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Learning Guide
These notes are designed to accompany 8–10 lectures on denotational semantics for
Part II of the Cambridge University Computer Science Tripos. Some of the material
of this course (roughly, the first half) used to form part of courses on semantics
of programming languages for Parts IB/II. The Part IB course on Semantics of
Programming Languages is a prerequisite.

Tripos questions
Of the many past Tripos questions on programming language semantics, here are
those which are relevant to the current course and predate those available from the
Lab webpage—all denotational semantics questions available from the Lab webpage
are relevant.

Year 97 97 96 95 94 93 92 91 90 90 88 88 87 87 86
Paper 7 9 6 5 8 8 8 8 7 9 2 4 2 3 1

Question 5 10 12 12 12 10 10 10 4 11 2 3 2 13 3

Recommended books
• Winskel, G. (1993). The Formal Semantics of Programming Languages.

MIT Press.

This is an excellent introduction to both the operational and denotational
semantics of programming languages. As far as this course is concerned, the
relevant chapters are 5, 8, 9, 10 (Sections 1 and 2), and 11.

• Tennent, R. D. (1991). Semantics of Programming Languages. Prentice-
Hall.

Parts I and II are relevant to this course.
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Further reading
• Gunter, C. A. (1992). Semantics of Programming Languages. Structures and

Techniques. MIT Press.
This is a graduate-level text containing much material not covered in this
course. As far as this course is concerned, the relevant chapters are 1, 2, and
4–6.

Note!
These notes are substantially those of Andrew Pitts who lectured the course from
1997 to 1999, though with some changes and additions by Glynn Winskel who
lectured the course from 2000 to 2007. The material in these notes has been drawn
from several different sources, including the books mentioned above, previous
versions of this course, and similar courses at some other universities. A lecture(r)
appraisal form is included at the end of the notes. Please take time to fill it in
and return it. Alternatively, fill out an electronic version of the form via the URL
www.cl.cam.ac.uk/cgi-bin/lr/login.

Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

iii



iv



1

1 Introduction

Slide 1 gives a reminder of various approaches to giving formal semantics for
programming languages. The operational approach was introduced in the Part IB
course on Semantics of Programming Languages and the axiomatic approach is
illustrated in the Part II course on Specification and Verification I. This course
gives a brief introduction to some of the techniques of the denotational approach.
One of the aims of Denotational Semantics is to specify programming language
constructs in as abstract and implementation-independent way as possible: in this
way one may gain insight into the fundamental concepts underlying programming
languages, their inter-relationships, and (sometimes) new ways of realising those
concepts in language designs. Of course, it is crucial to verify that denotational
specifications of languages are implementable—in other words to relate denotational
semantics to operational semantics: we will illustrate how this is done later in the
course.

Styles of semantics

Operational. Meanings for program phrases defined in terms of
the steps of computation they can take during program
execution.

Axiomatic. Meanings for program phrases defined indirectly via
the axioms and rules of some logic of program properties.

Denotational. Concerned with giving mathematical models of
programming languages. Meanings for program phrases
defined abstractly as elements of some suitable mathematical
structure.

Slide 1
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Characteristic features of a
denotational semantics

• Each phrase (= part of a program), P , is given a denotation,
[[P ]] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

• The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is
compositional).

Slide 2

A simple example of compositionality

Given partial functions [[C]], [[C ′]] : State ⇀ State and a
function [[B]] : State →{true, false}, we can define

[[if B then C else C ′]] =

λs ∈ State .if ([[B]](s), [[C]](s), [[C ′ ]](s))

where

if (b, x, x′) =

{

x if b = true

x′ if b = false

Slide 3
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Denotational semantics of sequential composition

Denotation of sequential composition C;C ′ of two commands

[[C;C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State .[[C ′]]([[C]](s))

given by composition of the partial functions from states to states
[[C]], [[C ′]] : State ⇀ State which are the denotations of the
commands.

Cf. operational semantics of sequential composition:

C, s ⇓ s′ C ′, s′ ⇓ s′′

C; C ′, s ⇓ s′′
.

