
11/12/2008

1

MIPS Assembly

Operating Systems (CST 1A)

Michaelmas 2008

Handout 2

What is MIPS?

• A Reduced Instruction Set Computer (RISC)
microprocessor:

– Developed at Stanford in the 1980s [Hennessy]

– Designed to be fast and simple

– Originally 32-bit; today also get 64-bit versions

– Primarily used in embedded systems (e.g. routers,
TiVo’s, PSPs…)

– First was R2000 (1985); later R3000, R4000, …

• Also used by big-iron SGI machines (R1x000)

11/12/2008

2

MIPS Instructions

• MIPS has 3 instruction formats:

– R-type - register operands

– I-type - immediate operands

– J-type - jump operands

• All instructions are 1 word long (32 bits)

• Examples of R-type instructions:

add $8, $1, $2 # $8 <= $1 + $2

sub $12, $6, $3 # $12 <= $6 - $3

and $1, $2, $3 # $1 <= $2 & $3

or $1, $2, $3 # $1 <= $2 | $3
• Register 0 ($0) always contains zero

add $8, $0, $0 # $8 <= 0

add $8, $1, $0 # $8 <= $1

R-Type Instructions

• Consists of six fixed-width fields:

op: basic operation of the instruction, typically called the opcode

rs: the first register source operand

rt: the second register source operand

rd: the register destination operand; gets result of the operation

shamt: shift amount (0 if not shift instruction)

funct: function. This field selects the specific variant of the operation

and is sometimes called the function code; e.g. for op = 0:

(funct = 32) => add ; (funct = 34) => sub

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

11/12/2008

3

I-Type Instructions

• I = immediate

• Useful for loading constants, e.g:

– li $7, 12 # load constant 12 into reg $7

• Opcode determines the format

• Also used for various other instructions…

op rs rt address

6 bits 5 bits 5 bits 16 bits

Immediate Addressing on MIPS

• or, and, xor and add instructions have immediate forms
(ori, andi, xori and addi), e.g.
ori $8, $0, 0x123 # puts 0x0000 0123 into reg 8

ori $9, $0, -6 # puts 0x0000 fffa into reg 9

addi $10, $0, 0x123 # puts 0x0000 0123 into reg 10

addi $11, $0, -6 # puts 0xffff fffa into reg 11

note sign extension...

• lui instruction loads upper 16 bits with constant and sets ls
16 bits to zero
lui $8, 0xabcd # puts 0xabcd 0000 into reg 8

ori $8, $0, 0x123 # sets ls bits; (reg 8 = 0xabcd 0123)

• li pseudo-instruction (see later) generates lui/ori or ori code
sequence as needed...

11/12/2008

4

J-Type Instruction

• Last instruction format - Jump-type (J-type)

• Only used by unconditional jumps, e.g.
– j dest_addr # jump to (target<<2)

– Cannot directly jump more than 226 instructions away…

• Branches use I-type, not J-type:

– Must specify 2 registers to compare, e.g.
– beq $1, $2, dest # goto dest iff $1==$2

– 16 bit offset => must be within 216 instructions

opcode Target address [26 bits]

Big Picture

x = a - b + c - d;

sub $10, $4, $5

sub $11, $6, $7

add $12, $10, $11

0 4 5 10 0 34

0 6 7 11 0 34

0 10 11 12 0 32

000000 00100 00101 01010 00000 100010

000000 00110 00111 01011 00000 100010

000000 01010 01011 01100 00000 100000

High level Language

Assembly

Machine

Assumes that a, b, c, d are in $4, $5, $6, $7 somehow

11/12/2008

5

MIPS Register Names

• Registers are used for specific purposes, by convention

• For example, register 4, 5, 6 and 7 are used as parameters or arguments

for subroutines (see later)

• They can be specified as $4, $5, $6, $7 or as $a0, $a1, $a2 and $a4

• Other examples:

$k0, $k1 $26, $27 kernel temporaries

$gp $28 global pointer

$sp $29 stack pointer

$fp $30 frame pointer

$ra $31 return address

$zero $0 zero

$at $1 assembler temporary

$v0, $v1 $2, $3 expression evaluation & result

$t0 ... $t7 $8 ... $15 temporary registgers

$s0 ... $s7 $16 ... $23 saved temporaries

$t8, $t9 $24, $25 temporary

Our first program: Hello World!

