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Reading material

• These slides plus the ADDITIONAL MATERIAL

• * OSCI. SystemC tutorials and whitepapers. Download

from OSCI www.systemc.org and examples from course

web site.

• Transaction-Level Modeling with SystemC: TLM Concepts

and Applications for Embedded Systems. Frank Ghenassia.

Springer (2006).

• A Practical Introduction to PSL. Cindy Eisner, Dana

Fisman. Springer 2006. (Series on Integrated Circuits and

Systems).
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• Creating Assertion-Based IP. Harry D. Foster and Adam C.

Krolnik. Springer (Series on Integrated Circuits and

Systems).

• System Design with SystemC Springer. Grotket, Liao,

Martin and Swan.

• Modern VLSI Design (SoC Design) W Wolf. Pearson

Education.

• The Web: http://www.flylogic.com/

http://www.systemc.org/ http://www.spiritconsortium.org/

http://www.design-reuse.com/articles/

http://www.esperan.com/tutorial/psl_simple.html



Course Pre-requisites

• Computer Design (Ib)

– Some Assembler (e.g. MIPS/ARM/ARC/x86)

– Verilog ECAD & Architecture

– Preferably C/C++

– Operating Systems & Computer Architecture
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L1: Verilog RTL Design: Simulation and Synthesis.

Topic: L1 Basic RTL to logic gates: styles, simulation and synthesis.

• LG1.1 - Basic RTL

• LG1.2 - Structural, Combinational, Behavioural

• LG1.3 - RTL abstract syntax

• LG1.4 - Compute/Commit Cycle

• LG1.5 - Event Driven Simulation Kernel

• LG1.6 - RTL internal forms

• LG1.7 - Basic Synthesis Algorithm

• LG1.8 - Adder Synthesis

• LG1.9 - RAM Memories

• LG1.10 - Structural Hazards

• LG1.11 - Retiming

• LG1.12 - RTL Compared with Software

• LG1.13 - Long Multiplication
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LG1.1 - Basic RTL 1/3, Structural

Level 1/3: Structural Verilog : Structural, Heirarchic, Netlist

BEGIN subcircuit(clk, rst, q2);
INPUT clk, rst;
OUTPUT q2;
Ff1 : DFFR(clk, rst, a, q1, qb1);
Ff2 : DFFR(clk, rst, q1, q2, qb2);
Ff3 : DFFR(clk, rst, q2, q3, qb3);
Nor : NOR2(a, q2, q3);

END subcircuit;

D QD QD Q

Clock

Q1 Q2 Q3

Just a netlist.

No registers are transferred by assignment!
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LG1.1c - RTL Flattening

module MOD1(b, a);
  input a; output b;
  wire c;
  INV inv1(c, a);
  MODX modx1(b, c);
endmodule

module MOD2(q, s, r);
  input r, s; output q;
  wire c;
  INV inv2(c, s);
  MODY mody1(q, c, r);
endmodule

module MODTOP(r, aa, bb);
  output rr;
  input aa, bb;

  wire l, m;

  MOD1 m(l, aa);
  MOD1 n(m, bb);
  MOD2 o(rr, l, m);
endmodule

MODX

MODY
MOD1 / m

c ba

cs

q

r

MOD2 / o

MODX

MOD1 / n

c ba

aa

l

bb

m

rr

MODTOP

Heirarchic Netlist Equivalent Flattened Netlist

module MODTOP (rr, aa, bb);
  input aa, bb; output rr;
  wire l, m;
  wire m_c, n_c, o_c;

  INV m_inv1(m_c, aa);
  INV n_inv1(n_c, bb);
  INV o_inv2(o_c, l);
  MODX m_modx1(m_c, l);
  MODX n_modx1(n_c, m);
  MODY o_mody1(rr, o_c, m);

endmodule

For many designs the
flattened netlist

is often bigger than the
hierarchic netlist owing

to multiple instances
of the same component.