Slide 4

1.1 Example: while-loops as fixed points
The requirement of compositionality mentioned on Slide 2 is quite a tough one.
It means that the collection of mathematical objects we use to give denotations to
program phases has to be sufficiently rich that it supports operations for modelling
all the phrase-forming constructs of the programming language in question. Some
phrase-forming constructs are easy to deal with, others less so. For example,
conditional expressions involving state-manipulating commands can be given a
denotational semantics in terms of a corresponding branching function applied
to the denotations of the immediate subexpressions: see Slide 3. Similarly, the
denotational semantics of the sequential composition of commands can be given by
the operation of composition of partial functions from states to states, as shown on
slide 4. However, a looping construct such as while B do C is not so easy to
explain compositionally. The transition semantics of a while-loop

〈while B do C, s〉 → 〈if B then C; (while B do C) else skip, s〉

suggests that its denotation as a partial functions from states to states should satisfy

(1) [[while B do C]] = [[if B then C; (while B do C) else skip]].

Note that this cannot be used directly to define [[while B do C]], since the right-
hand side contains as a subphrase the very phrase whose denotation we are trying
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to define. Using the denotational semantics of sequential composition and if (and
using the fact that the denotation of skip is the identity function λs ∈ State.s),
(1) amounts to saying that [[while B do C]] should be a solution of the fixed point
equation given on Slide 5.

Fixed point property of [[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and
c, w : State ⇀ State , we define

fb,c(w) = λs ∈ State .if (b(s), w(c(s)), s).

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be
[[while B do C]]?

Slide 5

Such fixed point equations arise very often in giving denotational semantics to
languages with recursive features. Beginning with Dana Scott’s pioneering work
in the late 60’s, a mathematical theory called domain theory has been developed to
provide a setting in which not only can we always find solutions for the fixed point
equations arising from denotational semantics, but also we can pick out solutions
that are minimal in a suitable sense—and this turns out to ensure a good match
between denotational and operational semantics. The key idea is to consider a partial
order between the mathematical objects used as denotations—this partial order
expresses the fact that one object is approximated by, or carries more information
than, or is more well-defined than another one below it in the ordering. Then
the minimal solution of a fixpoint equation can be constructed as the limit of an
increasing chain of approximations to the solution. These ideas will be made
mathematically precise and general in the next section; but first we illustrate how
they work out concretely for the particular problem on Slide 5.

For definiteness, let us consider the particular while-loop

(2) while X > 0 do (Y := X ∗ Y ; X := X − 1)

where X and Y are two distinct integer storage locations (variables). In this case
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we can just take a state to be a pair of integers, (x, y), recording the current contents
of X and Y respectively. Thus State = Z × Z and we are trying to define the
denotation of (2) as a partial function w : (Z × Z) ⇀ (Z × Z) mapping pairs of
integers to pairs of integers. That denotation should be a solution to the fixed point
equation on Slide 5. For the particular boolean expression B = (X > 0) and
command C = (Y := X ∗ Y ; X := X − 1), the function f[[B]],[[C]] coincides with
the function f defined on Slide 6.

[[while X > 0 do (Y := X ∗ Y ; X := X − 1)]]

Let

State
def
= Z × Z pairs of integers

D
def
= State ⇀ State partial functions.

For [[while X > 0 do Y := X ∗ Y ; X := X − 1]] ∈ D we
seek a minimal solution to w = f(w), where f : D → D is
defined by:

f(w)(x, y) =

{

(x, y) if x ≤ 0

w(x − 1, x ∗ y) if x > 0.

Slide 6
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State
def
= Z × Z D

def
= State ⇀ State

Partial order v on D:

w v w′ if and only if for all (x, y) ∈ State , if
w is defined at (x, y) then so is w′ and moreover
w(x, y) = w′(x, y).

Least element ⊥ ∈ D w.r.t. v:

⊥
def
= totally undefined partial function

(satisfies ⊥ v w, all w ∈ D).

Slide 7

Consider the partial order, v, between the elements of D = State ⇀ State

given on Slide 7. Note that v does embody the kind of ‘information ordering’
mentioned above: if w v w′, then w′ agrees with w wherever the latter is defined,
but it may be defined at some other arguments as well. Note also that D contains
an element which is least with respect to this partial order: for the totally undefined
partial function, which we will write as ⊥, satisfies ⊥ v w for any w ∈ D.

Starting with ⊥, we apply the function f over and over again to build up a
sequence of partial functions w0, w1, w2, . . . :

{

w0
def
= ⊥

wn+1
def
= f(wn).