.text # code section

.globl main

main: li $v0, 4 # system call for print string

la $a0, str # load address of string to print

syscall # print the string

li $v0, 10 # system call for exit

syscall # exit

.data

str: .asciiz “Hello world!\n” # NUL terminated string, as in C

� Comments to aid readability

� Assembly language 5-20x line count of high level languages

� Development time strongly related to number of lines of code

11/12/2008

6

Assembler Directives

• To assist assembler to do its job ...

• ... but do not necessarily produce results in memory

• Examples:
.text tells assembler that following is part of code area

.data following is part of data area

.ascii str insert Ascii string into next few bytes of memory

.asciiz str as above, but add null byte at end

.word n1,n2 reserve space for words and store values n1, n2 etc. in them

.half n1,n2 reserve space for halfwords and store values n1, n2 etc. in them

.byte n1,n2 reserve space for bytes and store values n1, n2 etc. in them

.space n reserve space for n bytes

.align m align the next datum on 2
m

byte boundary, e.g. .align 2 aligns on word

boundary

.text and .data Directives

• Can be many of these in a program

• Unless specified, successive areas of each type are

concatenated. The following are equivalent:

.text
add ...
sub ...
.data

s1: .ascii “abc”
.text
jal ...
jr ...
.data

s2: .ascii “xyz”

.text
add ...
sub ...
jal ...
jr ...
.data

s1: .ascii “abc”
s2: .ascii “xyz”

11/12/2008

7

Pseudo Instructions

• Assembler may assist by providing pseudo-instructions which

do not exist in real machine but can be built from others.

• Some examples are:

Pseudo Instructions Translated to:

move $1,$2 add $1, $0, $2

li $1, 678 ori $1, $0, 678

la $8, 6($1) addi $8, $1, 6

la $8, label lui $1, [label-hi]

ori $8, $1, [label-lo]

b label bgez $0, $0, label

beq $8, 66, label ori $1, $0, 66

beq $1, $8, label

Load and move instructions

la $a0, addr # load address addr into $a0

li $a0, 12 # load immediate $a0 = 12

lb $a0, c($s1) # load byte $a0 = Mem[$s1+c]

lh $a0, c($s1) # load half word [16-bits]

lw $a0, c($s1) # load word [32-bits]

move $s0, $s1 # $s0 = $s1

11/12/2008

8

Control Flow Instructions

Assembly language has very few control structures:

� Branch instructions: if <cond> then goto <label>

beqz $s0, label # if $s0==0 goto label

bnez $s0, label # if $s0!=0 goto label

bge $s0, $s1, label # if $s0>=$s1 goto label

ble $s0, $s1, label # if $s0<=$s1 goto label

blt $s0, $s1, label # if $s0<$s1 goto label

beq $s0, $s1, label # if $s0==$s1 goto label

bgez $s0, $s1, label # if $s0>=0 goto label

� Jump instructions: goto label

We can build while loops, for loops, repeat-until

loops, if-then-else structures from these primitives

If-then-else

if ($t0==$t1) then /* blockA */ else /* blockB */

beq $t0, $t1, blockA

j blockB

blockA: … instructions of then block …

j exit

blockB: … instructions of else block …

exit: … subsequent instructions …

11/12/2008

9

Repeat-Until

repeat … until $t0>$t1

… initialize $t0 …

loop: … instructions of loop …

sub $t0, $t0, 1 # decrement $t0

ble $t0, $t1, loop # if $t0<=$t1 goto loop

Other loop structures are similar…

Jump Instructions

• J-type instructions have 6 bit opcode and 26 bit address

• Larger range of transfer addresses

• Also specifies word address, not byte address, so
effectively 2

28
byte addressing

• Assembler converts very distant conditional branches
to inverse-branch and jump

beq $3, $2, very_distant_label

• converted to:
bne $3, $2, label1 # continue

j very_distant_label

lbl1: ... instructions ... # continue from here

11/12/2008

10

MIPS Indirect Jump

• Indirect jump via register (32 bit address) too, e.g.
jr $4 # reg 4 contains target address