Here it was smaller.
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LG1.1c-ElementaryConstructs
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LG1.1c Basic RTL 2/3, RTL with register transfers!

module CTR16(ck, din, o);

input ck, din;
output o;

reg [3:0] count, oldcount;

// Add a four bit decimal value of one to count
always @(posedge ck) begin

count <= count + 1;
if (din) oldcount <= count;
end

// Note ^ is exclusive or operator
assign o = count[3] ^ count[1];

endmodule

Registers are assigned in clock domains.

Combinational logic (continuous assign) has no explicit clock domain.

If we do not assign a register, it retains its old value:

oldcount <= (din) ? count : oldcount;
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L1.1c - Basic RTL 3/3, Behavioural

Behavioural RTL resembles software.

A behavioural thread references variables already updated.

The order of the statements has an effect!

The following behavioural code

if (k) x = y;
z = !x;

can be compiled down to the following unordered RTL

x <= (k) ? y: x;
z <= !((k) ? y: x);

Not all RTL is classed as ‘synthesisable’.
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L1.1c - Behavioural - ‘Non-Synthesisable’ RTL

RTL with event control in the body of a thread defines a statemachine.

The statemachine requires a PC register at runtime (implied).

input clk, din;
output req [3:0] q;

always begin
q <= 1;
@(posedge clk) q <= 2;
if (din) @(posedge clk) q <= 3;
q <= 4;
end

How many bits of PC are needed ?

Is conditional event control synthesisable ?

Does the output q ever take on the value 4 ?
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L1.1c - Behavioural - ‘Non-Synthesisable’ RTL continued

Consider the dual-edge-triggered flip-flop.
Set clock

Clear clock

Q output

Set clock

Clear clock

Q output

reg q;
input set, clear;

always @(posedge set) q = 1;
always @(posedge clear) q = 0;

Here a variable is updated by more than one thread.

This component is commonly used in phase-locked loops.

Can be modelled in Verilog, but not part of Verilog synthesis.
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LG1.1c - Non-synth continued.

Test bench commonly uses delays:

reg clk, reset;

initial begin clk=0; forever #50 clk = !clk; end

initial begin reset = 1; # 1025 reset = 0; end

Other non-synthesisable constructs:

• fork/join

• Variable update by more than one thread

Finite state is all that should matter!
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LG1.2 - RTL Forms, Summary.

Summary:

Verilog RTL allows these levels to be mixed within one module.

1. Structural - a hierarchial net list form

2. Un-ordered RTL - complex RHS expressions.

3. Behavioural - follows flow of program counter.

Simulation uses a top-level test bench module with no inputs.

Synthesis starts from a root lower in the hierarchy.

Synthesisable code uses synthesisable subset!

Later topics: SystemC, Bluespec and C-to-RTL flows.
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LG1.3 - SRTL abstract syntax

Synthesisable RTL - Zero Delay.

Expressions

datatype ex_t =
Num of int

| Net of string
| Inv of ex_t
| Query of ex_t * ex_t * ex_t
| Diadic of diop_t * ex_t * ex_t
| Subscript of ex_t * ex_t

Imperative commands (might also include a case statement) but no loops.

datatype cmd_t =
Assign of ex_t * ex_t

| If1 of ex_t * cmd_t
| If2 of ex_t * cmd_t * cmd_t
| Block of cmd_t list

Our top level will be an unordered list of the following sentences:

datatype s_t =
Sequential of edge_t * ex_t * cmd_t

| Combinational of ex_t * ex_t
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LG1.5 - Event Driven Simulation Kernel

Datastructure for the model and netlist.

(* A net has a string name and a width.
* A net may be high z, dont know or contain an integer from 0 up to 2**width - 1.
* A net has a list of driving and reading models.
* A model has a unique instance name, a delay, a form and a list of nets it contacts.
* It also may have some internal state, held in the last field.
*)
datatype value_t = V_n of int | V_z | V_x;

datatype m_t = M_AND | M_OR | M_INV | M_XOR | M_DFF | M_BUFIF | M_TLATCH | M_CLOCK;

datatype internal_state_t =
IS_NONE

| IS_DFF of value_t ref
| IS_CLOCK of int ref
;

datatype
net_t = NET of value_t ref * string * int * model_t list ref * model_t list ref

and
model_t = MODEL of string * int * m_t * net_t list * internal_state_t

;
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LG1.5c - Event Driven Simulation Kernel
Time Net New Logic Value Next EventEvent List Pointer