Using the definition of f on Slide 6, one finds that

w1(x, y) = f(⊥)(x, y) =

{

(x, y) if x ≤ 0

undefined if x ≥ 1

w2(x, y) = f(w1)(x, y) =











(x, y) if x ≤ 0

(0, y) if x = 1

undefined if x ≥ 2
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w3(x, y) = f(w2)(x, y) =



















(x, y) if x ≤ 0

(0, y) if x = 1

(0, 2 ∗ y) if x = 2

undefined if x ≥ 3

w4(x, y) = f(w3)(x, y) =































(x, y) if x ≤ 0

(0, y) if x = 1

(0, 2 ∗ y) if x = 2

(0, 6 ∗ y) if x = 3

undefined if x ≥ 4

and in general

wn(x, y) =











(x, y) if x ≤ 0

(0, (!x) ∗ y) if 0 < x < n

undefined if x ≥ n

where as usual, !x is the factorial of x. Thus we get an increasing sequence of partial
functions

w0 v w1 v w2 v . . . v wn v . . .

defined on larger and larger sets of states (x, y) and agreeing where they are defined.
The union of all these partial functions is the element w∞ ∈ D given by

w∞(x, y) =

{

(x, y) if x ≤ 0

(0, (!x) ∗ y) if x > 0.

Note that w∞ is a fixed point of the function f , since for all (x, y) we have

f(w∞)(x, y) =

{

(x, y) if x ≤ 0

w∞(x − 1, x ∗ y) if x > 0
(by definition of f )

=











(x, y) if x ≤ 0

(0, 1 ∗ y) if x = 1

(0, !(x− 1) ∗ x ∗ y) if x > 1

(by definition of w∞)

= w∞(x, y).

In fact one can show that w∞ is the least fixed point of f , in the sense that for all
w ∈ D

(3) w = f(w) ⇒ w∞ v w.

This least fixed point is what we take as the denotation of

while X > 0 do (Y := X ∗ Y ; X := X − 1).
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Its construction is an instance of Tarski’s Fixed Point Theorem to be proved
in the next section. Note also that w∞ is indeed the function from states to
states that we get from the structural operational semantics of the command
while X > 0 do (Y := X ∗ Y ; X := X − 1), as given in the Part IB course on
Semantics of Programming Languages.

1.2 Exercises
Exercise 1.2.1. Consider the function fb,c defined on Slide 5 in case b = [[true]] =
λs ∈ State.true and c = [[skip]] = λs ∈ State.s. Which partial functions from
states to states are fixed points of this fb,c? What is its least fixed point (with
respect to the v ordering defined above)? Does this least fixed point agree with
the partial function from states to states determined by the operational semantics of
while true do skip?

Exercise 1.2.2. Prove the statement (3).
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2 Least Fixed Points
This section introduces a mathematical theory, domain theory, which amongst other
things provides a general framework for constructing the least fixed points used in
the denotational semantics of various programming language features. The theory
was introduced by Dana Scott.

2.1 Cpo’s and continuous functions
Domain theory makes use of partially ordered sets satisfying certain completeness
properties. The definition of a partial order is recalled on Slide 8. D is called the
underlying set of the poset (D,v). Most of the time we will refer to posets just by
naming their underlying sets and use the same symbol v to denote the partial order
in a variety of different posets.

Partially ordered sets

A binary relation v on a set D is a partial order iff it is

reflexive: ∀d ∈ D. d v d

transitive: ∀d, d′, d′′ ∈ D. d v d′ v d′′ ⇒ d v d′′

anti-symmetric: ∀d, d′ ∈ D. d v d′ v d ⇒ d = d′.

Such a pair (D,v) is called a partially ordered set , or poset .

Slide 8

Definition 2.1.1. (i) Suppose D is a poset and that S is a subset of D. An element
d ∈ S is the least element of S if it satisfies

∀x ∈ S. d v x.

Note that because v is anti-symmetric, S has at most one least element. Note
also that least element of a subset of a poset need not exist. (For example, Z

with its usual partial order does not have a least element.)
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(ii) If it exists, we will write the least element of the whole poset D as ⊥D , or just
⊥ when D is understood from the context. Thus ⊥ is uniquely determined by
the property:

∀d ∈ D. ⊥ v d.

The least element of a poset is sometimes called its bottom element.

(iii) A countable, increasing chain in a poset D is a sequence of elements of D
satisfying

d0 v d1 v d2 v . . .

An upper bound for the chain is any d ∈ D satisfying ∀n ∈ N. dn v d. If it
exists, the least upper bound, or lub, of the chain will be written as

⊔

n≥0

dn.

