
Names in Distributed Systems

* Unique Identifiers (UIDs) e.g. 128 bits
are never reused
refer to either: nothing, or: the same thing at all times
UIDs (may) achieve location-independence: the named object can be moved

* pure and impure names (Needham)

* pure names
- the name itself yields no information e.g. UID
- contains no location information
- commits system to nothing
- can only be used to compare with other similar bit-patterns e.g. in table look-up

* impure names
examples: email addresses
 foo.cl.cam.ac.uk
 host-ID, object-ID (unless used ONLY to generate UIDs)
 disc-pack-ID, object-ID

- the name yields information
- commits the system to maintaining the context in which the name is to be resolved
 e.g. the directory hierarchy uk/ac/cam/cl

N-1

Unique names

uniqueness is achievable by using

 - a hierarchical name: scope of uniqueness is level in hierarchy

 - a bit pattern: flat, system-wide uniqueness

* a problem with pure names:

- how do you know that an object does not exist?
 how may a global search be avoided?

* a problem with impure names

- how to restructure the namespace
 e.g. when objects move about
 when companies restructure

Issues

N-2

- how to engineer uniqueness?

- where to look them up?

examples of names - note requirement for unique identification

Health Service ID - every citizen at birth (but hospitals still use local names)
UK National Insurance - on employment
US Social Security - on employment

Professional Societies: ACM, IEEE, BCS
Charities: National Trust, RSPB, ...
Services: RAC, AA, AAA (US)

Credit cards
Bank accounts
Utilities: gas/electricity/water/phone customer numbers

Loyalty schemes: Airlines - frequent flyer, hotels, shops

Passport
Driving licence

look for structure, explicit or implicit
is allocation centralised or distributed?
what is the resolution context?

Database key - must be unique. e.g. "David Evans" could be a poor choice

N-3

Telephone company analogy (wired service)

* geographically partitioned, distributed naming database

* given a name, (Yudel Luke) or (Yudel Luke, 3 Acacia Drive) which directory to use?
 don’t know where to lookup pure names

* call (#) -> unobtainable, # came from official cache
we detect out-of-date values, call directory enquiries
cache until new directory comes

* frequency of update (some years ago)
e.g. Cambridge area: 1,000,000 entries
 5,000 updates per week

* caching numbers in a personal address book (an unofficial cache)
call (#) -> unobtainable, report fault if use often
call directory enquiries, or ask another contact (may have moved, or changed provider)

* can’t find an entry
 e.g. Phillips company - check spelling: Philips

e.g. look under S.S. rather than Social Services

BT offer a web service www.thephonebook.com (name and address -> #)
- only offers exact search e.g.Phillips, Cambridge - doesn’t suggest Philips
need higher-level tools - "do you mean Philips?" increasingly use search engines to augment directories

N-4

electronic is current, paper is an official cache

Naming Services in Distributed Systems

in general - provide clients with values of attributes of named objects

name space
the collection of valid names recognised by a name service
a precise specification is required, giving the structure of names

e.g. ISBN-10: 1-234567-89-1 namespace identifier: namespace-specific string
 /a/b/c/d filing system, variable length, hierarchical
 puccini.cl.cam.ac.uk DNS machine name, see later for DNS
 e.g. Mach OS 128-bit port name (system-wide UID)

naming domain
a name space for which there exists a single overall administrative authority
for assigning names within it
this authority may delegate name assignment for nested sub-domains (see below for Internet DNS)

name resolution or binding
obtaining a value which allows an object to be used

e.g. file-service?
IP-address, port#, timestamp

name
service

LATE BINDING is considered GOOD PRACTICE
programs should contain names, not addresses e.g. a machine may fail and a service restarted on another.
Your local agent may cache resolved names for subsequent use + may expire values based on timestamp.
Cached values aren’t embedded in programs and are always used at one’s own risk.
If they don’t work you have (your agent has) to look the name up again.

for a large-scale system, name resolution is an iterative process which requires navigation among name servers (N-8)

N-5

Names, attributes and values stored by a name service

example: user

computer

service

group

alias

directory?

login name, mailbox host(s)

architecture, OS, network-address, owner

network-address, version#, protocol

list of names of members

canonical name

list of hosts holding the directory

directories may be held as a separate structure
rather than as just a type of name as here

* attribute-based (inverse) lookup may be offered -
 a YELLOW PAGES style of service for object discovery e.g. X.500, LDAP

* directories are likely to be replicated for scalability, fault-tolerance, efficiency

