
Programming Methods Handout 2: Design Patterns

As you’ve learnt in your Software Design course, coding anything more com-
plicated than a toy program usually benefits from forethought. After you’ve
coded a few medium-sized pieces of object-oriented software, you’ll start to
notice the same general problems coming up over and over. Andyou’ll start
to automatically use the same solution each time. We need to make sure that
set of default solutions is a good one!

In his 1991 PhD thesis, Erich Gamma compared this to the field of archi-
tecture, where recurrent problems are tackled by using known good solu-
tions. The follow-on book (Design Patterns: Elements of Reusable Object-
Oriented Software, 1994) identified a series of commonly encountered prob-
lems in object-oriented software design and 23 solutions that were deemed
elegant or good in some way. Each solution is known as aDesign Pattern:

A Design Pattern is a general reusable solution to a commonly occurring
problem in software design.

The modern list of design patterns is ever-expanding and there is no shortage
of literature on them. In this course we will be looking at a few key patterns.



So Design Patterns are like coding recipes?

No. Creating software by stitching together a series of Design Patterns is
like painting by numbers – it’s easy and it probably works, but it doesn’t
produce a Picasso! Design Patterns are about intelligent solutions to a series
of generalised problems that youmay be able to identify in your software.
You might find they don’t apply to your problem, or they need adaptation.
You simply can’t afford to disengage your brain.

Why Bother Studying Them?

Design patterns are useful for a number of things, not least:

1. They encourage us to identify the fundamental aims of given pieces of
code

2. They save us time and give us confidence that our solution issensible

3. They demonstrate the power of object-oriented programming

4. They demonstrate that naı̈ve solutions are bad

5. They give us a common vocabulary to describe our code

The last one is important: when you work in a team, you quicklyrealise the
value of being able to succinctly describe what your code is trying to do. If you
can replace twenty lines of comments1 with a single word, the code becomes
more readable and maintainable. Furthermore, you can insert the word into
the class name itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?



Design Patterns By Example

We’re going to develop a simple example to look at a series of design patterns.
Our example is a new online venture selling books. We will be interested in
the underlying (back-end) code — this isn’t going to be a web design course!

We start with a very simple setup of classes. For brevity we won’t be anno-
tating the classes with all their members and functions. You’ll need to use
common sense to figure out what each element supports.

Session. This class holds everything about a current browser session (orig-
inating IP, user, shopping basket, etc).

Database. This class wraps around our database, hiding away the query
syntax (i.e. the SQL statements or similar).

Book. This class holds all the information about a particular book.



Supporting Multiple Products

Problem: Selling books is not enough. We need to sell CDs and DVDs too.
And maybe electronics. Oh, and sports equipment. And...

Solution 1: Create a new class for every type of item.

✔ It works.
✗ We end up duplicating a lot of code (all the products have prices, sizes,

stock levels, etc).
✗ This is difficult to maintain (imagine changing how the VAT iscom-

puted...).

Solution 2: Derive from an abstract base class that holds all the common
code.

✔ Obvious object oriented solution
✔ If we are smart we would use polymorphism2 to avoid constantly check-
2There are two types of polymorphism.Ad-hoc polymorphism (a.k.a. runtime or dynamic

polymorphism) is concerned with object inheritance. It is familiar to you from Java, when the
computer automatically figures out which version of an inherited method to run.Parametric
polymorphism (a.k.a. static polymorphism) is where the compiler figures out which version of
a type to usebefore the program runs. You are familiar with this in ML, but you also find it in
C++ (templates) and Java (look up generics).



ing what type a givenProduct object is in order to get product-specific
behaviour.

Generalisation

This isn’t really an ‘official’ pattern, because it’s a rather fundamental thing
to do in object-oriented programming. However, it’s important to understand
the power inheritance gives us under these circumstances.



The Decorator Pattern

Problem: You need to support gift wrapping of products.

Solution 1: Add variables to theProduct class that describe whether or not
the product is to be wrapped and how.

✔ It works. In fact, it’s a good solution if all we need is a binary flag for
wrapped/not wrapped.

✗ As soon as we add different wrapping options and prices for different
product types, we quickly clutter upProduct.

✗ Clutter makes it harder to maintain.
✗ Clutter wastes storage space.

Solution 2: Add WrappedBook (etc.) as subclasses ofProduct as shown.