Thus by definition:

• ∀m ∈ N. dm v
⊔

n≥0 dn.
• For any d ∈ D, if ∀m ∈ N. dm v d, then

⊔

n≥0 dn v d.

Remark 2.1.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasing chains in a poset: so
a ‘chain’ will always mean a countable, increasing chain.

(ii) The elements of a chain do not necessarily have to be distinct. In particular, we
say that a chain d0 v d1 v d2 v . . . is eventually constant if for some N ∈ N

it is the case that ∀n ≥ N. dn = dN . Note that in this case
⊔

n≥0 dn = dN .

(iii) Like the least element of any subset of a poset, the lub of a chain is unique if it
exists. (It does not have to exist: for example the chain 0 ≤ 1 ≤ 2 ≤ . . . in N

has no upper bound, hence no lub.)

(iv) A least upper bound is sometimes called a supremum. Some other common
notations for

⊔

n≥0 dn are:

∞
⊔

n=0

dn and
⊔

{dn | n ≥ 0}.

(v) If we discard any finite number of elements at the beginning of a chain, we do
not affect its set of upper bounds and hence do not change its lub:

⊔

n≥0

dn =
⊔

n≥0

dN+n, for any N ∈ N.
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Cpo’s and domains

A chain complete poset , or cpo for short, is a poset (D,v) in
which all countable increasing chains d0 v d1 v d2 v . . . have
least upper bounds,

⊔

n≥0 dn:

∀m ≥ 0 . dm v
⊔

n≥0

dn(lub1)

∀d ∈ D . (∀m ≥ 0 . dm v d) ⇒
⊔

n≥0

dn v d.(lub2)

A domain is a cpo that possesses a least element, ⊥:

∀d ∈ D .⊥ v d.

Slide 9

In this course we will be concerned with posets enjoying certain completeness
properties, as defined on Slide 9. It should be noted that the term ‘domain’ is used
rather loosely in the literature on denotational semantics: there are many different
kinds of domain, enjoying various extra order-theoretic properties over and above
the rather minimal ones of chain-completeness and possession of a least element
that we need for this course.

Example 2.1.3. The set X ⇀ Y of all partial functions from a set X to a set Y can
be made into a domain, as indicated on Slide 10. It was this domain for the case
X = Y = State (some set of states) that we used for the denotation of commands
in Section 1.1. Note that the f which is claimed to be the lub of f0 v f1 v f2 v . . .
on Slide 10 is a well-defined partial function because the fn agree where they are
defined. We leave it as an exercise to check that this f is indeed the least upper
bound of f0 v f1 v f2 v . . . in the poset (X ⇀ Y ,v).
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Domain of partial functions, X ⇀ Y

Underlying set: all partial functions, f , with domain of definition
dom(f) ⊆ X and taking values in Y .

Partial order: f v g iff dom(f) ⊆ dom(g) and
∀x ∈ dom(f). f(x) = g(x).

Lub of chain f0 v f1 v f2 v . . . is the partial function f with
dom(f) =

⋃

n≥0 dom(fn) and

f(x) =

{

fn(x) if x ∈ dom(fn), some n

undefined otherwise

Least element ⊥ is the totally undefined partial function.

Slide 10

Example 2.1.4. Any poset (D,v) whose underlying set D is finite is a cpo.
For in such a poset any chain is eventually constant (why?)—and we noted in
Remark 2.1.2(ii) that such a chain always possesses a lub. Of course, a finite
poset need not have a least element, and hence need not be a domain—for example,
consider the poset with Hasse diagram

•

• •

(The Hasse diagram of a poset is the directed graph whose vertices are the elements
of the underlying set of the poset and in which there is an edge from vertex x to
vertex y iff x 6= y and ∀z. (x v z & z v y) ⇒ (z = x ∨ z = y).)

Figure 1 shows two very simple, but infinite domains. Here are two examples
of posets that are not cpos.

Example 2.1.5. The set of natural numbers N = {0, 1, 2, . . .} equipped with the
usual partial order, ≤, is not a cpo. For the increasing chain 0 ≤ 1 ≤ 2 ≤ . . . has
no upper bound in N.
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The ‘flat natural numbers’, N⊥:

0 1 2 · · · n n + 1 · · ·

⊥

··· ···

The ‘vertical natural numbers’, Ω:

ω

n + 1

n

2

1

0

Figure 1: Two domains
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Example 2.1.6. Consider a modified version of the second example in Figure 1
in which we adjoin two different upper bounds, ω1 6= ω2, for N. In other words,
consider D

def
= N ∪ {ω1, ω2} with partial order v defined by:

d v d′ def
⇔



















d, d′ ∈ N & d ≤ d′,

or d ∈ N & d′ ∈ {ω1, ω2},

or d = d′ = ω1,

or d = d′ = ω2.