* directory names will resolve to a list of hosts, as above, with their addresses to avoid further lookup

TOO MUCH information might be dangerous - could reveal structure

N-6

object type attribute list

query:
object type, object-name, attribute-name -> attribute-value

attribute-based lookup may be offered (yellow-pages style):
object-type, attribute-value -> list of object names having that attribute value

checking:
object type, object-name, attribute-name, attribute-value -> yes/no

machine, foo.cl.cam.ac.uk, location -> IP address
user, some-user-name, public-key -> PK-bit-pattern
etc

ACL, filename, some-user-name, write-access -> yes/no
(is the user on the ACL with the permissions requested? e.g. Xerox PARC Grapevine)

machine, OS version# -> list of machines

N-7
A useful structure for names

Architecture of name resolution

user
program

user
agent

NS1

NS2

NS3

user agent starts off with the root address of the name service
or some well-known sub-tree root:
 e.g. the location of the uk directory for agents in the UK

to resolve cl.cam.ac.uk, the UA can start from the uk directory
then ac then cam then cl

the UA (and directories) will cache resolved names as hints for future use

alternative: any name server will take a name,
resolve it and return the required attribute
client can sometimes choose e.g. select "recursive" in DNS

N-8

in practice, there are engineering optimisations: local caches are tried first,
directories may be able to indicate whether they offer recursive evaluation, etc.

Examples of name services

Grapevine - see below N-17
Xerox PARC early 80’s
- two-level naming hierarchy name@registry
 birrell@pa
- primarily for email, but also gave (primitive) authentication (password as attribute) and access control
- any GV server would take a request from a GV-user agent

ISO standard based on an extension of Grapevine, developed at Xerox PARC
- three-level naming hierarchy

Clearinghouse

DNS - see below N-10 to N-13

GNS - see below N-18 to N-20
developed for DEC at SRC, Lampson et al. 1986
 - full hierarchical naming
 - support for namespace reconfiguration

ref: Birrell, Levin, Needham, Schroeder, Comm. ACM 25(1) April 82

N-9

X.500 - see below N-21

Example: DNS - the Internet Domain Name System

What does it name? in practice, the objects named are:
 * computers
 * servers such as mail hosts
 * servers providing other services

* domains directories - resolution contextsnamed objects

examples of domain names:
mit.edu
cl.cam.ac.uk
cs.tcd.ie
tu-darmstadt.de

Before 1987 the whole naming database was held centrally and copied to selected servers periodically
The Internet had become too large for this approach and a hierarchical scheme was needed
 (Mockapetris 1987)

N-10

Definition of names
 hierarchy of components or labels (total max 255 chars)
 highest level of hierarchy is last component
 label: max 63 chars, case insensitive, restrictions on characters (but arguments over relaxing these)
final label of a fully qualified name (a TLD) can be :
 3+ letter code: type of hosting organisation
 edu, gov, mil are still US-based, others e.g. com, net, org, int, jobs can be anywhere
 2+ letter code: area of registrar, defined by ISO 3166 e.g. uk, fr, ie, de,
 arpa: for inverse lookup (e.g. 20.0.232.128.in-addr.arpa)

final 2-letter label doesn’t imply country of location of host, just where registered
e.g. www.yahoo.co.uk has been in Germany

queries can relate to individual hosts or zones/domains, examples:

A computer name -> IPv4 address
AAAA computer name -> IPv6 address
MX mail-host (domain) -> < host, preference, IP address > list
 includes mail hosts for detached computers
NS DNS servers for a domain -> < host, IP address, ... > list

computers using DNS are grouped into zones, e.g. uk, cam
within a zone, management of sub-domains is delegated
 e.g. cl is managed locally by the domain manager - names added to a local file

primary name server (authority) for a zone is the computer that holds the master list for the zone
usually there will be secondary servers, holding replicas, for the zone

N-11

Unix examples
/etc/hosts holds IP addresses of hosts in local domain

$ /usr/bin/nslookup
> set q=A
> cosi.cl.cam.ac.uk
Address: 128.232.8.110
> www.cl.cam.ac.uk
Address: 128.232.0.20
>set q=MX
>cl.cam.ac.uk
mail exchanger = 5 mx.cl.cam.ac.uk
Address: 128.232. ...

$ /usr/bin/nslookup
> set q=NS
> cl.cam.ac.uk
Server: 128.232.1.2
Address: 128.232.1.2#53
cl.cam.ac.uk nameserver=resolv1.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv6.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv2.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv3.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv0.cl.cam.ac.uk.