Time Net New Logic Value Next Event

Time Net New Logic Value Next Event

100

105

200

a

b

f

1

1

x

Current Time Value

tnow

Constructor for a new event: insert at correct point in the sorted event list:

fun event(time, net, value) =
let fun a e = case !e of

(A as EMPTY) => e := EVENT(time, net, value, ref A)
| (A as EVENT(t, n, v, e’)) => if (t > time)

then e := EVENT(time, net, value, ref A)
else a e’

in a eventlist
end

Main simulation: keep dispatching until event list empty:

fun dispatch_one_event() =
if (!eventlist = EMPTY) then print("simulation finished - no more events\n")
else let val EVENT(time, net, value, e’) = !eventlist in
( eventlist := !e’;

tnow := time;
app example_models (net_setvalue(net, value))

) end
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LG1.4 - Compute/Commit Cycle

Hardware simulators support compute/commit signal paradigm.

reg A, B;
always @(posedge ck) begin

A <= B;
B <= A;
end

D QD Q

Clock

X Y

reg zz;
reg [2:0] q;
always @(posedge ck) begin

zz <= ~zz;
if (zz) q <= q + 3’d1;
// Prev line sees old zz
end

• All of the right-hand side expressions are evaluated

• All the results are stored into the left-hand sides.

• Repeat

Commit may create further events for current simulation time.

Delta cycle: a compute/commit cycle without advancing global time.

A VHDL ‘signal’ has a current and a next value. A SystemC ‘sc signal’
likewise has a current and a next value. In Verilog, it’s a matter of the
assignment operator rather than the net declaration.
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LG1.4c - Compute/Commit Cycle

Compute/commit extension: either we need

• a next value field in signal nets (arrays may have multiple), or

• a separate list of pending values to be committed.

Modified EDS kernel:

Repeat:
1. S = all events that have identical time taken from the event list head.
2. Dispatch all of S (this is the compute phase).
3. Commit pending values to current values.

When we repeat the above loop, if there are any zero-delay models, the
value of tnow may not advance: hence a delta cycle.
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LG1.6 - RTL Synthesis: Internal forms

Ignore all timing information (hash delays.)

For synthesis to gates, generate a list of assignments for each clock domain,
that can be done in parallel.

A final list represents combinational logic, not associated with a clock
domain.

Code generation phase: match operations needed against library of gates.

(Similar to a software compiler: match operations needed against
instruction set.)

Need to keep additional information for asynchronous reset and presets.

Transparent latches also need additional handling.

module TLATCH(q, g, d);
input d, q;

output q;
assign q = (g) ? d: q;

endmodule
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LG1.7 - Basic Synthesis Algorithm

Input

module TC(clk, cen);
input clk, cen;
reg [1:0] count;
always @(posedge clk) if (cen) count<=count+1;

endmodule// User=djg11

Output

module TC(clk, cen);
wire u10022, u10021, u10020, u10019;
wire [1:0] count;
input cen; input clk;
CVINV i10021(u10021, count[0]);
CVMUX2 i10022(u10022, cen, u10021, count[0]);
CVDFF u10023(count[0], u10022, clk, 1’b1, 1’b0, 1’b0);
CVXOR2 i10019(u10019, count[0], count[1]);
CVMUX2 i10020(u10020, cen, u10019, count[1]);
CVDFF u10024(count[1], u10020, clk, 1’b1, 1’b0, 1’b0);

endmodule

Phase ONE - Generate guard/value lists for each lhs/clock domain.

Phase TWO - Convert to binary gate (bit lane) form with one expression
for each bit lane.
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LG1.7 Phase ONE - Generate guard/value lists for each
clock domain.

Generate a list of variables assigned under the clock.

For each variable, collate the assignments into (guard, value) pairs.

For array assigns, we need a (guard, subscript, value) tuple for each update.

Generate an assignment for each variable where the rhs is a query tree from
each list.

If blocking assigns are present, then an environment must be passed in for
re-writing the rhs expressions as though the assigns had taken place.

Non-determinism arises if array subscripts cannot be compared at compile
time (pointer alias problem).