Then the increasing chain 0 v 1 v 2 v . . . in D has two upper bounds (ω1 and
ω2), but no least one (since ω1 6v ω2 and ω2 6v ω1). So (D,v) is not a cpo.

Monotonicity, continuity, strictness

• A function f : D → E between posets is monotone iff
∀d, d′ ∈ D. d v d′ ⇒ f(d) v f(d′).

• If D and E are cpo’s, the function f is continuous iff it is
monotone and preserves lubs of chains, i.e. for all chains
d0 v d1 v . . . in D, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.

• If D and E have least elements, then the function f is strict
iff f(⊥) = ⊥.

Slide 11

Remark 2.1.7. Note that if f : D → E is monotone and d0 v d1 v d2 v . . . is
a chain in D, then applying f we get a chain f(d0) v f(d1) v f(d2) v . . . in E.
Moreover, if d is an upper bound of the first chain, then f(d) is an upper bound of
the second and hence is greater than its lub. Hence if f : D → E is a monotone
function between cpo’s, we always have

⊔

n≥0

f(dn) v f(
⊔

n≥0

dn)

Therefore (using the antisymmetry property of v), to check that a monotone
function f between cpo’s is continuous, it suffices to check for each chain
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d0 v d1 v d2 v . . . in D that

f(
⊔

n≥0

dn) v
⊔

n≥0

f(dn)

holds in E.

Example 2.1.8. When D is the domain of partial functions State ⇀ State

(cf. Slide 10), the function fb,c : D → D defined on Slide 5 in connection with
the denotational semantics of while-loops is a continuous function. We leave the
verification of this as an exercise.

Example 2.1.9. Given cpo’s D and E, for each e ∈ E it is easy to see that the
constant function D → E with value e, λd ∈ D . e, is continuous.

Example 2.1.10. Let Ω be the domain of vertical natural numbers, as defined in
Figure 1. Then the function f : Ω → Ω defined by

{

f(n) = 0 (n ∈ N)

f(ω) = ω.

is monotone and strict, but it is not continuous because

f(
⊔

n≥0

n) = f(ω) = ω 6= 0 =
⊔

n≥0

0 =
⊔

n≥0

f(n).

2.2 Tarski’s fixed point theorem

A fixed point for a function f : D→D is by definition an element d ∈ D satisfying
f(d) = d. If D is a poset, we can consider a weaker notion, of pre-fixed point, as
defined on Slide 12.
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Least pre-fixed points

Let D be a poset and f : D → D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies
f(d) v d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) v fix (f)(lfp1)

∀d ∈ D. f(d) v d ⇒ fix (f) v d.(lfp2)

Slide 12

Proposition 2.2.1. Suppose D is a poset and f : D →D is a function possessing a
least pre-fixed point, fix (f), as defined on Slide 12. Provided f is monotone, fix (f)
is in particular a fixed point for f (and hence is the least element of the set of fixed
points for f ).

Proof. By definition, fix (f) satisfies property (lfp1) on Slide 12. If f is monotone
(Slide 11) we can apply f to both sides of (lfp1) to conclude that

f(f(fix(f))) v f(fix (f)).

Then applying property (lfp2) with d = f(fix (f)), we get that

fix (f) v f(fix (f)).

Combining this with (lfp1) and the anti-symmetry property of the partial order v,
we get f(fix(f)) = fix (f), as required.
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Tarski’s Fixed Point Theorem

Let f : D → D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies
f(fix (f)) = fix (f), and hence is the least fixed point of f .

Slide 13

Slide 13 gives the key result about continuous functions on domains which
permits us to give denotational semantics of programs involving recursive features.
The notation fn(⊥) used on the slide is defined as follows:

(4)
{

f0(⊥)
def
= ⊥

fn+1(⊥)
def
= f(fn(⊥)).

Note that since ∀d ∈ D. ⊥ v d, one has f 0(⊥) = ⊥ v f1(⊥); and by monotonicity
of f

fn(⊥) v fn+1(⊥) ⇒ fn+1(⊥) = f(fn(⊥)) v f(fn+1(⊥)) = fn+2(⊥).