• Also can be used for jump table

• Suppose we need to branch to different locations
depending on value in register 5, e.g. 0, 4, 8, 12, 16, 20

.data

label: .word l1, l2, l3, l4, l5, l6

.text

main: ... # instructions setting reg 4

lw $10, label($4)

jr $10

l1: ...

l2: ... # and other labels too

Simulators

• Any digital computer can, in principle, be

programmed to simulate any other

• For example, SPIM simulator can run on various

machines including Unix, PC/Windows, and Mac

• Simulators may only simulate part of machine, e.g.

only some input/output devices, a subset of

instructions etc.

• Simulators are generally slower than using the real

machine, but e.g. simulating 1960’s machine on

modern hardware may be faster than original

11/12/2008

11

Interpreters and Abstract Machines

• Simulation generally refers to reproducing effects of a real

machine ...

• ... but can design an abstract or virtual machine which is never

implemented in hardware

• Often used for portability with compilers, e.g. p-code machine

for Pascal, or Java Virtual Machine for Java, etc.

• An interpreter is then used to execute the code. The

interpreter can easily be implemented on a variety of

machines as a conventional program and takes p-code or

JVM-code as data (instructions)

• Interpreters and simulators are identical concepts

22

Spim Simulator

• “1/25th the performance at none of the cost”

• Simulates a MIPS-based machine

• Includes some basic input/output routines to
make programming easier

• Installation

1. From the Patterson & Hennesey textbook CD

2. From the internet

http://www.cs.wisc.edu/~larus/spim.html

11/12/2008

12

23

PC Spim

24

PC Spim

• Note the top window – it contains the state of all

registers.

11/12/2008

13

25

PC Spim

• The button on the top right runs the program to its end, after you click “OK”
on the dialog box. Note that you won’t see the register changes until the
program ends.

26

PC Spim

• Click this menu item to reinitialize PC Spim – it’s like

rebooting your computer. It’s often necessary to

click Reload to run your program again.

11/12/2008

14

27

PC Spim

• Click this menu item to change settings for the

emulator.

28

PC Spim

• Click this menu item to change settings for the emulator.

• Sometimes it’s helpful to uncheck “General registers in hexadecimal” so
that you can read values as regular numbers.

11/12/2008

15

29

PC Spim

• Click the button that looks like a hand to set breakpoints. The
program will stop running at positions you indicate, and wait
for your authorization to continue upon reaching said point.
You will also see the register values updated.

SPIM: Assembler, Simulator + BIOS

• Combines assembler and simulator

• Assembly language program prepared in your

favourite way as a text file

• Label your first instruction as main, e.g.

main: add $5, $3, $4 # comment

• Read program into SPIM which will assemble it and

may indicate assembly errors (1 at a time!)

• Execute your program

• Results output to window which simulates console

(or by inspection of registers)

11/12/2008

16

SPIM System calls

• load argument registers

• load call code

• syscall

li $a0, 10 # load argument $a0=10

li $v0, 1 # call code to print integer

syscall # print $a0

SPIM system calls

procedure code $v0 argument

print int 1 $a0 contains number

print float 2 $f12 contains number

print double 3 $f12 contains number

print string 4 $a0 address of string

11/12/2008

17

SPIM system calls

procedure code $v0 result

read int 5 res returned in $v0

read float 6 res returned in $f0

read double 7 res returned in $f0

read string 8

.data
newln:.asciiz “\n”

.text

.globl main
main: li $s0, 1 # $s0 = loop counter

li $s1, 10 # $s1 = upper bound of loop
loop: move $a0, $s0 # print loop counter $s0

li $v0, 1
syscall
li $v0, 4 # syscall for print string
la $a0, newln # load address of string
syscall
addi $s0, $s0, 1 # increase counter by 1
ble $s0, $s1, loop # if ($s0<=$s1) goto loop
li $v0, 10 # exit
syscall

Example: Print numbers 1 to 10

11/12/2008

18

Example: Increase array elements by 5

.text

.globl main
main: la $t0, Aaddr # $t0 = pointer to array A

lw $t1, len # $t1 = length (of array A)
sll $t1, $t1, 2 # $t1 = 4*length
add $t1, $t1, $t0 # $t1 = address(A)+4*length

loop: lw $t2, 0($t0) # $t2 = A[i]
addi $t2, $t2, 5 # $t2 = $t2 + 5
sw $t2, 0($t0) # A[i] = $t2
addi $t0, $t0, 4 # i = i+1
bne $t0, $t1, loop # if $t0<$t1 goto loop
.data

Aaddr: .word 0,2,1,4,5 # array with 5 elements
len: .word 5

Procedures

• jal addr

– store address + 4 into $ra

– jump to address addr

• jr $ra

– allows subroutine to jump back

– care must be taken to preserve $ra!

– more work for non-leaf procedures

11/12/2008

19

Procedures

• one of the few means to structure your

assembly language program

• small entities that can be tested separately

• can make an assembly program more

readable

• recursive procedures

Write your own procedures

prints the integer contained in $a0
print_int:

li $v0, 1 # system call to
syscall # print integer
jr $ra # return

main: . . .
li $a0, 10 # we want to print 10
jal print_int # print integer in $a0

11/12/2008

20

Write your own procedures

.data
newline:.asciiz “\n”

.text
print_eol: # prints "\n"

li $v0, 4 #
la $a0, newline #
syscall #
jr $ra # return

main: . . .
jal print_eol # printf(“\n”)

Write your own procedures

.data
main:

li $s0, 1 # $s0 = loop ctr
li $s1, 10 # $s1 = upperbnd

loop: move $a0, $s0 # print loop ctr
jal print_int #
jal print_eol # print "\n"
addi $s0, $s0, 1 # loop ctr +1
ble $s0, $s1, loop # unless $s0>$s1…

11/12/2008

21

Non-leaf procedures

• Suppose that a procedure procA calls another

procedure jal procB

• Problem: jal stores return address of

procedure procB and destroys return address

of procedure procA

• Save $ra and all necessary variables onto the

stack, call procB, and retore

The Stack

8($sp)

4($sp)

0($sp)

high address

low address

stack pointer $sp -->

The stack can be used for

� parameter passing

� storing return addresses

� storing result variables

� stack pointer $sp

$sp = $sp - 12

11/12/2008

22

Fibonacci… in assembly!

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2)

0, 1, 1, 2, 3, 5, 8, 13, 21,…

li $a0, 10 # call fib(10)
jal fib #
move $s0, $v0 # $s0 = fib(10)

fib is a recursive procedure with one argument $a0

need to store argument $a0, temporary register $s0 for

intermediate results, and return address $ra

fib: sub $sp,$sp,12 # save registers on stack
sw $a0, 0($sp) # save $a0 = n
sw $s0, 4($sp) # save $s0
sw $ra, 8($sp) # save return address $ra
bgt $a0,1, gen # if n>1 then goto generic case
move $v0,$a0 # output = input if n=0 or n=1
j rreg # goto restore registers

gen: sub $a0,$a0,1 # param = n-1
jal fib # compute fib(n-1)
move $s0,$v0 # save fib(n-1)
sub $a0,$a0,1 # set param to n-2
jal fib # and make recursive call
add $v0, $v0, $s0 # $v0 = fib(n-2)+fib(n-1)

rreg: lw $a0, 0($sp) # restore registers from stack
lw $s0, 4($sp) #
lw $ra, 8($sp) #
add $sp, $sp, 12 # decrease the stack size
jr $ra

11/12/2008

23

Optional Assembly Ticks

• Tick 0: download SPIM (some version) and
assemble + run the hello world program

• Tick 1: write an assembly program which takes an
array of 10 values and swaps the values (so e.g.
A[0]:= A[9], A[1]:= A[8], … A[9]:= A[0])

• Tick 2: write an assembly program which reads in
any 10 values from the keyboard, and prints them
out lowest to highest

There will be a prize for the shortest correct answer
to Tick 2 – email submissions to me by 21st Nov

