
Prolog Lecture 2

● Rules
● Lists
● Arithmetic
● Last-call optimisation
● Backtracking
● Generate and Test
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Rules have a head which is true if 
the body is true

head body

Our Prolog databases have contained only facts
– e.g. lecturer(prolog,dave).

Most programs require more complex rules (p8)
– Not just “this is true”, but “this is true if that is true”

You can read this as: “rule(X,Y) is true if part1(X) 
is true and part2(X,Y) is true”
– Note: X and Y also need to be unified appropriately

rule(X,Y) :- part1(X), part2(X,Y).
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Variables can be internal to a rule

The variable Z is not present in the clause head:

Read this as “rule2(X) is true if there is a Z such 
that thing(X,Z) is true and thang(Z) is true”

rule2(X) :- thing(X,Z), thang(Z).
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Prolog and first order logic

The :- symbol is an ASCII-art arrow pointing left
– The “neck” (it's between the clause head and body!)

The arrow represents logical implication
– Mathematically we'd usually write clause➔head
– It's not as clean as a graphical arrow ...
– In practice Prolog is not as clean as logic either!

Note that quantifiers (  and ) are not explicitly 
expressed in Prolog
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Rules can be recursive

In a recursive reading rule3(ground) is a base 
case, and the other clause is the recursive case.

In a declarative reading both clauses simply represent 
a situation in which the rule is true.

rule3(ground).
rule3(In) :- anotherRule(In,Out),
             rule3(Out).
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Prolog identifies clauses by
name and arity

We refer to a rule using its clause's head term

The clause
– rule.

is referred to as rule/0 and is different to:
– rule(A).

which is referred to as rule/1 (i.e. it has arity 1)
– rule(_,Y).

would be referred to as rule/2, etc.
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Prolog has built-in support for lists

Items are put within square brackets, separated 
by commas, e.g.[1,2,3,4]   (p61)
– The empty list is denoted []

A single list may contain terms of any kind:
– [1,2,an_atom,5,Variable,compound(a,b,c)]

Use a pipe symbol to refer to the tail of a list 
– Examples: [Head|Tail] or [1|T] or [1,2,3|T]
– Try unifying [H|T] and [H1,H2|T] with [1,2,3,4]

● i.e. ?- [H|T] = [1,2,3,4].
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We can write rules to find the first 
and last element of a list

Like functional languages, Prolog uses linked lists

Make sure that you (eventually) understand what 
this shows you about Prolog's list representation:
write_canonical([1,2,3]).

first([H|_],H).

last([H],H).
last([_|T],H) :- last(T,H).
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Question
last([H],H).
last([_|T],H):-

last(T,H).

What happens if we ask:  last([],X).  ?
a) pattern-match exception
b) Prolog says no
c) Prolog says yes, X = []
d) Prolog says yes, X = ???
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You should include tests for your 
clauses in your source code

Example last.pl:

What happens if the test assertion fails?

What happens if we ask:
?- last(List,3).

last([H],H).
last([_|T],H) :- last(T,H).

% this is a test assertion
:- last([1,2,3],A), A=3.
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?- [last].
% last compiled 0.01 sec, 604 bytes

Yes
?- trace,last([1,2],A).
   Call: (8) last([1, 2], _G187) ? creep
   Call: (9) last([2], _G187) ? creep
   Exit: (9) last([2], 2) ? creep
   Exit: (8) last([1, 2], 2) ? creep

A = 2
Yes

Prolog provides a way to trace 
through the execution path

Query trace/0, evaluation then goes step by step
– Press enter to “creep” through the trace
– Pressing s will “skip” over a call
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Arithmetic Expressions

(AKA “Why Prolog is a bit special/different/surprising”)

What happens if you ask Prolog:

?- A = 1+2.
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Arithmetic equality is 
not the same as Unification

This should raise anyone's procedural eyebrows...

Arithmetical operators get no special treatment!

?- A = 1+2.
A = 1+2
Yes

?- 1+2 = 3.
No
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Unification, unification, unification

In Prolog “=” is not assignment!
“=” does not evaluate expressions!

“=” means “try to unify two terms”
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Arithmetic equality is 
not the same as Unification

Plus (+) is just forming compound terms
We discussed this in lecture 1

?- A = money+power.
A = money+power
Yes

?- money+power = A,
    A = +(money,power).
A = money+power
Yes
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Use the “is” operator to
evaluate arithmetic

?- A is 1+2.
A = 3
Yes

?- A is money+power.
ERROR: is/2: Arithmetic: `money/0' is not a function

The “is” operator tells Prolog: (p81)
(1) evaluate the right-hand expression numerically
(2) then unify the expression result with the left

Ensure that you can explain what will happen here:
?- 3 is 1+2 ?- 1+2 is 3
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The right hand side must be a 
ground term (no variables)

It seems that “is” is some sort of magic predicate
– Our predicates do not force instantiation of variables!

In fact it can be implemented in logic
– See the supervision worksheet

?- A is B+2.
ERROR: is: Arguments are not sufficiently 
instantiated

?- 3 is B+2.
ERROR: is: Arguments are not sufficiently 
instantiated
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We can now write a rule 
about the length of a list

List length:

This uses O(N) stack space for a list of length N

len([],0).
len([_|T],N) :- len(T,M), N is M+1.
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List length using O(N) stack space

● Evaluate len([1,2],A).