A final list is needed for the unclocked, combinational logic.
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LG1.7 Phase TWO - Convert to binary (bit lane) form

Sign extend an arg to width n:

fun sex n nil = if n<=0 then nil else raise "cannot do sex on an empty list"
| sex n [item] = if n<=1 then [item] else item :: sex (n-1) [item]
| sex n (h::t) = h :: (sex (n-1) t);

Example: integer constant:

| pandex w (Num n) = if n = 0 then [ xi_false ] else
let fun k 0 = nil (* lsb first *)

| k n = (if (n mod 2)=1 then xi_true else xi_false) :: k (n div 2)
fun q 0 = [xi_true] (* final negative sign bit *)

| q n = (if (n mod 2)=0 then xi_true else xi_false) :: q (n div 2)
in if (n >= 0) then k n else sex w (q (0-1-n)) end

Example: -4 in a 6 bit field is 111100.

Example: conditional expression: a broadside multiplexor:

| pandex w (Query(g, t, f)) =
let val t’ = pandex w t

val f’ = pandex w f
fun k([], []) = []
| k(a, nil) = k(a, [ false ])
| k(nil, b) = k([ false ], b)
| k(a::at, b::bt) = gen_mux2(g, a, b) :: k(at, bt)
in k(t’, f’) end

23



LG1.7 Further Synthesis Issues

This basic algorithm does not consider any guiding metrics:

• Power consumption

• Area use

• Performance

• Testability

Gate libraries have high and low drive power forms of most gates.

Use Quine/McCluskey Espresso Algorithm for logic minimisation.

Can re-compute expressions locally.

Retiming for structural hazard and timing closure avoidance is now
becoming more common (BlueSpec)
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LG1.8 - Adder Build (Synthesis)

Adding a pair of bit lists, lsb first.

Ripple carry adder:

fun add c (nil, nil) = [c]
| add c (a::at, b::bt) =

let val s = gen_xor(a, b)
val c1 = gen_and(a, b)
val c2 = gen_and(s, c)
in (gen_xor(s, c))::(add (gen_or(c2, c1)) (at, bt))
end

Faster adder: use wide gates: use functions like gen addl

Carry argument is replaced with a list of generate and propagate pairs from
the earlier stages.
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LG1.8 continued - Kogge Stone adder

Kogge-Stone is very fast and
the area is not too bad, but
the wiring is not regular.

Synthesises well. Hard to un-
derstand!

For FPGA: Just use RTL ’+’
and FPGA tools instantiate
special paths.

Ex (long): Write a Kogge-
Stone generator.
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LG1.8c continued - Subtractor, Equality, Inequality, Shifts

- < > ?= <= != == << >>

Subtractor: instead pass in a one as the leading borrow-bar and complement
each bit from the second operand.

A subtractor will generate a borrow output. If a<b then a-b will need a
borrow, hence the raw subtractor implements less-than.

Greater than or equal is just the complement of less than.

Other two inequalities: just swap the operands.

Equality test: check subtractor output is zero: requires an additional NOR
gate.

Constant shifts: trivial in bit lane form.

Dynamic shifts: ML code to synthesise barrel shifter is easy.
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LG1.9 - RAM Memories

RTL supports arrays: arrays can be synthesised to RAM memories or
register files.

reg [31:0] myram [32767:0]; // 32K words of 32 bits each.
// To execute the following in one clock cycle needs two RAM ports
always @(posedge clk) myram[a] <= myram[b] + 2;

Today: RAM inference from array only done by FPGA tools and high-level
synthesis tools. Everyone else defines busses and makes structural instances.

Example dual-ported (one read, one write), SRAM behavioural model:

module R1W1RAM(din, waddr, clk, wen, raddr, dout);
input clk, wen;
input [14:0] waddr, raddr;
input [31:0] din;
output [31:0] dout;

reg [31:0] myram [32767:0]; // 32K words of 32 bits each.
always @(posedge clk) begin

dout <= myram[raddr];
if (wen) myram[waddr] <= din;
end

The behavioural model will be replaced with a RAM macrocell for silicon
implementation.
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LG1.9c Memories continued

On-chip SRAM needs test mechanism:

• Can test with software running on embedded processor.