Implementing this solution is a shortcut to the Job centre.

✔ We are efficient in storage terms (we only allocate space for wrapping
information if it is a wrapped entity).

✗ We instantly double the number of classes in our code.
✗ If we changeBook we have to remember to mirror the changes in

WrappedBook.
✗ If we add a new type we must create a wrapped version. This is bad

because we can forget to do so.



✗ We can’t convert from aBook to aWrappedBook without copying lots
of data.

Solution 3: Create a generalWrappedProduct class that is both a subclass
of Product and references an instance of one of its siblings. Any state or
functionality required of aWrappedProduct is ‘passed on’ to its internal
sibling, unless it relates to wrapping.

✔ We can add new product types and they will be automatically wrap-
pable.

✔ We can dynamically convert an established product object into a wrapped
product and back again without copying overheads.

✗ We can wrap a wrapped product!
✗ We could, in principle, end up with lots of chains of little objects in the

system

Generalisation

This is theDecorator pattern and it allows us to add functionality to a class
dynamically without changing the base class or having to derive a new sub-



class. Real world example: humans can be ‘decorated’ with contact lenses to
improve their vision.

Note that we can use the pattern to add state (variables) or functionality (meth-
ods), or both if we want. In the diagram above, I have explicitly allowed for
both options by derivingStateDecorator andFunctionDecorator. This is
usually unnecessary — in our book seller example we only wantto decorate
one thing so we might as well just put the code intoDecorator.



State Pattern

Problem: We need to handle a lot of gift options that the customer may switch
between at will (different wrapping papers, bows, gift tags, gift boxes, gift
bags, ...).

Solution 1: Take ourWrappedProduct class and add a lot of if/then state-
ments to the function that does the wrapping — let’s call itinitiate wrapping().

void initiate_wrapping() {
if (wrap.equals("BOX")) {

...
}
else if (wrap.equals("BOW")) {

...
}
else if (wrap.equals("BAG")) {

...
}
else ...

}

✔ It works.
✗ The code is far less readable.
✗ Adding a new wrapping option is ugly.

Solution 2: We basically have type-dependent behaviour, which is code for
“use a class hierarchy”.

✔ This is easy to extend.



✔ The code is neater and more maintainable.
✗ What happens if we need to change the type of the wrapping (from, say,

a box to a bag)? We have to construct a newGiftBag and copy across
all the information from aGiftBox. Then we have to make sure every
reference to the old object now points to the new one. This is hard!

Solution 3: Let’s keep our idea of representing states with a class hierarchy,
but use a new abstract class as the parent:

Now, everyWrappedProduct has-a GiftType. We have retained the advan-
tages of solution 2 but now we can easily change the wrapping type in-situ
since we know that only theWrappedObject object references theGiftType
object.

Generalistion

This is theState pattern and it is used to permit an object to change its be-
haviourat run-time. A real-world example is how your behaviour may change
according to your mood. e.g. if you’re angry, you’re more likely to behave
aggressively.





Strategy Pattern

Problem: Part of the ordering process requires the customer to enter apost-
code which is then used to determine the address to post the items to. At the
moment the computation of address from postcode is very slow. One of your
employees proposes a different way of computing the addressthat should be
more efficient. How can you trial the new algorithm?

Solution 1: Let there be a classAddressFinder with a methodgetAd-
dress(String pcode). We could add lots of if/then/else statements to the
getAddress() function.

String getAddress(String pcode) {
if (algorithm==0) {

// Use old approach
...

}
else if (algorithm==1) {

// use new approach
...

}
}

✗ ThegetAddress() function will be huge, making it difficult to read and
maintain.

✗ Because we must editAddressFinder to add a new algorithm, we have
violated the open/closed principle3.

Solution 2: MakeAddressFinder abstract with a single abstract function
getAddress(String pcode). Derive a new class for each of our algorithms.

3This states that a class should be open to extension but closed to modification. So we allow
classes to be easily extended to incorporate new behavior without modifying existing code.
This makes our designs resilient to change but flexible enough to take on new functionality to
meet changing requirements.



✔ We encapsulate each algorithm in a class.
✔ Code is clean and readable.
✗ More classes kicking around

Generalisation

This is theStrategy pattern. It is used when we want to support different
algorithms that achieve the same goal. Usually the algorithm is fixed when
we run the program, and doesn’t change. A real life example would be two
consultancy companies given the same brief. They will hopefully produce
the same result, but do so in different ways. i.e. they will adopt different
strategies. From the (external) customer’s point of view, the result is the same
and he is unaware of how it was achieved. One company may achieve the
result faster than the other and so would be considered ‘better’.