> set q=A
> resolv1.cl.cam.ac.uk
 ...
Address = 128.232.1.2

DNS name servers (note the large scale)

* the domain database is partitioned into directories which form a distributed namespace

* resolved queries are cached (by user agent and at directories) as naming data tends to be stable
 if not in directory, consult cache. values returned with a TTL (time to live)

e.g. ac.uk may be held on the computer nsl.cs.ucl.ac.uk

* directories are replicated for availability and good response
 (authoritative name server for domain is distinguished (weak consistency))

* can lookup DNS directory address for a domain: IP address, well-known port
 need a starting point for name resolution

cl.cam.ac.uk
names - attributesac.uk cam.ac.uk

cl.cam.ac.uk
eng.cam.ac.uk

 cam.ac.uk
 cl.cam.ac.uk
 qmw.ac.uk
dcs.qmw.ac.uk

optimisations

* queries and responses may be batched into composite query messages

N-12

frequently used so have
a redundant direct link (engineering issue)

 DNS future issues

1. mobile/roaming devices attach anywhere worldwide

2. mobile, wireless ad-hoc networks, groups form (MANETS)
 (i) some node may act as an internet gateway
 single-hop or multi-hop connection to it
 (ii) may be detached from Internet, may be prepared to share services

approaches
first need protocols - mobile IP: mip6 IETF working group

for 1 above: device can contact local DNS server
 local and home can cooperate
 can you be monitored while roaming? - privacy?

for 2(ii) above: any node may broadcast offering to act as DNS server
 asuming it has server code and others have client code
 the group can then advertise services to clients

for 2(i) above - any node can connect, as in 1, via the gateway,
 provided gateway has appropriate code

N-13

Back to general name service issues: Replication and Consistency

directories are replicated for scalability etc....
how should propagation of updates between replicas be managed?

lookup (args) is the most recent value, known system-wide,
guaranteed to be returned?

if system-wide consistency is guaranteed we have: - delay to update
 - delay on lookup

it is essential to have fast access to naming data
- so we must relax the strong consistency requirement

this is justified because:
1. naming data doesn’t change very fast, changes propagate quickly, inconsistencies will be rare

YES - info on users and machines...usually
NO - distribution lists
NEW/NO - mobile users and computers
NEW - huge number of things to be named - does the design rely on low update traffic?
 (like service advertisements)

2. we detect obsolete naming data when it doesn’t work
YES - users
NO - distribution lists

3. if it works it doesn’t matter that it’s out of date
you might have made the request a little earlier - recall uncertainties over time in DS

N-14

lookup (args) either: value, version# / timestamp
or: not known at time (timestamp of last update)

The crux of this problem

what should be returned when only weak consistency is supported:

consistency vs availability tradeoff
have to choose availability for name services - they underlie most use of the system

examples:
service on failed machine - restart at new IP address - update directories - rare event
user changes company - coarse time grain
companies merge - coarse time grain
change of password - takes time to propagate - insecurity during propagation?
changes to ACLs and DLs - insecurity during propagation?
revocation of users’ credentials - may have been used for authentication/authorisation
hot lists - must PUSH rather than PULL - must propagate fast

so - take care what name services are being used for, and how they are being used.
 Perhaps active database triggers could be useful
 (register interest in some change - notified of change immediately)
 DNS-SD tries to do this

N-15

Long-term consistency must be ensured for correctness

requirement:
if updates stopped there would be consistency after all updates had propagated

* updates are propagated by the message transport system
 conflicting updates might arrive out of order
 need an arbitration policy e.g. based on timestamps

* typically, transmit whole directories periodically and compare them
 tag the directory with a version number after this consistency check
 e.g. GNS declares a new "epoch" after such a check

N-16

this cannot be tested
 - we cannot guarantee there will be periods with no updates (quiescence)
 - we would, in any case, need to specify failure behaviour in detail

N-17Example: Grapevine - outline

registration
server

mail
server

registration
database mail host

2D names name@registry

A grapevine (GV) server

every GV server contains the gv registry which contains
registry name -> list of locations

2 types of name within a registry
group-name -> list of members

used for distribution lists,
 access control lists

individual-name -> attributes: (password, mail-host list,)

Note: small scale allows rapid navigation

problems - soon outgrew its specification:
 #servers, #clients
 huge distribution lists not foreseen
 message transport used for update messages - updates could be held up.

