynch, vsynch;

always @(posedge clk) begin
hptr <= (hsynch) ? 0: hptr + 1;
hsynch <= (hptr == 230)
vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)
video <= framestore[{vptr[6:0], hptr}];

if (hwen) framestore[haddr]<= wdata[3:0];
end

Uses private SRAM instead of main system RAM (share instead with
staging FIFO?).

The pixel clock rate, H/W dimensions and synch pulse widths are normally
programmable.

The RAM cannot be read. Moreover it has two address ports: re-code with
one arbitrated port ?

14

LG3.11 - SD: DMA Controller

DMA Controller

wdata

hwen

addr

rdata

interrupt

hren

Target
(slave)

Port

Initiator
(master)

Port

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

This controller just block copies: may need
to keep src and/or dest constant for device
access.

Typically, a multi-channel DMA controller is
provided.

Or just use another (simple) processor ?

DMA controllers may be built into devices:

SoC bus master ports needed.

reg [31:0] count, src, dest, datareg;
reg int_enable, active, intt, rwbar;

always @(posedge clk) begin
if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];
int <= 0; rwbar <= 1;
end

if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
if (hwen && addr==12) dest <= wdata;

if (active && rwbar && m_ack) begin
datareg <= m_rdata;
rwbar <= 0;
src <= src + 4;
end

if (active && !rwbar && m_ack) begin
rwbar <= 1;
dest <= dest + 4;
count <= count - 1;
end

if (count==1 && active && !rwbar) begin
active <= 0;
intt <= 1;
end

end
assign m_wdata = datareg;
assign m_ren = active && rwbar;
assign m_wen = active && !rwbar;
assign m_addr = (rwbar) ? src:dest;
assign interrupt = intt && int_enable;

15

LG3.12 - SD: Network Device

Network Device

wdata

hwen

addr

rdata

interrupt

hren

Target
(slave)

Port

Initiator
(master)

Port

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren Physical Layer
Interface

PHY

Magnetics

Connector

MAC

Data FIFOs

Example: Ethernet, USB, Firewire, 802.11.

For high throughput should likely be bus master or use a DMA channel.

More importantly: DMA requires less staging RAM or FIFO in device.

Shared RAM pool: statistical multiplexing gain.

The device driver will set up a circular buffer or linked list of buffers.

16

LG3.13 - SD: Bus Bridge

Bus Half-Bridge (simplex).

wdata

hwen

addr

rdata

hren

Target
(slave)

Port

Initiator
(master)

Port

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

Initiator
(master)

Port

Target
(slave)

Port

wdata

hwen

addr

rdata

hren

m_wdata

m_wen

m_addr

m_rdata

m_ren

m_ack

m_ackm_ack Bus Half-Bridge (simplex).

Cycles slaved on one side are mastered on the other.

Need not be symmetric, or have flat address space.

Busses can be dissimilar.

Writes posted (internal FIFO).

(The ‘busses’ on each side use multiplexors and not tri-states.)

System bandwidth ranges from 1.0 to 2.0 bus bandwidth: inverse proportion
to bridge crossing cycles.

17

LG3.14 - SD: Clock Tree

VCO

Clock distribution H tree

1000MHz

100 MHz

Divide 10

External
clock
input

PLL Circuit

Outside
the
chip

Inside
the
chip

H tree layout

Clock sourced from a lower-frequency external (quartz) reference.

Multiplied up internally with a phase-locked loop.

Dynamic frequency scaling (future topic): programmable PLL ratio.

Skew in delivery is minimised using a balanced clock distribution tree.

Physical layout: fractal of H’s, ensuring equal wire lengths.

Inverters are used to minimise pulse shrinkage (duty-cycle distortion).

18

LG3.15 - SD: Clock Domain Crossing

Like a bus bridge, but different clocks on each side.

• Have one signal that is a guard or
qualifier signal for all the others
going in that direction.

• Make sure all the other signals
are settled in advance of guard.

• Pass the guard signal through
two registers before using it
(metastability).

• Use a wide bus (crossing opera-
tions less frequent).

input clk; // receiving domain clock

input [31..0] data;
input req;
output reg ack;

reg [31:0] captured_data;
reg r1, r2;
always @(posedge clk) begin

r1 <= req;
r2 <= r1;
ack <= r2;
if (r2 && !ack) captured_data <= data;

Simplex: can never be sure about the precise delay.

Need protocol with insertable/deletable padding symbols that have no
semantic meaning.

100 percent utilisation impossible.

The four-phase handshake limits utilisation to 50 % (or 25 if registered at
both sides)

Duplex: cannot reply on any precise timing relationship between the two
directions. Protocol must rely on sequencing or expicit transaction tokens.

19