Note that this is essentially the same UML as theState pattern! Theintent of
the two patterns are quite different however:

• State is about encapsulating behaviour that is linked to specific internal
state within a class.

• Different states produce different outputs (externally the class behaves
differently).

• State assumes that the state will continually change at run-time.
• The usage of theState pattern is normally invisible to external classes.

i.e. there is nosetState(State s) function.

• Strategy is about encapsulating behaviour in a class. This behaviour
does not depend on internal variables.

• Different concreteStrategys may produce exactly the same output, but
do so in a different way. For example, we might have a new algorithm
to compute the standard deviation of some variables. Both the old al-
gorithm and the new one will produce the same output (hopefully), but
one may be faster than the other. TheStrategy pattern lets us compare
them cleanly.

• Strategy in the strict definition usually assumes the class is selected at
compile time and not changed during runtime.

• The usage of theStrategy pattern is normally visible to external classes.
i.e. there will be asetStrategy(Strategy s) function or it will be set in
the constructor.



However, the similarities do cause much debate and you will find people who
do not differentiate between the two patterns as strongly asI tend to.



Composite Pattern

Problem: We want to support entiregroups of products. e.g. The Lord of the
Rings gift set might contain all the DVDs (plus a free cyanidecapsule).

Solution 1: Give everyProduct a group ID (just anint). If someone wants
to buy the entire group, we search through all theProducts to find those with
the same group ID.

✔ Does the basic job.
✗ What if a product belongs to no groups (which will be the majority

case)? Then we are wasting memory and cluttering up the code.
✗ What if a product belongs to multiple groups? How many groupsshould

we allow for?

Solution 2: Introduce a new class that encapsulates the notion of groupsof
products:

If you’re still awake, you may be thinking this is a bit like the Decorator pat-
tern, except that the new class supports associations with multiple Products



(note the * by the arrowhead). Plus the intent is different – we are not adding
new functionality but rather supporting the same functionality for groups of
Products.

✔ Very powerful pattern.
✗ Could make it difficult to get a list of all the individual objects in the

group, should we want to.

Generalisation

This is theComposite pattern and it is used to allow objects and collections
of objects to be treated uniformly. Almost any hierarchy uses theComposite
pattern. e.g. The CEO asks for a progress report from a manager, who collects
progress reports from all those she manages and reports back.

Notice the terminology in the general case: we speak ofLeafs because we can
use the Composite pattern to build atree structure. EachComposite object
will represent a node in the tree, with children that are either Composites or
Leafs.



This pattern crops up a lot, and we will see it in other contexts later in this
course.



Singleton Pattern

Problem: Somewhere in our system we will need a database and the ability
to talk to it. Let us assume there is aDatabase class that abstracts the dif-
ficult stuff away. We end up with lots of simultaneous userSessions, each
wanting to access the database. Each one creates its ownDatabase object
and connects to the database over the network. The problem isthat we end up
with a lot of Database objects (wasting memory) and a lot of open network
connections (bogging down the database).

What we want to do here is to ensure that there is only oneDatabase object
ever instantiated and everySession object uses it. Then theDatabase object
can decide how many open connections to have and can queue requests to
reduce instantaneous loading on our database (until we buy ahalf decent one).

Solution 1: Use a global variable of typeDatabase that everything can
access from everywhere.

✗ Global variables are less desirable than David Hasselhoff’s greatest hits.
✗ Can’t do it in Java anyway...

Solution 2: Use a public static variable which everything uses (this is as
close to global as we can get in Java).

public class System {
public static Database database;

}

...

public static void main(String[]) {
// Always gets the same object
Database d = System.database;

}

✗ This is really just global variables by the back door.



✗ Nothing fundamentally prevents us from making multipleDatabase
objects!

Solution 3: Create an instance ofDatabase at startup, and pass it as a
constructor parameter to everySession we create, storing a reference in a
member variable for later use.

public class System {
public System(Database d) {...}

}

public class Session {
public Session(Database d) {...}

}

...

public static void main(String[]) {
Database d = new Database();
System sys = new System(d);
Session sesh = new Session(d);

}

✗ This solution could work, but it doesn’tenforce that only oneDatabase
be instatiated – someone could quite easily create a newDatabase
object and pass it around.

✗ We start to clutter up our constructors.
✗ It’s not especially intuitive. We can do better.

Solution 4: (Singleton) Let’s adapt Solution 2 as follows. Wewill have
a single static instance. However we will access it through astatic member
function. This function,getInstance() will either create a newDatabase
object (if it’s the first call) or return a reference to the previously instantiated
object.

Of course, nothing stops a programmer from ignoring thegetInstance() func-
tion and just creating a newDatabase object. So we use a neat trick: we make



the constructorprivate or protected. This means code likenew Database()
isn’t possible from an arbitrary class.

✔ Guarantees that there will be only one instance.
✔ Code to get a Database object is neat and tidy and intuitive touse. e.g.

(Database d=Database.getInstance();)
✔ Avoids clutter in any of our classes.
✗ Must take care in Java. Either use a dedicated package or a private

constructor (see below).
✗ Must remember to disableclone()-ing!

Generalisation

This is theSingleton pattern. It is used to provide a global point of access to
a class that should be instantiated only once.



There is a caveat with Java. If you choose to make the constructor protected
(this would be useful if you wanted a singleton base class formultiple applica-
tions of the singleton pattern, and is actually the ‘official’ solution) you have
to be careful.

Protected members are accessible to the class, any subclasses,and all classes
in the same package. Therefore, any class in the same package as your base
class will be able to instantiateSingleton objects at will, using thenew key-
word!

Additionally, we don’t want a crafty user to subclass our singleton and im-
plementCloneable on their version. The examples sheet asks you to address
this issue.



Proxy Pattern(s)

The Proxy pattern is a very usefulset of three patterns:Virtual Proxy, Re-
mote Proxy, andProtection Proxy.

All three are based on the same general idea: we can have a placeholder class
that has the same interface as another class, but actually acts as a pass through
for some reason.

Virtual Proxy

Problem: Our Product subclasses will contain a lot of information, much of
which won’t be needed since 90% of the products won’t be selected for more
detail, just listed as search results.

Solution : Here we apply theProxy pattern by only loading part of the full
class into the proxy class (e.g. name and price). If someone requests more
details, we go and retrieve them from the database.



Remote Proxy

Problem: Our server is getting overloaded.

Solution : We want to run a farm of servers and distribute the load across
them. Here a particular object resides on server A, say, whilst servers B and
C have proxy objects. Whenever the proxy objects get called,they know to
contact server A to do the work. i.e. they act as a pass-through.

Note that once server B has bothered going to get something via the proxy, it
might as well keep the result locally in case it’s used again (saving us another
network trip to A). This iscaching and we’ll return to it shortly.

Protection Proxy

Problem: We want to keep everything as secure as possible.

Solution : Create aUser class that encapsulates all the information about
a person. Use theProxy pattern to fill a proxy class with public information.
Whenever private information is requested of the proxy, it will only return a
result if the user has been authenticated.

In this way we avoid having private details in memory unless they have been
authorised.



Observer Pattern

Problem: We use theRemote Proxy pattern to distribute our load. For effi-
ciency, proxy objects are set to cache information that theyretrieve from other
servers. However, the originals could easily change (perhaps a price is up-
dated or the exchange rate moves). We will end up with different results on
different servers, dependent on how old the cache is!!

Solution 1: Once a proxy has some data, it keeps polling the authoritative
source to see whether there has been a change (c.f. polled I/O).

✗ How frequently should we poll? Too quickly and we might as well not
have cached at all. Too slow and changes will be slow to propagate.

Solution 2: Modify the real object so that the proxy can ‘register’ with it
(i.e. tell it of its existence and the data it is interested in). The proxy then
provides acallback function that the real object can call when there are any
changes.



Generalisation

This is theObserver pattern, also referred to asPublish-Subscribe when
multiple machines are involved. It is useful when changes need to be propa-
gated between objects and we don’t want the objects to be tightly coupled. A
real life example is a magazine subscription — you register to receive updates
(magazine issues) and don’t have to keep checking whether a new issue has
come out yet. You unsubscribe as soon as you realise that 4GBPfor 10 pages
of content and 60 pages of advertising isn’t good value.



