
LG3: SoC System Design (SD)

Topics: System Design, SoC Tour: Typical Structure and Components.

• LG3.1 - SD System On Chip:
System Design

• LG3.2 - SD Microcomputer Pro-
cessor Bus

• LG3.3 - SD Microcontroller
• LG3.4 - SD Switch/LED I/O
• LG3.5 - SD Programmed I/O
• LG3.6 - SD Interrupt Structure
• LG3.7 - SD GPIO
• LG3.8 - SD Keyboard Controller
• LG3.9 - SD Counter/Timer

• LG3.10 - SD Video Controller
• LG3.11 - SD DMA Controller
• LG3.12 - SD Network Device
• LG3.13 - SD Bus Bridge
• LG3.14 - SD Clock Tree
• LG3.15 - SD Clock Domain

Crossing
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LG3.1 - SD: System On Chip: System Design

System on a Chip = SoC design.
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Platform Chip: Example Virata Helium 210
www.icfinder.co.kr/pdfview.asp?id=2965.
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LG1.1 - SD: Platform Chip Description

Our platform chip has two ARM processors and two DSP processors. Each ARM has a
local cache and both store their programs and data in the same offchip DRAM.

The left-hand-side ARM is used as an I/O processor and so is connected to a variety of
standard peripherals. In any typical application, many of the peripherals will be unused and
so held in a power down mode.

The right-hand-side ARM is used as the system controller. It can access all of the chip’s
resources over various bus bridges. It can access off-chip devices, such as an LCD display or
keyboard via a general purpose A/D local bus.

The bus bridges map part of one processor’s memory map into that of another so that
cycles can be executed in the other’s space, allbeit with some delay and loss of
performance. A FIFO bus bridge contains its own transaction queue of read or write
operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAM may dominate
the die area of the chip. If both are fetching instructions from the same port of the same
RAM, then they had better be executing the same program in lock-step or else have some
own local cache to avoid huge loss of performance in bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is

denoted with the ‘special function periperhal.’ This would be the one part of the design

that varies from product to product. The same core set of components would be used for

all sorts of different products, from iPODs, digital cameras or ADSL modems.
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LG3.2 - SD: Microcomputer: Processor Bus Structure
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A microprocessor logic symbol and simplified internal structure.

This device is a bus master: or initiator in ESL terms.
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LG3.2c - SD: A D8/A16 Computer

Control
Unit

Execution
Unit

+ ALU

Memory

Static RAM

16 kByte 

UART 
Serial Port

Address bus
(16 bits)

Data bus
(8 bits)

(Micro-)Processor

Rs232 Serial Connection

Register File
(including PC)

D0-7

D0-7

D0-7

Clock Reset

R/Wb

Memory Map
decoder circuit

Often a  ‘PAL’
single chip device.

A15

A14

A13

R/Wb
R/Wb

A0-13

Enb

Enb

Enb

1 K Byte ROM
Read Only Memory

A0-9

A0-2

R/Wb
R/Wb

ROM_ENABLE_BAR

UART_ENABLE_BAR

RAM_ENABLE_BAR

D0-7

5



LG3.2c -SD: Memory Address Mapping and Decode

ROM /CS

RAM /CS

UART /CS

A14

A15

------- ----- -----------------------
Start End Resource
------- ----- -----------------------
0000 03FF EPROM
0400 3FFF Unused images of EPROM
4000 7FFF RAM
8000 BFFF Unused
C000 C001 Registers in the UART
C002 FFFF Unused images of the UART
------- ----- -----------------------

module address_decode(abus, rom_cs, ram_cs, uart_cs);
input [15:14] abus;
output rom_cs, ram_cs, uart_cs;

assign rom_cs = (abus == 2’b00); // 0x0000
assign ram_cs = (abus == 2’b01); // 0x4000
assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule
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LG3.3 - SD: : A Basic Micro-Controller
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Introduced 1989-85.

Such a micro-controller has an D8/A16 architecture and would be used in a
mouse or smartcard.
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LG3.4 - SD: Switch/LED Interfacing
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a) Example of electronic wiring for switches and LEDs.

b) Example of memory address decode and simple LED and switch
interfacing for programmed I/O (PIO) to a microprocessor.
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LG3.5 - SD: Programmed I/O

Input and output operations where a program on a processor makes read or
write operations to the device.

Inefficient - too much polling for general use.

Interrupt driven I/O much better.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0x14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \
(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \
(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \
(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

char uart_polled_read()
{

while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();
}

uart_polled_write(char d)
{

while (!(UART_STATUS() &
UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;
}
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LG3.6 - SD: Interrupt Structure
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Receiving device: Keep int enabled: dev interrupts when data ready.

Transmit device: Enable int when s/w output queue non-empty: dev
interrupts when h/w output queue has space.

Enchancement: Vectored interrupt tells processor which device and priority.
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LG3.7 - SD: GPIO - General Purpose Input/Output Pins
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reg [31:0] ddr; // Data direction reg
reg [31:0] pins_r; // regsiter’d pin data
reg [31:0] dout; // output regsiter
reg [31:0] imask; // interrupt mask
reg [31:0] ipol; // interrupt polarities

reg int_enable, // output register

always @(posedge clk) begin
pins_r <= pins;
if (hwen && addr==0) ddr <= wdata;
if (hwen && addr==4) dout <= wdata;
if (hwen && addr==8) imask <= wdata;
if (hwen && addr==12) ipol <= wdata;
if (hwen && addr==16) int_enable <= wdata[0];
end

bufif b0 (pins[0], dout[0], ddr[0]); // Tri-state buffers.
.. // thirty others here
bufif b31 (pins[31], dout[31], ddr[31]);

wire int_pending = (|((din ^ ipol) & imask));
assign rdata = pins_r;
assign interrupt = int_pending && int_enable;

Micro-controllers have a large number of GPIO. Platform chips have a few.