N-18DEC’s Global Name Service (GNS)

Butler Lampson 1986, Designing a Global Name Service, Proc. 5th ACM PODC, pp1-10
Aims: * long life

many changes in the organisation of the name space
* large size

arbitrary number of names and administrative domains

define two-dimensional (2D) names of the form < directory name, value name >

where value names may be a tree such as
 foo

mailboxes password phone/fax

hostA..... hostN

the GNS directory structure is
 - hierarchical
 - every directory has a UID, a directory identifier (DI)

A full name is any name starting with a DI
* doesn’t require a single root directory
* doesn’t rely on the availability of some root directory

Names

N-19GNS continued
If the directory hierarchy is reconfigured a directory may still be found via its DI
Names starting with that DI will not change, if the reconfiguration is above that DI

top

DEC IBM

Cam-MA SRC YTH TJW

top

IBM

YTH TJWDEC

Cam-MA SRC

Compaq

old names still work
below the DEC directory

Support is needed to locate a directory from its DI (a pure name - where do we look it up?)
as well as the usual location of directories by pathname lookup.
Top level directories provide DIs with directory names.

Compaq

top

DEC 311Compaq

999

552

top

DEC 311

Compaq

999

552

N-20

top

DEC 311Compaq

999

552

top

DEC 311

Compaq

999

552

names starting from DEC: 311/SRC, birrell
name of DEC directory: is always 311

was: 999/DEC, name
now: 999/Compaq/DEC, name

names starting above DEC

was: 999/DEC/SRC, birrell
now: 999/Compaq/DEC/SRC, birrell

directory entries
 - include DIs with directory names
 - include pathnames from root

directory top=999

311=999/DEC
552=999/Compaq

directory DEC=311

directory Compaq=552

directory top=999

311=999/Compaq/DEC
552=999/Compaq

directory DEC=311

directory Compaq=552

311=999/Compaq/DEC

N-21X.500 Directory Service (White and Yellow pages)

ISO and CCITT standard, above OSI protocol stack.
More general than a name service where names must be known precisely and are resolved to locations.

components:
DIT directory information tree
DSA directory service agent
DUA directory user agent
DAP directory access protocol

resource-consuming and difficult to use

1993 major revision including replication, access control, schema management.
But X.500 was never accepted as a generic name service.
X.509 certificates for authentication and authorisation have been successful.

Lightweight Directory Access protocol (LDAP) Howes, Kille, Yeong, Robbins, 1993

* access protocol built on TCP/IP

* heavy use of strings, instead of ASN.1 data-types

* simplification of server and client

* current status V3

* LDUP duplication and update protocol (but see internet draft draft-zeilenga-ldup-harmful-02.txt)

IETF accepted. can download free and deploy - widely used

Naming - summary

Naming for the Internet - see DNS

Naming for companies, world-wide - see Grapevine, GNS

Standard name services - X.500 (CCITT, ISO), X.509 for authentication, LDAP (IETF)

Naming for the web - document names are based on Internet naming:
 scheme://host-name:port/pathname at host
 scheme = protocol: http, ftp, local file, ...
 host name = web server’s DNS address, default port 80
 pathname in web server’s world of file containing web page

e.g. http://www.cl.cam.ac.uk/research/.....

Also web services...

N-22

Object-oriented middleware

Name Services in middleware

remotely accessible objects are registered with local ORB
a remote object reference is returned which may be entered in a name service
 together with an associated name

e.g. CORBA Naming Service
 name -> remote object reference
 CORBA Trading Service
 attributes -> name, remote object reference
 JAVA Naming and Directory Interface (JNDI) for services

 naming interface: service interface publication
 service-name -> remote object reference
 directory interface: attribute -> remote object reference

N-23

Message-oriented middleware

MOM evolved from the packet switching paradigm
naming and routing may be defined statically
e.g. IBM MQSeries queue names are assumed known to the application
 and embody fixed routing from client to server

Event-based middleware
names are topics or event types, used by (advertisers) publishers and subscribers

topics may be assumed to be known (TIBCO)
 or may be advertised (Siena, Hermes, ...)

message routing tables, for publications,
 are set up from (advertisments and) subscriptions

e.g. JMS (Java Messaging Service) can use JNDI

N-24

subscription can be either topic/type or attribute/content-value based
 e.g. topic hierarchy: stocks . stock-exchange-name . stock-type . stock-subtype
 subscription: stocks . * . utilities . *

may be integrated with a programming language

e.g. for message type: seen (person, room)
 subscription: seen (person = *, room = FN34)

e.g. attribute/content:
 subscription: stocks, stock-exchange-name=NY, stock-type=mining, value>$100, ...

