// This program is due to Dr A.C. Norman

import java.applet.Applet;
import java.awt.Graphics;

public class Turtle extends Applet
{
 private static final double SIZE = 5d; // Try changing
 private static final double INC = 11d; // these three
 private static final int N = 5000; // values.

 public void paint(Graphics g)
 { double x = 200d, y = 300d, th1 = 0d, th2 = 0d, th3 = 0d;
 for (int i=0; i<N; i++)
 { th3 = th3 + INC;
 th2 = th2 + th3;
 th1 = th1 + th2;
 double x1 = x + SIZE*Math.cos(Math.PI*th1/180d);
 double y1 = y + SIZE*Math.sin(Math.PI*th1/180d);
 g.drawLine((int)x, (int)y, (int)x1, (int)y1);
 x = x1;
 y = y1;
 }
 }

 // It would be safer to normalise each angle after each increment
 // by including statements such as:
 //
 // if (th3 >= 180d)
 // th3 = th3 - 360d;
}

Key this source into the file Turtle.html

<HTML>
<BODY>
<APPLET code="Turtle.class" width=400 height=400>
Java is not available.
</APPLET>
</BODY>
</HTML>

Give the following command:

$ appletviewer Turtle.html &
The result is a sequence of straight-line segments which form a remarkably symmetrical figure given that there is no apparent attempt in the program to produce a result which has such symmetry.

```java
public class EightQueens
{
    private static int count = 0;

    public static void main(String[] args)
    {
        tryIt(0, 0, 0);
        System.out.printf("There are %d solutions\n", count);
    }

    private static void tryIt(int left, int above, int right)
    {
        if (above == 0xFF)
            count++;
        else
        {
            int poss = ~(left | above | right) & 0xFF;
            while (poss != 0)
            {
                int place = poss & (~poss);
                tryIt((left | place) << 1, above | place, (right | place) >> 1);
                poss = poss & (~place);
            }
            return;
        }
    }
}
```

```java
import java.util.Calendar;
import java.util.GregorianCalendar;

public class Friday13
{
    public static void main(String[] args)
    {
        int[] days = {0, 0, 0, 0, 0, 0, 0, 0};
        GregorianCalendar cal = new GregorianCalendar(1900, 0, 13); // Start on 13.1.1900
        for (int m = 0; m < 4800; m++) // For 4800 months:
            cal.add(Calendar.MONTH, 1); // Advance to next month
        System.out.printf("Sunday \%d\n", days[1]); // Print out the day counts
        System.out.printf("Monday \%d\n", days[2]); // of the thirteenths.
        System.out.printf("Tuesday \%d\n", days[3]);
        System.out.printf("Wednesday \%d\n", days[4]);
        System.out.printf("Thursday \%d\n", days[5]);
        System.out.printf("Friday \%d\n", days[6]);
        System.out.printf("Saturday \%d\n", days[7]);
        cal.add(Calendar.DAY_OF_MONTH, -7 * 20871); // Go back 20871 weeks...
    }
}
```
System.out.printf(cal.get(Calendar.DAY_OF_MONTH) + "." + // which takes
(cal.get(Calendar.MONTH)+1) + "." + // us back to
cal.get(Calendar.YEAR) + ".%n); // 13.1.1900
}