Ex: Show how to wire up a push button and write a device driver that
counts pressed.
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LG3.9 - SD: Keyboard Scanning Controller
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output [3:0] scankey;
input pressed;
reg int_enable, pending;
reg [3:0] scankey, pkey;

always @(posedge clk) begin
if (!pressed) pkey <= scankey;
else scankey <= scankey + 1;

if (hwen) int_enable <= wdata[0]
pressed1 <= pressed;
if (!pressed1 && pressed) pending <= 1;
if (hren) pending <= 0;
end

assign interrupt = pending && int_enable;
assign rdata = { 28’b0, pkey };

In practice, scan more slowly and use extra register on asynchronous input
pressed.

Could use a separate microcontroller to scan keyboard.

This keyboard scanner generates an interrupt on each key press.

Standard PC keyboard generates an output byte on press and release and
implements a short FIFO.
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LG3.8 - SD: Counters and Timers
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reg [31:0] prescale, prescalar;
reg [31:0] counter, reload;
reg int_enable, ovf, int_pending;

always @(posedge clk) begin
ovf <= (prescale == prescalar);
prescale <= (ovf) ? 0: prescale+1;
if (ovf) counter <= counter -1;
if (counter == 0) begin

int_pending <= 1;
counter <= reload;
end

if (host_op) int_pending <= 0;
end

wire host_op = hwen && addr == 32;
assign interrupt = int_pending && int_enable;

Re-load register accommodates poor interrupt latency.

Timer (illustrated) : counts pre-scaled system clock.

Counter: counts external input pulses (e.g. car rev counter).

Four to eight, versatile, configurable counter/timers provided in one block.

All registers also configured as bus slave read/write resources.

Interrupt cleared by host programmed I/O to host op.
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LG3.10 - SD: Video Controller: Framestore
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reg [3:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [3:0] video;
output reg hsynch, vsynch;

always @(posedge clk) begin
hptr <= (hsynch) ? 0: hptr + 1;
hsynch <= (hptr == 230)
vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)
video <= framestore[{vptr[6:0], hptr}];

if (hwen) framestore[haddr]<= wdata[3:0];
end

Uses private SRAM instead of main system RAM (share instead with
staging FIFO?).

The pixel clock rate, H/W dimensions and synch pulse widths are normally
programmable.

The RAM cannot be read. Moreover it has two address ports: re-code with
one arbitrated port ?
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LG3.11 - SD: DMA Controller
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This controller just block copies: may need
to keep src and/or dest constant for device
access.

Typically, a multi-channel DMA controller is
provided.

Or just use another (simple) processor ?

DMA controllers may be built into devices:

SoC bus master ports needed.

reg [31:0] count, src, dest, datareg;
reg int_enable, active, intt, rwbar;

always @(posedge clk) begin
if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];
int <= 0; rwbar <= 1;
end

if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
if (hwen && addr==12) dest <= wdata;

if (active && rwbar && m_ack) begin
datareg <= m_rdata;
rwbar <= 0;
src <= src + 4;
end

if (active && !rwbar && m_ack) begin
rwbar <= 1;
dest <= dest + 4;
count <= count - 1;
end

if (count==1 && active && !rwbar) begin
active <= 0;
intt <= 1;
end

end
assign m_wdata = datareg;
assign m_ren = active && rwbar;
assign m_wen = active && !rwbar;
assign m_addr = (rwbar) ? src:dest;
assign interrupt = intt && int_enable;
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LG3.12 - SD: Network Device
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Example: Ethernet, USB, Firewire, 802.11.

For high throughput should likely be bus master or use a DMA channel.

More importantly: DMA requires less staging RAM or FIFO in device.

Shared RAM pool: statistical multiplexing gain.

The device driver will set up a circular buffer or linked list of buffers.
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LG3.13 - SD: Bus Bridge

Bus Half-Bridge (simplex).
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m_ackm_ack Bus Half-Bridge (simplex).

Cycles slaved on one side are mastered on the other.

Need not be symmetric, or have flat address space.

Busses can be dissimilar.

Writes posted (internal FIFO).

(The ‘busses’ on each side use multiplexors and not tri-states.)

System bandwidth ranges from 1.0 to 2.0 bus bandwidth: inverse proportion
to bridge crossing cycles.
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LG3.14 - SD: Clock Tree
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Clock sourced from a lower-frequency external (quartz) reference.

Multiplied up internally with a phase-locked loop.

Dynamic frequency scaling (future topic): programmable PLL ratio.

Skew in delivery is minimised using a balanced clock distribution tree.

Physical layout: fractal of H’s, ensuring equal wire lengths.

Inverters are used to minimise pulse shrinkage (duty-cycle distortion).
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LG3.15 - SD: Clock Domain Crossing

Like a bus bridge, but different clocks on each side.

• Have one signal that is a guard or
qualifier signal for all the others
going in that direction.

• Make sure all the other signals
are settled in advance of guard.

• Pass the guard signal through
two registers before using it
(metastability).

• Use a wide bus (crossing opera-
tions less frequent).

input clk; // receiving domain clock

input [31..0] data;
input req;
output reg ack;

reg [31:0] captured_data;
reg r1, r2;
always @(posedge clk) begin

r1 <= req;
r2 <= r1;
ack <= r2;
if (r2 && !ack) captured_data <= data;

Simplex: can never be sure about the precise delay.

Need protocol with insertable/deletable padding symbols that have no
semantic meaning.

100 percent utilisation impossible.

The four-phase handshake limits utilisation to 50 % (or 25 if registered at
both sides)

Duplex: cannot reply on any precise timing relationship between the two
directions. Protocol must rely on sequencing or expicit transaction tokens.
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