
Prolog Lecture 2

● Rules
● Lists
● Arithmetic
● Last-call optimisation
● Backtracking
● Generate and Test

2

Rules have a head which is true if
the body is true

head body

Our Prolog databases have contained only facts
– e.g. lecturer(prolog,dave).

Most programs require more complex rules (p8)
– Not just “this is true”, but “this is true if that is true”

You can read this as: “rule(X,Y) is true if part1(X)
is true and part2(X,Y) is true”
– Note: X and Y also need to be unified appropriately

rule(X,Y) :- part1(X), part2(X,Y).

3

Variables can be internal to a rule

The variable Z is not present in the clause head:

Read this as “rule2(X) is true if there is a Z such
that thing(X,Z) is true and thang(Z) is true”

rule2(X) :- thing(X,Z), thang(Z).

4

Prolog and first order logic

The :- symbol is an ASCII-art arrow pointing left
– The “neck” (it's between the clause head and body!)

The arrow represents logical implication
– Mathematically we'd usually write clause➔head
– It's not as clean as a graphical arrow ...
– In practice Prolog is not as clean as logic either!

Note that quantifiers (and) are not explicitly
expressed in Prolog

5

Rules can be recursive

In a recursive reading rule3(ground) is a base
case, and the other clause is the recursive case.

In a declarative reading both clauses simply represent
a situation in which the rule is true.

rule3(ground).
rule3(In) :- anotherRule(In,Out),
 rule3(Out).

6

Prolog identifies clauses by
name and arity

We refer to a rule using its clause's head term

The clause
– rule.

is referred to as rule/0 and is different to:
– rule(A).

which is referred to as rule/1 (i.e. it has arity 1)
– rule(_,Y).

would be referred to as rule/2, etc.

7

Prolog has built-in support for lists

Items are put within square brackets, separated
by commas, e.g.[1,2,3,4] (p61)
– The empty list is denoted []

A single list may contain terms of any kind:
– [1,2,an_atom,5,Variable,compound(a,b,c)]

Use a pipe symbol to refer to the tail of a list
– Examples: [Head|Tail] or [1|T] or [1,2,3|T]
– Try unifying [H|T] and [H1,H2|T] with [1,2,3,4]

● i.e. ?- [H|T] = [1,2,3,4].

8

We can write rules to find the first
and last element of a list

Like functional languages, Prolog uses linked lists

Make sure that you (eventually) understand what
this shows you about Prolog's list representation:
write_canonical([1,2,3]).

first([H|_],H).

last([H],H).
last([_|T],H) :- last(T,H).

9

Question
last([H],H).
last([_|T],H):-

last(T,H).

What happens if we ask: last([],X). ?
a) pattern-match exception
b) Prolog says no
c) Prolog says yes, X = []
d) Prolog says yes, X = ???

10

You should include tests for your
clauses in your source code

Example last.pl:

What happens if the test assertion fails?

What happens if we ask:
?- last(List,3).

last([H],H).
last([_|T],H) :- last(T,H).

% this is a test assertion
:- last([1,2,3],A), A=3.

11

?- [last].
% last compiled 0.01 sec, 604 bytes

Yes
?- trace,last([1,2],A).
 Call: (8) last([1, 2], _G187) ? creep
 Call: (9) last([2], _G187) ? creep
 Exit: (9) last([2], 2) ? creep
 Exit: (8) last([1, 2], 2) ? creep

A = 2
Yes

Prolog provides a way to trace
through the execution path

Query trace/0, evaluation then goes step by step
– Press enter to “creep” through the trace
– Pressing s will “skip” over a call

12

Arithmetic Expressions

(AKA “Why Prolog is a bit special/different/surprising”)

What happens if you ask Prolog:

?- A = 1+2.

13

Arithmetic equality is
not the same as Unification

This should raise anyone's procedural eyebrows...

Arithmetical operators get no special treatment!

?- A = 1+2.
A = 1+2
Yes

?- 1+2 = 3.
No

14

Unification, unification, unification

In Prolog “=” is not assignment!
“=” does not evaluate expressions!

“=” means “try to unify two terms”

15

Arithmetic equality is
not the same as Unification

Plus (+) is just forming compound terms
We discussed this in lecture 1

?- A = money+power.
A = money+power
Yes

?- money+power = A,
 A = +(money,power).
A = money+power
Yes

16

Use the “is” operator to
evaluate arithmetic

?- A is 1+2.
A = 3
Yes

?- A is money+power.
ERROR: is/2: Arithmetic: `money/0' is not a function

The “is” operator tells Prolog: (p81)
(1) evaluate the right-hand expression numerically
(2) then unify the expression result with the left

Ensure that you can explain what will happen here:
?- 3 is 1+2 ?- 1+2 is 3

17

The right hand side must be a
ground term (no variables)

It seems that “is” is some sort of magic predicate
– Our predicates do not force instantiation of variables!

In fact it can be implemented in logic
– See the supervision worksheet

?- A is B+2.
ERROR: is: Arguments are not sufficiently
instantiated

?- 3 is B+2.
ERROR: is: Arguments are not sufficiently
instantiated

18

We can now write a rule
about the length of a list

List length:

This uses O(N) stack space for a list of length N

len([],0).
len([_|T],N) :- len(T,M), N is M+1.