● Apply len([1| [2] ],A
0
) :- len([2],M

0
), A

0
 is M

0
+1

● Evaluate len([2],M
0
)

● Apply len([2 | [] ],M
0
) :- len([],M

1
), M

0
 is M

1
+1

● Evaluate len([],M
1
)

● Apply len([],0)  so M
1
 = 0

● Evaluate M
0
 is M

1
+1 so M

0
 = 1

● Evaluate A
0
 is M

0
+1 so A

0
 = 2

● Result len([1,2],2)
● This takes O(N) space because of the variables in each frame

S
tack Fram

e 1

S
tack Fram

e 2
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List length using O(1) stack space

List length using an accumulator:

We are passing variables to the recursive len2 call that 
we do not need to use in future evaluations
– Make sure that you understand an example trace

len2([],Acc,Acc).
len2([_|Tail],Acc,Result) :- 

AccNext is Acc + 1,
len2(Tail,AccNext,Result).

len2(List,Result) :- 
len2(List,0,Result).
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List length using O(1) stack space

● Evaluate len2([1,2],0,R)
● Apply len2([1| [2]],0,R) :- AccNext is 0+1,

len2([2],AccNext,R).
● Evaluate AccNext is 0+1 so AccNext = 1
● Evaluate len2([2],1,R)

● Apply len2([2| [] ],1,R) :- AccNext is 1+1,
len2([],AccNext,R).

● Evaluate AccNext is 1+1 so AccNext = 2
● Evaluate len2([],2,R).

● Apply len2([],2,2) so R = 2
● I didn't need to use any subscripts on variable instances!

S
tack Fram

e 1
S

tack Fram
e 2
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Last Call Optimisation turns 
recursion into iteration

Any decent Prolog implementation will apply 
“Last Call Optimisation” to tail recursion (p186)
– The last query in a clause body can re-use the stack 

frame of its caller
– This “tail” recursion can be implemented as iteration, 

drastically reducing the stack space required

Can only apply LCO to rules that are determinate 
– The rule must have exhausted all of its options for 

change: no further computation or backtracking
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We can demonstrate that Prolog is 
applying last call optimisation

Trace will not help
– The debugger will likely interfere with LCO!

How about a “test to destruction”?
biglist(0,[]).
biglist(N,[N|T]) :- 

M is N-1,
biglist(M,T),
M=M.
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Prolog uses depth-first search
to find answers

Here is a (boring) program:

What does Prolog do when given this query?

c(A,B).

a(1).
a(2).
a(3).
b(1).
b(2).
b(3).
c(A,B) :- a(A), b(B).
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Depth-first solution of query c(A,B)
c(A,B)

a(A),b(B)

Expand using the rule
c(A,B):-a(A),b(B).

Look up the first fact 
of form a(_)

Likewise first
fact b(_)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=1

We've found
a solution!
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Backtrack to find the next solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=2

We've found the 
next solution

Reject first
fact b(_)
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Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=3
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Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=2, B=1

We exhausted all possible
solutions from the first
a(_) fact...

... so look for solutions
that use the second fact

of form a(_).
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Take from a list

Here is a program that takes an element from a 
list:

What does Prolog do when given the query:

take([1,2,3],E,Rest).

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).
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All solutions for take([1,2,3],E,Rest)

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):- 
        take(T,R,S).

Variable bindings: E=1, Rest=[2,3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “fact”
take/3 clause



31

Backtrack for next solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):- 
        take(T,R,S).

Variable bindings: E=2, Rest=[1,3], S
1
=[3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “rule”
take/3 clause

(arrow direction?)
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Backtrack for another solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):- 
        take(T,R,S).

Variable bindings: E=3, Rest=[1,2], S
1
=[2], S

2
=[]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)
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Prolog says “no”

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):- 
        take(T,R,S).

Variable bindings: none – the predicate is false

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)
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“Find list permutation”
predicate is very elegant 

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).

What is the declarative reading of this predicate?
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Dutch national flag

The problem was used by Dijkstra as an exercise in 
program design and proof.

Take a list and re-order such that red precedes white 
precedes blue

[red,white,blue,white,red]

[red,red,white,white,blue]
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“Generate and Test” is a technique 
for solving problems like this

(1) Generate a solution

(1) Test if it is valid

(2) If not valid then backtrack to the next generated 
solution

How can we implement checkColours/1?

flag(In,Out) :- perm(In,Out),
 checkColours(Out).
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,,, ,

Place 8 queens so that 
none can take any other

1 5 8 6 3 7 2 4[ , , , ]

♛

♛

♛

♛

♛

♛

♛

♛
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Generate and Test works for 8 
Queens too

Why do I only need to check the diagonals?

8queens(R) :- perm([1,2,3,4,5,6,7,8],R), 
 checkDiagonals(R).
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Anagrams

Load the dictionary into the Prolog database e.g.:
– word([a,a,r,d,v,a,r,k]).

Generate permutations of the input word and test if 
they are words from the dictionary

or

Generate words from the dictionary and test if they 
are a permutation!

http://www.cl.cam.ac.uk/~dme26/pl/anagram.pl



End

Next lecture:
controlling backtracking with cut,

and negation 
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