• Can have a special test mode, where address and data lines become
directly controllable (JTAG or otherwise).

• Can use a built-in self test (BIST) wrapper that implements 0/F/5/A
and walking ones typical tests.

Off-chip RAMS, such as DRAM and ZBT SRAM commonly used:

• Large area: would not be cost-effective on-chip.

• Specialised, proprietary or dense VLSI technology

• Non-volatile process (FLASH)

• Commodity part (DRAM, FLASH)

Again, these are instantiated by hand.
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LG1.10 - Structural Hazards

Structural Hazard: an interruption to a computation or flow of data owing
to a physical resource that has insufficient capacity.

Operations that could potentially be done in parallel have to be done serially.

Example: insufficient number ALUs.

Example: insufficient number of ports on a RAM/register file.

Holding registers typically needed.

Non-fully pipelined component: is unabled to start a new operation on
every clock cycle.

Start input and a busy/ready output.

Busy for a constant or variable number of cycles.

Example: fixed point multipliers and dividers.

Example: all floating point operators.
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LG1.11 - Retiming & Recoding

Timing closure : Making the design meet its target clock rate.

Clock

Data D OutputQ

Clock

Data

Output

Propagation
delay

Setup time

Hold time

Clock

A

B

C

D
Setup

Margin

Period = 1/F

Clock

D Q

D Q

A
B

C

D
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LG1.11 - Retiming continued

A

B

Y A

B

Y

Flip-flop migration:

a <= b + c; b1 <=c; c1 <= c;
q <= (d) ? a:0; q <= (d) ? b1+c1:0;

Alternatively, pushing the multiplexor back will require an earlier version of d
which might not be available.

Problems with internal loops.

Problems with external handshakes that are non-transactional.

Retiming can overcome structural hazard (e.g. write back cycle in RISC
pipeline).

Other rewrites: Automatically introduce one-hot and gray encoding, or
invert for reset as preset.
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LG1.12 - RTL Compared with Software

Synthesisable RTL (SRTL) looks a lot like software at first glance, but we
soon see many differences.

SRTL is statically allocated and defines a finite-state machine.

Threads do not leave their starting context and all communication is
through shared variables that denote wires.

There are no thread synchronisation primitives, except to wait on a clock
edge.

Each variable must be updated by at most one thread.

Software on the other hand uses far fewer threads: just where needed. The
threads may pass from one module to another and thread blocking is used
for flow control of the data.

SRTL requires the programmer to think in a massively parallel way and
leaves no freedom for the execution platform to reschedule the design.

In the future, we expect/hope to see more convergence between these
styles: Retimed Parallel Expression or Parallelism Inference.
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LG1.13 - Long Multiplication

Flash multiplier - combinatorial implementation (e.g. a Wallace Tree).
n

m

n+m

n+m-1 if signed

Sequential Long Multiplication

RA=A
RB=B
RC=0
while(RA>0)
{

if odd(RA) RC=RC+RB;
RA = RA >> 1;
RB = RB << 1;

}
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Micro-Architecture for a Long Multiplier

Ready

Clock input

C
16B
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D Q C
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/2D Q

8
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x

y

fc

p

ReadyStart
fcp

y
x

FSM

8

16

bit 0 
q

q

16

8

Implements conventional long multiplication.

Certainly not fully-pipelined.

Exercise: Write out complete design, including sequencer in RTL or
SystemC.

35



Booth’s Multiplier

Booth does two bits per clock cycle:

(* Call this function with c=0 and carry=0 to multiply x by y. *)

fun booth(x, y, c, carry) =
if(x=0 andalso carry=0) then c else

let val x’ = x div 4
val y’ = y * 4
val n = (x mod 4) + carry
val (carry’, c’) = case (n) of

(0) => (0, c)
|(1) => (0, c+y)
|(2) => (0, c+2*y)
|(3) => (1, c-y)
|(4) => (1, c)

in booth(x’, y’, c’, carry’)
end

Exercise: Design a micro-architecture consisting of an ALU and register file
to implement Booth. Design the sequencer too.
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