19

List length using O(N) stack space

● Evaluate len([1,2],A).

● Apply len([1| [2]],A
0
) :- len([2],M

0
), A

0
 is M

0
+1

● Evaluate len([2],M
0
)

● Apply len([2 | []],M
0
) :- len([],M

1
), M

0
 is M

1
+1

● Evaluate len([],M
1
)

● Apply len([],0) so M
1
 = 0

● Evaluate M
0
 is M

1
+1 so M

0
 = 1

● Evaluate A
0
 is M

0
+1 so A

0
 = 2

● Result len([1,2],2)
● This takes O(N) space because of the variables in each frame

S
tack Fram

e 1

S
tack Fram

e 2

20

List length using O(1) stack space

List length using an accumulator:

We are passing variables to the recursive len2 call that
we do not need to use in future evaluations
– Make sure that you understand an example trace

len2([],Acc,Acc).
len2([_|Tail],Acc,Result) :-

AccNext is Acc + 1,
len2(Tail,AccNext,Result).

len2(List,Result) :-
len2(List,0,Result).

21

List length using O(1) stack space

● Evaluate len2([1,2],0,R)
● Apply len2([1| [2]],0,R) :- AccNext is 0+1,

len2([2],AccNext,R).
● Evaluate AccNext is 0+1 so AccNext = 1
● Evaluate len2([2],1,R)

● Apply len2([2| []],1,R) :- AccNext is 1+1,
len2([],AccNext,R).

● Evaluate AccNext is 1+1 so AccNext = 2
● Evaluate len2([],2,R).

● Apply len2([],2,2) so R = 2
● I didn't need to use any subscripts on variable instances!

S
tack Fram

e 1
S

tack Fram
e 2

22

Last Call Optimisation turns
recursion into iteration

Any decent Prolog implementation will apply
“Last Call Optimisation” to tail recursion (p186)
– The last query in a clause body can re-use the stack

frame of its caller
– This “tail” recursion can be implemented as iteration,

drastically reducing the stack space required

Can only apply LCO to rules that are determinate
– The rule must have exhausted all of its options for

change: no further computation or backtracking

23

We can demonstrate that Prolog is
applying last call optimisation

Trace will not help
– The debugger will likely interfere with LCO!

How about a “test to destruction”?
biglist(0,[]).
biglist(N,[N|T]) :-

M is N-1,
biglist(M,T),
M=M.

24

Prolog uses depth-first search
to find answers

Here is a (boring) program:

What does Prolog do when given this query?

c(A,B).

a(1).
a(2).
a(3).
b(1).
b(2).
b(3).
c(A,B) :- a(A), b(B).

25

Depth-first solution of query c(A,B)
c(A,B)

a(A),b(B)

Expand using the rule
c(A,B):-a(A),b(B).

Look up the first fact
of form a(_)

Likewise first
fact b(_)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=1

We've found
a solution!

26

Backtrack to find the next solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=2

We've found the
next solution

Reject first
fact b(_)

27

Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=3

28

Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=2, B=1

We exhausted all possible
solutions from the first
a(_) fact...

... so look for solutions
that use the second fact

of form a(_).

29

Take from a list

Here is a program that takes an element from a
list:

What does Prolog do when given the query:

take([1,2,3],E,Rest).

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

30

All solutions for take([1,2,3],E,Rest)

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=1, Rest=[2,3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “fact”
take/3 clause

31

Backtrack for next solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=2, Rest=[1,3], S
1
=[3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “rule”
take/3 clause

(arrow direction?)

32

Backtrack for another solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=3, Rest=[1,2], S
1
=[2], S

2
=[]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

33

Prolog says “no”

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: none – the predicate is false

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

34

“Find list permutation”
predicate is very elegant

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).

What is the declarative reading of this predicate?

35

Dutch national flag

The problem was used by Dijkstra as an exercise in
program design and proof.

Take a list and re-order such that red precedes white
precedes blue

[red,white,blue,white,red]

[red,red,white,white,blue]

36

“Generate and Test” is a technique
for solving problems like this

(1) Generate a solution

(1) Test if it is valid

(2) If not valid then backtrack to the next generated
solution

How can we implement checkColours/1?

flag(In,Out) :- perm(In,Out),
 checkColours(Out).

37

,,, ,

Place 8 queens so that
none can take any other

1 5 8 6 3 7 2 4[, , ,]

♛

♛

♛

♛

♛

♛

♛

♛

38

Generate and Test works for 8
Queens too

Why do I only need to check the diagonals?

8queens(R) :- perm([1,2,3,4,5,6,7,8],R),
 checkDiagonals(R).

39

Anagrams

Load the dictionary into the Prolog database e.g.:
– word([a,a,r,d,v,a,r,k]).

Generate permutations of the input word and test if
they are words from the dictionary

or

Generate words from the dictionary and test if they
are a permutation!

http://www.cl.cam.ac.uk/~dme26/pl/anagram.pl

End

Next lecture:
controlling backtracking with cut,

and negation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