Therefore, by induction on n ∈ N, it is the case that ∀n ∈ N. fn(⊥) v fn+1(⊥).
In other words the elements fn(⊥) do form a chain in D. So since D is a cpo, the
least upper bound used to define fix (f) on Slide 13 does make sense.
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Proof of Tarski’s Fixed Point Theorem. First note that

f(fix (f)) = f(
⊔

n≥0

fn(⊥))

=
⊔

n≥0

f(fn(⊥)) by continuity of f

=
⊔

n≥0

fn+1(⊥) by (4)

=
⊔

n≥0

fn(⊥) by Remark 2.1.2(v)

= fix (f).

So fix (f) is indeed a fixed point for f and hence in particular satisfies condition
(lfp1) on Slide 12. To verify the second condition (lfp2) needed for a least pre-fixed
point, suppose that d ∈ D satisfies f(d) v d. Then since ⊥ is least in D

f0(⊥) = ⊥ v d

and

fn(⊥) v d ⇒ fn+1(⊥) = f(fn(⊥)) v f(d) monotonicity of f

v d by assumption on d.

Hence by induction on n ∈ N we have ∀n ∈ N. fn(⊥) v d. Therefore d is an
upper bound for the chain and hence lies above the least such, i.e.

fix (f) =
⊔

n≥0

fn(⊥) v d

as required for (lfp2).

Example 2.2.2. The function f[[B]],[[C]] defined on Slide 5 is a continuous function
(Exercise 2.3.2) on the domain State⇀State (Slide 10). So we can apply the Fixed
Point Theorem and define [[while B do C]] to be fix (f[[B]],[[C]]). In particular, the
method used to construct the partial function w∞ at the end of Section 1.1 is an
instance of the method used in the proof of the Fixed Point Theorem to construct
least pre-fixed points.

2.3 Exercises
Exercise 2.3.1. Verify the claims implicit on Slide 10: that the relation v defined
there is a partial order; that f is indeed the lub of the chain f0 v f1 v f2 v . . . ;
and that the totally undefined partial function is the least element.

Exercise 2.3.2. Verify the claim made in Example 2.1.8 that fb,c is continuous.
When is it strict?
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3 Constructions on Domains
In this section we give various ways of building domains and continuous functions,
concentrating on the ones that will be needed for a denotational semantics of the
programming language PCF studied in the second half of the course. Note that to
specify a cpo one must define a set equipped with a binary relation and then prove

(i) the relation is a partial order;

(ii) lubs exist for all chains in the partially ordered set.

Furthermore, for the cpo to be a domain, one just has to prove

(iii) there is a least element.

Note that since lubs of chains and least elements are unique if they exist, a cpo or
domain is completely determined by its underlying set and partial order. In what
follows we will give various recipes for constructing cpos and domains and leave as
an exercise the task of checking that properties (i), (ii) and (iii) do hold.

3.1 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1,v1) and (D2,v2) has underlying
set

D1 × D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order v defined by

(d1, d2) v (d′1, d
′
2)

def
⇔ d1 v1 d′1 & d2 v2 d′2

Lubs of chains are calculated componentwise:
⊔

n≥0

(d1,n, d2,n) = (
⊔

i≥0

d1,i,
⊔

j≥0

d2,j).

If (D1,v1) and (D2,v2) are domains so is (D1 × D2,v)
and ⊥D1×D2

= (⊥D1
,⊥D2

).

Slide 14
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Proposition 3.1.1 (Projections and pairing). Let D1 and D2 be cpo’s. The
projections

π1 : D1 × D2 → D1 π2 : D1 × D2 → D2

π1(d1, d2)
def
= d1 π2(d1, d2)

def
= d2

are continuous functions. If f1 : D→D1 and f2 : D→D2 are continuous functions
from a cpo D, then

〈f1, f2〉 : D → D1 × D2

〈f1, f2〉(d)
def
= (f1(d), f2(d))

is continuous.

Proof. Continuity of these functions follows immediately from the characterisation
of lubs of chains in D1 × D2 given on Slide 14.

We will need the following generalised version of the product construction.

Definition 3.1.2 (Dependent products). Given a set I , suppose that for each i ∈ I
we are given a cpo (Di,vi). The product of this whole family of cpo’s has

• underlying set equal to the I-fold cartesian product,
∏

i∈I Di, of the sets Di—
so it consists of all functions p defined on I and such that the value of p at each
i ