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Routing

An Engineering Approach to
Computer Networking

What is it?

• Process of finding a path from a source
to every destination in the network

• Suppose you want to connect to
Antarctica from your desktop
– what route should you take?
– does a shorter route exist?
– what if a link along the route goes down?
– what if you’re on a mobile wireless link?

• Routing deals with these types of issues

Basics

• A routing protocol sets up a routing
table in routers and switch controllers

• A node makes a local choice depending
on global topology: this is the
fundamental problem

Key problem

• How to make correct local decisions?
– each router must know something about

global state
• Global state

– inherently large
– dynamic
– hard to collect

• A routing protocol must intelligently
summarize relevant information
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Requirements
• Minimize routing table space

– fast to look up
– less to exchange

• Minimize number and frequency of control
messages

• Robustness: avoid
– black holes
– loops
– oscillations

• Use optimal path

Choices
• Centralized vs. distributed routing

– centralized is simpler, but prone to failure and
congestion

• Source-based vs. hop-by-hop
– how much is in packet header?
– Intermediate: loose source route

• Stochastic vs. deterministic
– stochastic spreads load, avoiding oscillations, but

misorders
• Single vs. multiple path

– primary and alternative paths (compare with
stochastic)

• State-dependent vs. state-independent
– do routes depend on current network state (e.g.

delay)

Outline
• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Telephone network topology

• 3-level hierarchy, with a fully-connected core
• AT&T: 135 core switches with nearly 5 million

circuits
• LECs may connect to multiple cores
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Routing algorithm
• If endpoints are within same CO, directly

connect
• If call is between COs in same LEC, use one-

hop path between COs
• Otherwise send call to one of the cores
• Only major decision is at toll switch

– one-hop or two-hop path to the destination toll
switch

– (why don’t we need longer paths?)
• Essence of problem

– which two-hop path to use if one-hop path is full

Features of telephone network
routing

• Stable load
– can predict pairwise load throughout the day
– can choose optimal routes in advance

• Extremely reliable switches
– downtime is less than a few minutes per year
– can assume that a chosen route is available
– can’t do this in the Internet

• Single organization controls entire core
– can collect global statistics and implement global

changes
• Very highly connected network
• Connections require resources (but all need

the same)

Statistics

• Posson call arrival (independence
assumption)

• Exponential call “holding” time (length!)
• Goal:- Minimise Call “Blocking” (aka

“loss”) Probability subject to minimise
cost of network

The cost of simplicity
• Simplicity of routing a historical necessity
• But requires

– reliability in every component
– logically fully-connected core

• Can we build an alternative that has same
features as the telephone network, but is
cheaper because it uses more sophisticated
routing?
– Yes: that is one of the motivations for ATM
– But 80% of the cost is in the local loop

• not affected by changes in core routing
– Moreover, many of the software systems assume

topology
• too expensive to change them
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Dynamic nonhierarchical
routing (DNHR)

• Simplest core routing protocol
– accept call if one-hop path is available, else drop

• DNHR
– divides day into around 10-periods
– in each period, each toll switch is assigned a

primary one-hop path and a list of alternatives
– can overflow to alternative if needed
– drop only if all alternate paths are busy

• crankback

• Problems
– does not work well if actual traffic differs from

prediction

Metastability

• Burst of activity can cause network to enter
metastable state
– high blocking probability even with a low load

• Removed by trunk reservation
– prevents spilled traffic from taking over direct path

Trunk status map routing
(TSMR)

• DNHR measures traffic once a week
• TSMR updates measurements once an

hour or so
– only if it changes “significantly”

• List of alternative paths is more up to
date

Real-time network routing
• No centralized control

– Each toll switch maintains a list of lightly loaded
links

– Intersection of source and destination lists gives
set of lightly loaded paths

• Example
– At A, list is C, D, E => links AC, AD, AE lightly

loaded
– At B, list is D, F, G => links BD, BF, BG lightly

loaded
– A asks B for its list
– Intersection = D => AD and BD lightly loaded =>

ADB lightly loaded => it is a good alternative path
• Very effective in practice: only about a couple

of calls blocked in core out of about 250
million calls attempted every day
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DDynamicynamic  AAlternativelternative  RRoutingouting

Very simple idea, but can be shown to
provide optimal routes at very low
complexity…

November 2001 Dynamic Alternative Routing 18

Underlying Network PropertiesUnderlying Network Properties

Fully connected network
• Underlying network is a trunk network

Relatively small number of nodes
• In 1986, the trunk network of British Telecom had

only 50 nodes
• Any algorithm with polynomial running time works

fine
Stochastic traffic

• Low variance when the link is nearly saturated
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Dynamic Alternative RoutingDynamic Alternative Routing

Proposed by F.P. Kelly, R.
Gibbens at British Telecom
(well, Cambridge, Really:)

Whenever the link (i, j) is
saturated, use an alternative
node (tandem)

Q. How to choose tandem?

i j
Ci,j

k
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Fixed TandemFixed Tandem

For any pair of nodes (i, j) we assign a fixed
node k as tandem

Needs careful traffic analysis and
reprogramming

 Inflexible during breakdowns and unexpected
traffic at tandem
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Sticky Random TandemSticky Random Tandem

 If there is no free circuit along (i, j), a new call is
routed through a randomly chosen tandem k

 k is the tandem as long as it does not fail
 If k fails for a call, the call is lost and a new

tandem is selected
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Sticky Random TandemSticky Random Tandem

Decentralized and flexible
  No fancy pre-analysis of traffic required
Most of the time friendly tandems are used:

• pk(i, j): proportion of calls between i and j which go
through k

• qk(i, j): proportion of calls that are blocked
pa(i, j)qa(i, j) = pb(i, j)qb(i, j)

We may assign different frequencies to different
tandems
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Trunk ReservationTrunk Reservation
 Unselfishness towards one’s friends
is good up to a point!!!

 We need to penalize two link calls,
at least when  the lines are very busy!

A tandem k accepts to forward calls if it has free
capacity more than  R

i j

k
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Trunk ReservationTrunk Reservation
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Bounds: Bounds: ErlangErlang’’s s BoundBound

 A node connected to C circuits

 Arrival: Poisson with mean v

 The expected value of blocking:
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Max-flow BoundMax-flow Bound

Capacity of (i, j): Cij

Mean load on (i, j):
vij

where f is:
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Trunk ReservationTrunk Reservation
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Traffic, Capacity MismatchTraffic, Capacity Mismatch

 Traffic > Capacity for
some links

 Can we always find a
feasible set of tandems?

Red links: saturated links

White links: not saturated

Good triangle: one red,
two white links
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Greedy AlgorithmGreedy Algorithm

T1

T2

Tk+1

a. No red links

b. Red link and a
good triangle

• Add good
triangle to
the list

c. Red link and no
good triangle

Success!

Success!

Tk

Fail
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T1

T2

Tk+1

a. No red links

b. Red link and a
good triangle

• Add good
triangle to
the list

c. Red link and no
good triangle

Success!

Success!

Tk

Fail

For any p < 1/3, the greedy algorithm is
successful with probability approaching 1.

Greedy AlgorithmGreedy Algorithm
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Extensions to DARExtensions to DAR

 n-link paths
• Too much resources consumed, little benefit

Multiple alternatives
• M attempts before rejecting a call

 Least-busy alternative
Repacking

• A call in progress can be rerouted

November 2001 Dynamic Alternative Routing 32

Comparison of ExtensionsComparison of Extensions
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Features of Internet Routing

• Packets, not circuits (
– E.g. timescales can be much shorter

• Topology complicated/heterogeneous
• Many (10,000 ++) providers
• Traffic sources bursty
• Traffic matrix unpredictable

– E.g. Not distance constrained
• Goal: maximise throughput, subject to min

delay and cost (and energy?)

Internet Routing Model
• 2 key features:

– Dynamic routing
– Intra- and Inter-AS routing, AS = locus of admin control

• Internet organized as “autonomous systems” (AS).
– AS is internally connected

• Interior Gateway Protocols (IGPs) within AS.
– Eg: RIP, OSPF, HELLO

• Exterior Gateway Protocols (EGPs) for AS to AS routing.
– Eg: EGP, BGP-4

Requirements for Intra-AS
Routing

• Should scale for the size of an AS.
– Low end: 10s of routers (small enterprise)
– High end: 1000s of routers (large ISP)

• Different requirements on routing convergence after
topology changes
– Low end: can tolerate some connectivity disruptions
– High end: fast convergence essential to business (making money

on transport)
• Operational/Admin/Management (OAM) Complexity

– Low end: simple, self-configuring
– High end: Self-configuring, but operator hooks for control

• Traffic engineering capabilities: high end only

Requirements for Inter-AS
Routing

• Should scale for the size of the global Internet.
– Focus on reachability, not optimality
– Use address aggregation techniques to minimize core routing

table sizes and associated control traffic
– At the same time, it should allow flexibility in topological structure

(eg: don’t restrict to trees etc)

• Allow policy-based routing between autonomous systems
– Policy refers to arbitrary preference among a menu of available

options (based upon options’ attributes)
– In the case of routing, options include advertised AS-level routes

to address prefixes
– Fully distributed routing (as opposed to a signaled approach) is

the only possibility.
– Extensible to meet the demands for newer policies.
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Intra-AS and Inter-AS routing

inter-AS,
intra-AS
routing in

gateway A.c

network layer
link layer

physical layer

a

b

b

a
aC

A

B
d

Gateways:
•perform inter-AS
routing amongst
themselves
•perform intra-AS
routers with other
routers in their AS

