] Programming Methods

= This is a new course this year
= |tis a little experimental

= |ncontent
. = Inapproach
Programming Methods = My goals here are:
Dr Ro bert Harle = To consolidate a lot of this term’s programming ideas

= To bring together elements of Software Design and Java
= To demonstrate some new ideas

|A NST CS and CST = To make sure you don’t think programming is trivial
Lent 2008709 = This is less about exams and more about understanding
= There is a “Programming Methods & Java” exam question which will
Handout 1 end up being a mix of Java, Programming methods, and Software
Design

Programming Methods Different Levels

* Most of what we do will be worked examples * The Java ticks have made it very clear that there is a

= We will be taking particular sample programs and looking at how we
get from idea to implementation wide variety of programming experience at 1A

= On our journeys, we will be highlighting various interesting points = That’s why we’ve moved to Java practicals

= We won’t be going through line by line!!

= Sometimes there will be new material — we won’t go in depth

= You don’t need to know anything more than | say in lectures = If you're alava gOd

= You might find some of the coding stuff easy, but hopefully
the example matter will keep you interested

= But | can’t really do Lecture*s!

= These notes will not be a complete record
= There may be examples, sketches, code reviews

n ’ i
* You will need to make notes... Try to spot where I've cut coding corners for the sake of

giving short lectures... and try fixing them!
= Don’t fret over the official syllabus either — the ‘syllabus’ is
whatever | do in lectures

= |f you can give sensible answers to the questions on the examples
sheet, you'll be fine.

The Examples

= Don’t take them too seriously

= The code is meant to be short and readable, emphasising
specific points. It is not perfect.

= There are deliberate bugs (for clarity: all of my bugs are
deliberate) ;-)

= You won't always see error checking, exceptions, etc
where there should be some. This is just to make the code
more readable in lectures.

= Similarly there won’t always be time to follow through the
whole design process.

= |t would be a very valuable exercise to take the code and
improve it in some way.

= See the exercise sheet

Let’s start...

= Qur first example is especially for the NatScis here
= Not sure how Java is going to help you in the future?
= Can’t see why CS is part of the NST?

= We're going to make a simulation of a bouncing ball
= Sounds trivial, but it’s actually quite interesting
= The actual physics we will use is really basic
= The physics is not examinable!
= But we do need to review it to understand the code

Getting the code

= | encourage you to get the code and play with/improve it
= |t’s the best way to learn

= After each lecture | will post the relevant code on the course
website

http://www.cl.cam.ac.uk/teaching/0809/ProgMethod/

The Setup

<

Floor

= One dimensional motion (yes, I'm lazy)
= Drop the ball from a height
= Simulate what happens

The Physics

= When the ball hits the surface with speed v, it bounces up
with speed Kv, where K is the coefficient of restitution
= Klies between 0 and 1 of course

o7 @

= The only other thing that acts is gravity

|Identify the Classes

The simulation is of a ball that bounces on a floor.

Simulation = |f we play noun-spotting we end up with three
classes: Simulation, Ball, and Floor

= The Simulation will embody everything about our
simulated world (time, state, etc).

= The Ball encapsulates the ball properties (K-value),
its state (position, speed, acceleration) and how it

Floor behaves (motion equations)
E = The Floor has a height. And that’s it. Giving it its

own class is overkill so we choose not to at this
stage.

For the Physicists

= Calm down —it’s just an example
= Yes, | am ignoring:
= Floor movement
= Ball compression
= Ball size (it’s a point mass)
= Wind resistance (!)
= [insert other minor, almost irrelevant things here]

= Trust me, the world will keep on spinning ;-)

Identify the Classes

Vector2D = Additionally, we need to represent vector
- quantities (position, speed, acceleration)
= A general purpose class for 2D vectors would be very
useful not just here but for other projects

= We abstract out the notion of a vector into Vector2D
= Vector2D is a utility class

VTS = | have also written a Visualisation class which

- provides us with a graphical depiction of what’s
going on

= Don’t worry about this code at this stage

= But do notice that OO programming has allowed me to
encapsulate all the ugly graphical stuff into one class
that can you can ignore...

Vector2D.java

= Variables to represent the x and y components of a vector
quantity [mX, mY]
= We keep the state private
= Private allows us to change the underlying representation if we want
= E.g. Angle/magnitude or switch to using longs or floats

= But note that we have to take care because the accessors
have a ‘contract’ to return a double
= If we suddenly want to return longs, we could cause problems

= |s there any reason to change a Vector2D object? Not really.
= So we make it immutable (so its state cannot be changed)

Immutability...

= An alternative is to use use static functions:

public static Vector2D add(Vector2D v1, Vector2D v2) {
return new Vector2D(vl.mX+v2.mX, vli.mY+v2.mY);

}

Public static Vector2D multiply(Vector2D v, double m) {...

v Multiple operations are not now ambiguous:
Vector2D.multiply(Vector2D.add(v,w),6)

x _..but ugly!

= |f we could somehow enforce that vl and v2 aren’t changed
by the above function, it may be a better choice

= But actually we can’tin Java!

Immutability

= We need to make mX and mY private and final
= Then we can have

public Vector2D add(Vector2D v) {
return new Vector2D(mX+v.mX, mY+v.mY);
}
v’ Less code in Vector2D.java (no set()s)
v v=v1+v2+v3 looks nice: v = vl.add(v2).add(v3);
% You have to know that Vector2D is immutable to be sure that
v.add(w) does not change the state of vor w
% v.add(w).multiply(6) appears ambiguous: 6(v+w) or (v+6w)?
Note that to Java this is not ambiguous, but to novice
programmers it is.

Ball.java

= Back to our simulation...

= The ball has state
= Variables for position, velocity, acceleration
= Variable to hold the value of K
= Provide accessors and mutators as usual

= The state must change over time

= The updateState() method implements a simple update to the position
and velocity given that some time dt has passed
" v=u+adt
= s=udt+%adt?

There’s Never Enough Time...

= Real things change over time. Time is continuous (as far as we
know). But computers can’t deal with continuous things, just
discrete things.

= Fundamentally, simulations end up using chunks of time

SIMULATED
TIME &

For constant period T
= TIME
= So immediately we introduce error
= Our simulated world can never be the same as our real world.

= How do we select T? Too big and it’s a poor approximation, too small
and it will take forever to run our simulation.

= We choose T=10ms=0.01s

Alternatively...

= We are doing a-posteriori event detection
= 1. Let the simulation run
= 2. When we see it’s gone wrong, undo the last time step and correct it
= 3. looptol
= Could do it a-priori
= 1. Compute next collision time for the ball, tc

= 2. When we get to the step that will incorporate tc, execute bounce
code

= 3.Looptol
= |n principle a-priori is more efficient (we don’t have to keep
checking whether something has gone wrong on each step).
However, imagine calculating the next collision time for a box
of 1000 balls rattling around: it’s pretty complex!
= g-posterioriis more common

Where does the bounce come in?

= So our simulation runs by computing the t
ball’s state for some time t. Then it
computes it for some time (t+T). And then
for (t+2T). And so on...

= Collision detection: With each loop or
iteration, we look at whether the ball has
hit the floor. Either:
= |t will have the same height as the floor, or

t+2T

= |t will have dropped below the floor since the B=t+3T

last step!

-
Iy
X

= We have to spot this and back track...

A=t+4T

Back Tracking for the Bounce

= We record the state at time B (height h, speed u, acceleration a)
= We compute after step B when it would have hit the floor, t,;,
= h=ut,,+1/2at,,? solve for t,, (and we expect t,;>0, t,,<T)
= Now the speed it will have hit at
" Vhie = Utaty
= So the ball rebounds with speed Kv,, and has (T-t,;;) seconds of
deceleration before we get to the time for step A
= ha=Kvp(T-t)+1/2(-)(T-t,)? and v=Kv, ,-g(T-t;,)

u @
l ‘ " h vh,tl! ha

ty . thie ta=tgtT
= |n order to do this we need to ‘save’ the Ball state before an
update. But how do you copy an object?

Cloning (Aside)

= Java handles objects by reference as you know

= This means we don’t accidentally end up copying objects
(copying takes time, processing and memory)

Ball bl = new Ball(...);

Ball b2 = b1;

Reference bl
Actual object

of type Ball
mK=0.1,
Reference b2 etc

Cloning (Aside)

= What does clone() do here for example?

public class Lecture {
private Date mDate;
private Room mRoom;

Lecture
Object

| mRoom |

Date Object

Cloning (Aside)

= But what if we do want to copy an object?

Reference bl Actual object of type Ball

Reference b2 Actual object of type Ball

= Everything in Java has a top level parent called Object
= And Object has a method clone()

= Thingis, it’s not always clear what it should copy...

Cloning (Aside)

= What does clone() do here for example?

public class Lecture {
private Date mDate;
private Room mRoom;

Lecture Lecture
Object Object

Lecture
Object

Date Object

Cloning (Aside) Cloning (Aside)

= What does clone() do here for example? = By default, Java can’t know what type of copy is appropriate
= So there must be some mechanism to tell it what to do

) -
public class Lecture { = How might we have chosen to do this?
private Date mDate;

private Room mRoom;

= Use an interface to make the designer write an appropriate clone()
Lecture Lecture method
Object Object

public interface Cloneable {

} public Object clone();
 mRoom | | mRoom | }
Lecture . L R . . .
bi . = The problem with this is that cloning is going to be a relatively expensive
Object Date Object i i
operation (lots of memory copies etc)

| mRoom |

Sun decided that Object would implement an optimized (“native”) clone()
method that anything could use to do an efficient shallow copy

If you want a deep copy, you would normally

Date Object = Use super.clone() to get copy of everything above in the tree

= Add some code to do any deep copy that’s needed
Shallow Copy

Cloning (Aside) Cloning Vector2D

= But Sun worried that programmers might mistakenly just rely = So to make a Ball cloneable you need to:
on clone() doing the ‘right’ thing and not think about it = Implement the Cloneable interface
= So they made clone() protected and the implementation public class Ball implements Cloneable {

throws an exception if you try to clone something that does

. . = Writ blic cl thod
not implement the Cloneable interface rite a public clone() metho

public Object clone() throws CloneNotSupportedException {
Ball b = (Ball) super.clone();
b.mPosition = new Vector2D(mPosition.getX(), mPosition.getY());
b.mVelocity = new Vector2D(mVelocity.getX(), mVelocity.getY());
b.mAcceleration = new Vector2D(mAcceleration.getX(),
mAcceleration.getY());
return b;

}
= This will use the efficient clone() method in Object which does a
shallow copy (primitive types get copied whatever you do).

= The interesting thing is that Cloneable doesn’t
actually have any methods: Fa==]

public interface Cloneable {

}

= |t’s just used to indicate that you’ve thought about
the issue of cloning N

= |t’s called a marker interface
= All it does is mark a class in some way

= Java has a number of such marker interfaces in its class
library

= We were doing so well.. and then it did something weird = |t’s our discretized time again...
= Somehow the ball height ends up as NaN?! = No matter what we choose as T, we will end up eventually
* Debugging Tools having multiple bounces per step
= We can set breakpoints. When we run the program in a debug mode, * This breaks our correction step :~(
it will be paused whenever we get to a breakpoint and we can inspect = This is a sampling problem:

the program state and variables.

= Here we will engineer it so that it will break whenever the ball is
moved to a height of NaN

if (mBall.getPosition().getY()!=mBall.getPosition().getY()) {

intx=1;
}mx \

= | use eclipse to do this because it makes it easy, but all it does is use a
debugging tool that ships with Java called jdb

Break here

= First we figure out the minimum rebound speed we need the
ball to have if it is to stay in the air for at least time T

private final double mMinReboundSpeed = 9.81*mDeltaTime/2.0;

= Then we make sure that when we correct the ball, it gets at
least this speed or we end the simulation

// Check that this is a sufficient speed

if (vy<=mMinReboundSpeed) {
// It's going to bounce again faster that we will be checking!
// The simulation is not correct any more
System.exit(0);

Too easy?

= That was a pretty trivial simulation — many of you could have
worked out the trajectory by hand in 5 minutes. So let’s make
it harder

= Now the floor moves up and down harmonically (think
earthquake or loud music)

mr

= Hmmm... Now what happens??!

Alter the simulation
= We have two actors in our problem now Floor
= The ball and the floor -
= Add a class for the Floor
= Ball and Floor both move and we will end up duplicating code
= Use an abstract base class, MovingObject

MovingObject = Make sure you know why this is

anodion abstract and not an interface...

seposiontecor2o) = MovingObject also contains code to
update the state based on the current
state

= See applyMotionEquations()

= Plus there are clone() methods for you
to look over

Make the Floor Oscillate

= The floor does not act under gravity, but rather has a
constantly changing acceleration

= With each step we must update the state appropriately
= Harmonic motion
= s=Asin(wt), v=Awcos(wt), a=-Aw2cos(wt)
= So do we now have to keep track of the time, t?

private double mTime=0.0;

public void updateState(double delta) {
mTime+=delta;

}

= mTime can overflow though. If we can avoid that, we should.

Make the Floor Oscillate

= The phase term (wt) just increments with each step by (wT)

= So let’s track the phase directly and wrap it at 2nt
= That won’t overflow

private double mPhase = 0.0;

@Override

public void updateState(double delta) {
// phase loops every 1/w s
// Each dt moves the phase by 2pi*w*dt
mPhase += mOmega*delta;
if (mPhase>2.0*Math.PI) mPhase-=2.0*Math.PI;
this.setAcceleration(new Vector2D(0.0,

-1.0¥*mAmplitude*mOmega*mOmega*Math.sin(mPhase)));

this.applyMotionEquations(delta);

Adjust the Simulation to Handle the Floor

= Everywhere we had the floor height, we replace with a call to
mFloor.getPosition().getY()
= We can now detect collision easily enough, but how does the
moving floor affect the rebound speed?
= We assume that the floor does not accelerate within each timestep
= j.e. That we have a series of constant velocity frames
= This is justifiable for small T

l vi Reference frame T K(v1+v2)+v2
of world
T v2 T v2
l v1+v2 T K(v1+v2)
Reference frame

of floor

10

Parting words...

“Finally, we must admit that a model may confirm our
biases and support incorrect intuitions. Therefore, models
are most useful when they are used to challenge existing
formulations, rather than to validate or verify them. Any
scientist who is asked to use a model to verify or validate a
predetermined result should be suspicious.”

Verification, Validation, and Confirmation of
Numerical Models in the Earth Sciences.

Science, 1994, Vol. 263, 5147
Naomi Oreskes, Kristin Shrader-Frechette, Kenneth Belitz

11