Abstract Factory

Assume that the front-end part of our system (i.e. the web interface) is rep-
resented internally by a set of classes that represent various entities on a web
page:

Let’s assume that there is arender() method that generates some HTML
which can then be sent on to web browsers.

Problem: Web technology moves fast. We want to use the latest browsers
and plugins to get the best effects, but still have older browsers work. e.g. we
might have a Flash site, a SilverLight site, a DHTML site, a low-bandwidth
HTML site, etc. How do we handle this?

Solution 1: Store a variable ID in theInterfaceElement class, or use the
State pattern on each of the subclasses.

✔ Works.
✗ TheState pattern is designed for a single object that regularly changes

state. Here we have a family of objects in the same state (Flash, HTML,
etc.) that we choose between at compile time.



✗ Doesn’t stop us from mixingFlashButton with HTMLButton, etc.

Solution 2: Create specialisations ofInterfaceElement:

✗ Lots of code duplication.
✗ Nothing keeps the differentTextBoxes in sync as far as the interface

goes.
✗ A lot of work to add a new interface component type.
✗ Doesn’t stop us from mixingFlashButton with HTMLButton, etc.

Solution 3: Create specialisations of eachInterfaceElement subclass:



✔ Standardised interface to each element type.
✗ Still possible to inadvertently mix element types.

Solution 4: Apply theAbstract Factory pattern. Here we associate every
WebPage with its own ‘factory’ — an object that is there just to make other
objects. The factory is specialised to one output type. i.e.aFlashFactory out-
puts aFlashButton whencreate button() is called, whilst aHTMLFactory
will return anHTMLButton() from the same method.



✔ Standardised interface to each element type.
✔ A given WebPage can only generate elements from a single family.
✔ Page is completely decoupled from the family so adding a new family

of elements is simple.
✗ Adding a new element (e.g.SearchBox) is difficult.
✗ Still have to create a lot of classes.

Generalisation

This is theAbstract Factory pattern. It is used when a system must be con-
figured with a specific family of products that must be used together.



Note that usually there is no need to make more than one factory for a given
family, so we can use theSingleton pattern to save memory and time.



Summary

From the original Design Patterns book:

Decorator Attach additional responsibilities to an object dynamically. Dec-
orators provide flexible alternatives to subclassing for extending func-
tionality.

State Allow and object to alter its behaviour when its internal state changes.

Strategy Define a family of algorithms, encapsulate each on, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

Composite Compose objects into tree structures to represent part-whole hi-
erarchies. Composite lets clients treat individual objects and composi-
tions of objecta uniformly.

Singleton Ensure a class only has one instance, and provide a global point of
access to it.

Proxy Provide a surrogate or placeholder for another object to control access
to it.

Observer Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified andupdated
accordingly.

Abstract Factory Provide an interface for creating families of related or de-
pendent objects without specifying their concrete classes.



Classifying Patterns

Often patterns are classified according to what their intentis or what they
achieve. The original book defined three classes:

Creational Patterns . Patterns concerned with the creation of objects (e.g.
Singleton, Abstract Factory).

Structural Patterns . Patterns concerned with the composition of classes or
objects (e.g.Composite, Decorator, Proxy).

Behavioural Patterns . Patterns concerned with how classes or objects in-
teract and distribute responsibility (e.g.Observer, State, Strategy).

Other Patterns

You’ve now met eight Design Patterns. There are plenty more (23 in the orig-
inal book), but this course will not cover them. What has beenpresented here
should be sufficient to:

• Demonstrate that object-oriented programming is powerful.
• Provide you with (the beginnings of) a vocabulary to describe your so-

lutions.
• Make you look critically at your code and your software architectures.
• Entice you to read further to improve your programming.

Of course, you probably won’t get it right first time (if thereeven is a ‘right’).
You’ll probably end uprefactoring your code as new situations arise. How-
ever, if a Design Patternis appropriate, you should probably use it.

Performance

Note that all of the examples here have concentrated on structuring code to
be more readable and maintainable, and to incorporate constraints structurally



where possible. At no point have we discussed whether the solutions per-
form better. Many of the solutions exploit runtime polymorphic behaviour,
for example, and that carries with it certain overheads.

This is another reason why you can’t apply Design Patterns blindly. [This is a
good thing since, if it wasn’t true, programming wouldn’t beinteresting, and
you wouldn’t get jobs!].