A.c
A.a

C.b
B.a

c
b

c

Intra-AS and Inter-AS routing:
Example

Host 
h2

a

b

b

a
aC

A

B
d c

A.a
A.c

C.b
B.a

c
b

Host
h1

Intra-AS routing
within AS A

Inter-AS
 routing
between 
A and B

Intra-AS routing
within AS B

Basic Dynamic Routing
Methods

• Source-based: source gets a map of the network,
– source finds route, and either
– signals the route-setup (eg: ATM approach)
– encodes the route into packets (inefficient)

• Link state routing:   per-link information
– Get map of network (in terms of link states) at all nodes and find

next-hops locally.
– Maps consistent => next-hops consistent

• Distance vector: per-node information
– At every node, set up distance signposts to destination nodes (a

vector)
– Setup this by peeking at neighbors’ signposts.

 Routing vs Forwarding
 Forwarding table vs Forwarding in simple topologies
 Routers vs Bridges: review
 Routing Problem
 Telephony vs Internet Routing
 Source-based vs Fully distributed Routing

 Distance vector vs Link state routing
 Bellman Ford and Dijkstra Algorithms

 Addressing and Routing: Scalability

Where are we?
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DV & LS: consistency criterion
• The subset of a shortest path is also the shortest

path between the two intermediate nodes.
• Corollary:

– If the shortest path from node i to node j, with distance D(i,j)
passes through neighbor k, with link cost c(i,k), then:

    D(i,j) = c(i,k) + D(k,j)

i
k

j
c(i,k) D(k,j)

Distance Vector

DV = Set (vector) of Signposts, one for each destination

Distance Vector (DV) Approach
Consistency Condition: D(i,j) = c(i,k) + D(k,j)
• The DV (Bellman-Ford) algorithm evaluates this

recursion iteratively.
– In the mth iteration, the consistency criterion holds,

assuming that each node sees all nodes and links m-
hops (or smaller) away from it (i.e. an m-hop view)

A

E D

CB
7

8
1

2

1

2

Example network

A

E D

CB
7

8
1

2

1

A’s 2-hop view
(After 2nd Iteration)

A

E

B
7

1

A’s 1-hop view
(After 1st iteration)

Distance Vector (DV)…
• Initial distance values (iteration 1):

– D(i,i) = 0 ;
– D(i,k) = c(i,k) if k is a neighbor (i.e. k is one-hop

away); and
– D(i,j) = INFINITY for all other non-neighbors j.

• Note that the set of values D(i,*) is a distance
vector at node i.

• The algorithm also maintains a next-hop
value (forwarding table) for every destination
j, initialized as:
– next-hop(i) = i;
– next-hop(k) = k if k is a neighbor, and
– next-hop(j) = UNKNOWN if j is a non-neighbor.
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Distance Vector (DV)…
• After every iteration each node i exchanges

its distance vectors D(i,*) with its immediate
neighbors.

• For any neighbor k, if c(i,k) + D(k,j) <  D(i,j),
then:
–  D(i,j) = c(i,k) + D(k,j)
–  next-hop(j) = k

• After each iteration, the consistency criterion
is met
– After m iterations, each node knows the shortest

path possible to any other node which is m hops
or less.

– I.e. each node has an m-hop view of the network.
– The algorithm converges (self-terminating) in O(d)

iterations: d is the maximum diameter of the
network.

Distance Vector (DV) Example
• A’s distance vector D(A,*):

– After Iteration 1 is:     [0, 7, INFINITY, INFINITY, 1]
– After Iteration 2 is:     [0, 7, 8, 3, 1]
– After Iteration 3 is:     [0, 7, 5, 3, 1]
– After Iteration 4 is:     [0, 6, 5, 3, 1]

A

E D

CB
7

8
1

2

1

2

Example network

A

E D

CB
7

8
1

2

1

A’s 2-hop view
(After 2nd Iteration)

A

E

B
7

1

A’s 1-hop view
(After 1st iteration)

Distance Vector: link cost
changes

Link cost changes:
node detects local link cost change
updates distance table
if cost change in least cost path, notify
neighbors

X Z
14

50

Y
1

algorithm
terminates

“good
news 
travels
fast”

[ 2  1  0][ 5  1  0][ 5  1  0]DV(Z)

[ 1  0  1][ 1  0  1][ 4  0  1]DV(Y)

Iter. 2Iter. 1Time 0

Distance Vector: link cost
changes

Link cost changes:
good news travels fast
bad news travels slow - “count to
infinity” problem! X Z

14

50

Y
60

algo
goes
on!

[ 7  1  0]

[ 8  0  1]

Iter 3

[ 9  1  0]

[ 8  0  1]

Iter 4

[ 7  1  0][ 5  1  0][ 5  1  0]DV(Z)

[ 6  0  1][ 6  0  1][ 4  0  1]DV(Y)

Iter 2Iter 1Time 0
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Distance Vector: poisoned
reverse

If Z routes through Y to get to X :
Z tells Y its (Z’s) distance to X is infinite
(so Y won’t route to X via Z)
At Time 0, DV(Z) as seen by Y is [INF
INF 0], not  [5 1 0] !

X Z
14

50

Y
60

algorithm
terminates

[ 7  1  0]

[ 51  0 1]

Iter 3

[ 50  1 0][ 5  1  0][ 5  1  0]DV(Z)

[ 60  0 1][ 60  0 1][ 4  0  1]DV(Y)

Iter 2Iter 1Time 0

Link State (LS) Approach
• The link state (Dijkstra) approach is iterative, but it pivots

around destinations j, and their predecessors k = p(j)
– Observe that an alternative version of the consistency condition

holds for this case: D(i,j) = D(i,k) + c(k,j)

• Each node i collects all link states c(*,*) first and runs the
complete Dijkstra algorithm locally.

i
k

j
c(k

,j)
D(i,k)

Link State (LS) Approach…
• After each iteration, the algorithm finds a new destination

node j and a shortest path to it.
• After m iterations the algorithm has explored paths, which

are m hops or smaller from node i.
– It has an m-hop view of the network just like the distance-vector

approach
• The Dijkstra algorithm at node i maintains two sets:

– set N that contains nodes to which the shortest paths have been
found so far, and

– set M that contains all other nodes.
– For all nodes k, two values are maintained:

• D(i,k): current value of distance from i to k.
• p(k): the predecessor node to k on the shortest known path from i

Dijkstra: Initialization

• Initialization:
– D(i,i) = 0   and    p(i) = i;
– D(i,k) = c(i,k)    and    p(k) = i if k is a neighbor of I
– D(i,k) = INFINITY    and    p(k) = UNKNOWN if k is not a

neighbor of I
– Set N = { i }, and next-hop (i) = I
– Set M = { j | j is not i}

• Initially set N has only the node i and set M has the rest
of the nodes.

• At the end of the algorithm, the set N contains all the
nodes, and set M is empty
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Dijkstra: Iteration
• In each iteration, a new node j is moved from set M into

the set N.
– Node j has the minimum distance among all current nodes in M,

i.e. D(i,j) = min {l ε M} D(i,l).
– If multiple nodes have the same minimum distance, any one of

them is chosen as j.
– Next-hop(j) = the neighbor of i on the shortest path

• Next-hop(j) = next-hop(p(j))    if p(j) is not i
• Next-hop(j) = j              if p(j) = i

– Now, in addition, the distance values of any neighbor k of j in set
M is reset as:

• If D(i,k) < D(i,j) + c(j,k), then
  D(i,k) =  D(i,j) + c(j,k), and p(k) = j.
•  This operation is called “relaxing” the edges of node j.

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

set N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

The shortest-paths spanning tree rooted at A is called an SPF-tree

Misc Issues: Transient Loops

• With consistent
LSDBs, all nodes
compute consistent
loop-free paths

• Limited by Dijkstra
computation
overhead, space
requirements

• Can still have
transient loops

A

B

C

D

1

3

5 2

1

Packet from CA
may loop around BDC
if B knows about failure
and C & D do not

X

Dijkstra’s algorithm,
discussion

Algorithm complexity: n nodes
 each iteration: need to check all nodes, w, not in N
 n*(n+1)/2 comparisons: O(n**2)
 more efficient implementations possible: O(nlogn)
Oscillations possible:
 e.g., link cost = amount of carried traffic

A
D

C

B
1 1+e

e0

e
1 1

0 0

A
D

C
B

2+e 0

00
1+e 1

A
D

C

B
0 2+e

1+e1
0 0

A
D

C

B
2+e 0

e0
1+e 1

initially … recompute
routing

… recompute … recompute
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Misc: How to assign the Cost
Metric?

• Choice of link cost defines traffic load
– Low cost = high probability link belongs to SPT and will attract

traffic
• Tradeoff: convergence vs load distribution

– Avoid oscillations
– Achieve good network utilization

• Static metrics (weighted hop count)
– Does not take traffic load (demand) into account.

• Dynamic metrics (cost based upon queue or delay etc)
– Highly oscillatory, very hard to dampen (DARPAnet experience)

• Quasi-static metric:
– Reassign static metrics based upon overall network load (demand

matrix), assumed to be quasi-stationary

Misc: Incremental SPF
• Dijkstra algorithm is invoked whenever a new

LS update is received.
– Most of the time, the change to the SPT is

minimal, or even nothing
• If the node has visibility to a large number of

prefixes, then it may see large number of
updates.
– Flooding bugs further exacerbate the problem
– Solution: incremental SPF algorithms which use

knowledge of current map and SPT, and process
the delta change with lower computational
complexity compared to Dijkstra

– Avg case: O(logn) v. to O(nlogn) for Dijkstra
Ref: Alaettinoglu, Jacobson, Yu, “Towards Milli-Second IGP

Convergence,” Internet Draft.

• Topology information is
flooded within the routing
domain

• Best end-to-end paths are
computed locally at each
router.

• Best end-to-end paths
determine next-hops.

• Based on minimizing some
notion of distance

• Works only if policy is shared
and uniform

• Examples: OSPF, IS-IS

• Each router knows little
about network topology

• Only best next-hops are
chosen by each router for
each destination network.

• Best end-to-end paths result
from composition of all next-
hop choices

• Does not require any notion
of distance

• Does not require uniform
policies at all routers

• Examples: RIP, BGP

Link State Vectoring

Summary: Distributed Routing
Techniques

Link state: topology
dissemination

• A router describes its neighbors with a link
state packet (LSP)

• Use controlled flooding to distribute this
everywhere
– store an LSP in an LSP database
– if new, forward to every interface other than

incoming one
– a network with E edges will copy at most 2E times
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Sequence numbers
• How do we know an LSP is new?
• Use a sequence number in LSP header
• Greater sequence number is newer
• What if sequence number wraps around?

– smaller sequence number is now newer!
– (hint: use a large sequence space)

• On boot up, what should be the initial
sequence number?
– have to somehow purge old LSPs
– two solutions

• aging
• lollipop sequence space

Aging
• Creator of LSP puts timeout value in the

header
• Router removes LSP when it times out

– also floods this information to the rest of the
network (why?)

• So, on booting, router just has to wait for its
old LSPs to be purged

• But what age to choose?
– if too small

• purged before fully flooded (why?)
• needs frequent updates

– if too large
• router waits idle for a long time on rebooting

A better solution

• Need a unique start sequence number
• a is older than b if:

– a < 0 and a < b
– a > o, a < b, and b-a < N/4
– a > 0, b > 0, a > b, and a-b > N/4

More on lollipops

• If a router gets an older LSP, it tells the
sender about the newer LSP

• So, newly booted router quickly finds
out its most recent sequence number

• It jumps to one more than that
• -N/2 is a trigger to evoke a response

from community memory
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Recovering from a partition
• On partition, LSP databases can get out of

synch

• Databases described by database descriptor
records

• Routers on each side of a newly restored link
talk to each other to update databases
(determine missing and out-of-date LSPs)

Router failure

• How to detect?
– HELLO protocol

• HELLO packet may be corrupted
– so age anyway
– on a timeout, flood the information

Securing LSP databases

• LSP databases must be consistent to
avoid routing loops

• Malicious agent may inject spurious
LSPs

• Routers must actively protect their
databases
– checksum LSPs
– ack LSP exchanges
– passwords

Outline
• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts
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Choosing link costs

• Shortest path uses link costs
• Can use either static of dynamic costs
• In both cases: cost determine amount of

traffic on the link
– lower the cost, more the expected traffic
– if dynamic cost depends on load, can have

oscillations (why?)

Static metrics

• Simplest: set all link costs to 1 => min
hop routing
– but 28.8 modem link is not the same as a

T3!
• Give links weight proportional to

capacity

Dynamic metrics
• A first cut (ARPAnet original)
• Cost proportional to length of router queue

– independent of link capacity
• Many problems when network is loaded

– queue length averaged over a small time =>
transient spikes caused major rerouting

– wide dynamic range => network completely
ignored paths with high costs

– queue length assumed to predict future loads =>
opposite is true (why?)

– no restriction on successively reported costs =>
oscillations

– all tables computed simultaneously => low cost
link flooded

Modified metrics
– queue length averaged

over a small time
– wide dynamic range

queue
– queue length assumed to

predict future loads
– no restriction on

successively reported
costs

– all tables computed
simultaneously

– queue length averaged
over a longer time

– dynamic range restricted
– cost also depends on

intrinsic link capacity
– restriction on

successively reported
costs

– attempt to stagger table
computation
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Routing dynamics
Outline

• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Hierarchical routing
• Large networks need large routing tables

– more computation to find shortest paths
– more bandwidth wasted on exchanging DVs and

LSPs
• Solution:

– hierarchical routing
• Key idea

– divide network into a set of domains
– gateways connect domains
– computers within domain unaware of outside

computers
– gateways know only about other gateways

Example

• Features
– only a few routers in each level
– not a strict hierarchy
– gateways participate in multiple routing protocols
– non-aggregable routers increase core table space
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Hierarchy in the Internet

• Three-level hierarchy in addresses
– network number
– subnet number/more specific prefix
– host number

• Core advertises routes only to networks, not
to subnets
– e.g. 135.104.*, 192.20.225.*

• Even so, about 80,000 networks in core
routers (1996)

• Gateways talk to backbone to find best next-
hop to every other network in the Internet

External and summary
records

• If a domain has multiple gateways
– external records tell hosts in a domain which one

to pick to reach a host  in an external domain
• e.g allows 6.4.0.0 to discover shortest path to 5.* is

through 6.0.0.0
– summary records tell backbone which gateway to

use to reach an internal node
• e.g. allows 5.0.0.0 to discover shortest path to 6.4.0.0 is

through 6.0.0.0

• External and summary records contain
distance from gateway to external or internal
node
– unifies distance vector and link state algorithms

Interior and exterior protocols

• Internet has three levels of routing
– highest is at backbone level, connecting

autonomous systems (AS)
– next level is within AS
– lowest is within a LAN

• Protocol between AS gateways: exterior
gateway protocol

• Protocol within AS: interior gateway
protocol

Exterior gateway protocol
• Between untrusted routers

– mutually suspicious
• Must tell a border gateway who can be

trusted and what paths are allowed

• Transit over backdoors is a problem
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Interior protocols

• Much easier to implement
• Typically partition an AS into areas
• Exterior and summary records used

between areas

Issues in interconnection

• May use different schemes (DV vs. LS)
• Cost metrics may differ
• Need to:

– convert from one scheme to another
(how?)

– use the lowest common denominator for
costs

– manually intervene if necessary

Outline
• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Common routing protocols

• Interior
– RIP
– OSPF

• Exterior
– EGP
– BGP

• ATM
– PNNI
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RIP

• Distance vector
• Cost metric is hop count
• Infinity = 16
• Exchange distance vectors every 30 s
• Split horizon
• Useful for small subnets

– easy to install

OSPF

• Link-state
• Uses areas to route packets

hierarchically within AS
• Complex

– LSP databases to be protected
• Uses designated routers to reduce

number of endpoints

EGP

• Original exterior gateway protocol
• Distance-vector
• Costs are either 128 (reachable) or 255

(unreachable) => reachability protocol
=> backbone must be loop free (why?)

• Allows administrators to pick neighbors
to peer with

• Allows backdoors (by setting backdoor
cost < 128)

BGP

• Path-vector
– distance vector annotated with entire path
– also with policy attributes
– guaranteed loop-free

• Can use non-tree backbone topologies
• Uses TCP to disseminate DVs

– reliable
– but subject to TCP flow control

• Policies are complex to set up
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PNNI (ATM/cell switched)
• Link-state
• Many levels of hierarchy

– Switch controllers at each level form a peer group
– Group has a group leader
– Leaders are members of the next higher level group
– Leaders summarize information about group to tell

higher level peers
– All records received by leader are flooded to lower

level
• LSPs can be annotated with per-link QoS

metrics
• Switch controller uses this to compute source

routes for call-setup packets

Outline
• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Routing within a broadcast
LAN

• What happens at an endpoint?
• On a point-to-point link, no problem
• On a broadcast LAN

– is packet meant for destination within the LAN?
– if so, what is the datalink address ?
– if not, which router on the LAN to pick?
– what is the router’s datalink address?

Internet solution
• All hosts on the LAN have the same subnet

address
• So, easy to determine if destination is on the

same LAN
• Destination’s datalink address determined

using ARP
– broadcast a request
– owner of IP address replies

• To discover routers
– routers periodically sends router advertisements

• with preference level and time to live
– pick most preferred router
– delete overage records
– can also force routers to reply with solicitation

message
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Redirection

• How to pick the best router?
• Send message to arbitrary router
• If that router’s next hop is another router

on the same LAN, host gets a redirect
message

• It uses this for subsequent messages

Outline
• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Multicast routing
• Unicast: single source sends to a single

destination
• Multicast: hosts are part of a multicast group

– packet sent by any member of a group are
received by all

• Useful for
– multiparty videoconference
– distance learning
– resource location

Multicast group

• Associates a set of senders and receivers with
each other
– but independent of them
– created either when a sender starts sending from a group
– or a receiver expresses interest in receiving
– even if no one else is there!

• Sender does not need to know receivers’ identities
– rendezvous point
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Addressing
• Multicast group in the Internet has its own

Class D address
– looks like a host address, but isn’t

• Senders send to the address
• Receivers anywhere in the world request

packets from that address
• “Magic” is in associating the two: dynamic

directory service
• Four problems

– which groups are currently active
– how to express interest in joining a group
– discovering the set of receivers in a group
– delivering data to members of a group

Expanding ring search

• A way to use multicast groups for resource
discovery

• Routers decrement TTL when forwarding
• Sender sets TTL and multicasts

– reaches all receivers <= TTL hops away
• Discovers local resources first
• Since heavily loaded servers can keep quiet,

automatically distributes load

Multicast flavors

• Unicast: point to point
• Multicast:

– point to multipoint
– multipoint to multipoint

• Can simulate point to multipoint by a set of
point to point unicasts

• Can simulate multipoint to multipoint by a set
of point to multipoint multicasts

• The difference is efficiency

Example

• Suppose A wants to talk to B, G, H, I, B to A,
G, H, I

• With unicast, 4 messages sent from each
source
– links AC, BC carry a packet in triplicate

• With point to multipoint multicast, 1 message
sent from each source
– but requires establishment of two separate

multicast groups
• With multipoint to multipoint multicast, 1

message sent from each source,
– single multicast group
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Shortest path tree

• Ideally, want to send exactly one multicast
packet per link
– forms a multicast tree rooted at sender

• Optimal multicast tree provides shortest path
from sender to every receiver
– shortest-path tree rooted at sender

Issues in wide-area multicast

• Difficult because
– sources may join and leave dynamically

• need to dynamically update shortest-path tree
– leaves of tree are often members of broadcast

LAN
• would like to exploit LAN broadcast capability

– would like a receiver to join or leave without
explicitly notifying sender

• otherwise it will not scale

Multicast in a broadcast LAN

• Wide area multicast can exploit a LAN’s
broadcast capability

• E.g. Ethernet will multicast all packets with
multicast bit set on destination address

• Two problems:
– what multicast MAC address corresponds to a

given Class D IP address?
– does the LAN have contain any members for a

given group (why do we need to know this?)

Class D to MAC translation

• Multiple Class D addresses map to the same
MAC address

• Well-known translation algorithm => no need
for a translation table

01 00 5E
23 bits copied from IP address

IEEE 802 MAC Address

Class D IP address

Ignored
‘1110’ = Class D indication

Multicast bit Reserved bit
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Group Management Protocol
• Detects if a LAN has any members for a particular

group
– If no members, then we can prune the shortest path tree

for that group by telling parent
• Router periodically broadcasts a query message
• Hosts reply with the list of groups they are interested

in
• To suppress traffic

– reply after random timeout
– broadcast reply
– if someone else has expressed interest in a group, drop

out
• To receive multicast packets:

– translate from class D to MAC and configure adapter

Wide area multicast

• Assume
– each endpoint is a router
– a router can use IGMP to discover all the

members in its LAN that want to subscribe to each
multicast group

• Goal
– distribute packets coming from any sender

directed to a given group to all routers on the path
to a group member

Simplest solution

• Flood packets from a source to entire network
• If a router has not seen a packet before,

forward it to all interfaces except the incoming
one

• Pros
– simple
– always works!

• Cons
– routers receive duplicate packets
– detecting that a packet is a duplicate requires

storage, which can be expensive for long multicast
sessions

A clever solution
• Reverse path forwarding
• Rule

– forward packet from S to all interfaces if
and only if packet arrives on the interface
that corresponds to the shortest path to S

– no need to remember past packets
– C need not forward packet received from D
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Cleverer
• Don’t send a packet downstream if you are

not on the shortest path from the downstream
router to the source

• C need not forward packet from A to E

• Potential confusion if downstream router has
a choice of shortest paths to source (see
figure on previous slide)

Pruning
• RPF does not completely eliminate

unnecessary transmissions

• B and C get packets even though they do not
need it

• Pruning => router tells parent in tree to stop
forwarding

• Can be associated either with a multicast
group or with a source and group
– trades selectivity for router memory

Rejoining

• What if host on C’s LAN wants to receive
messages from A after a previous prune by
C?
– IGMP lets C know of host’s interest
– C can send a join(group, A) message to B, which

propagates it to A
– or, periodically flood a message; C refrains from

pruning

A problem
• Reverse path forwarding requires a

router to know shortest path to a source
– known from routing table

• Doesn’t work if some routers do not
support multicast
– virtual links between multicast-capable

routers
– shortest path to A from E is not C, but F
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A problem (contd.)

• Two problems
– how to build virtual links
– how to construct routing table for a network

with virtual links

Tunnels
• Why do we need them?

• Consider packet sent from A to F via
multicast-incapable D

• If packet’s destination is Class D, D drops it
• If destination is F’s address, F doesn’t know

multicast address!
• So, put packet destination as F, but carry

multicast address internally
• Encapsulate IP in IP => set protocol type to

IP-in-IP

Multicast routing protocol

• Interface on “shortest path” to source
depends on whether path is real or virtual

• Shortest path from E to A is not through C,
but F
– so packets from F will be flooded, but not from C

• Need to discover shortest paths only taking
multicast-capable routers into account
– DVMRP

DVMRP

• Distance-vector Multicast routing protocol
• Very similar to RIP

– distance vector
– hop count metric

• Used in conjunction with
– flood-and-prune (to determine memberships)

• prunes store per-source and per-group information
– reverse-path forwarding (to decide where to

forward a packet)
– explicit join messages to reduce join latency (but

no source info, so still need flooding)
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MOSPF

• Multicast extension to OSPF
• Routers flood group membership information

with LSPs
• Each router independently computes

shortest-path tree that only includes
multicast-capable routers
– no need to flood and prune

• Complex
– interactions with external and summary records
– need storage per group per link
– need to compute shortest path tree per source and

group

Core-based trees

• Problems with DVMRP-oriented approach
– need to periodically flood and prune to determine

group members
– need to source per-source and per-group prune

records at each router
• Key idea with core-based tree

– coordinate multicast with a core router
– host sends a join request to core router
– routers along path mark incoming interface for

forwarding

Example

• Pros
– routers not part of a group are not involved in

pruning
– explicit join/leave makes membership changes

faster
– router needs to store only one record per group

• Cons
– all multicast traffic traverses core, which is a

bottleneck
– traffic travels on non-optimal paths

Protocol independent
multicast (PIM)

• Tries to bring together best aspects of CBT
and DVMRP

• Choose different strategies depending on
whether multicast tree is dense or sparse
– flood and prune good for dense groups

• only need a few prunes
• CBT needs explicit join per source/group

– CBT good for sparse groups
• Dense mode PIM == DVMRP
• Sparse mode PIM is similar to CBT

– but receivers can switch from CBT to a shortest-
path tree
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PIM (contd.)

• In CBT, E must send to core
• In PIM, B discovers shorter path to E (by

looking at unicast routing table)
– sends join message directly to E
– sends prune message towards core

• Core no longer bottleneck
• Survives failure of core

More on core

• Renamed a rendezvous point
– because it no longer carries all the traffic like a

CBT core
• Rendezvous points periodically send “I am

alive” messages downstream
• Leaf routers set timer on receipt
• If timer goes off, send a join request to

alternative rendezvous point
• Problems

– how to decide whether to use dense or sparse
mode?

– how to determine “best” rendezvous point?

Outline

• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Routing vs. policy routing
• In standard routing, a packet is forwarded on

the ‘best’ path to destination
– choice depends on load and link status

• With policy routing, routes are chosen
depending on policy directives regarding
things like
– source and destination address
– transit domains
– quality of service
– time of day
– charging and accounting

• The general problem is still open
– fine balance between correctness and information

hiding
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Multiple metrics
• Simplest approach to policy routing
• Advertise multiple costs per link
• Routers construct multiple shortest path

trees

Problems with multiple metrics

• All routers must use the same rule in
computing paths

• Remote routers may misinterpret policy
– source routing may solve this
– but introduces other problems (what?)

Provider selection

• Another simple approach
• Assume that a single service provider

provides almost all the path from source to
destination
– e.g. AT&T or MCI

• Then, choose policy simply by choosing
provider
– this could be dynamic (agents!)

• In Internet, can use a loose source route
through service provider’s access point

• Or, multiple addresses/names per host

Crankback
• Consider computing routes with QoS

guarantees
• Router returns packet if no next hop with

sufficient QoS can be found
• In ATM networks (PNNI) used for the call-

setup packet
• In Internet, may need to be done for _every_

packet!
– Will it work?
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Outline

• Routing in telephone networks
• Distance-vector routing
• Link-state routing
• Choosing link costs
• Hierarchical routing
• Internet routing protocols
• Routing within a broadcast LAN
• Multicast routing
• Routing with policy constraints
• Routing for mobile hosts

Mobile routing

• How to find a mobile host?
• Two sub-problems

– location (where is the host?)
– routing (how to get packets to it?)

• We will study mobile routing in the
Internet and in the telephone network

Mobile cellular routing

• Each cell phone has a global ID that it tells
remote MTSO when turned on (using slotted
ALOHA up channel)

• Remote MTSO tells home MTSO
• To phone: call forwarded to remote MTSO to

closest base
• From phone: call forwarded to home MTSO

from closest base
• New MTSOs can be added as load increases

Mobile routing in the Internet

• Very similar to mobile telephony
– but outgoing traffic does not go through home
– and need to use tunnels to forward data

• Use registration packets instead of slotted
ALOHA
– passed on to home address agent

• Old care-of-agent forwards packets to new
care-of-agent until home address agent
learns of change
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Problems
• Security

– mobile and home address agent share a
common secret

– checked before forwarding packets to COA
• Loops


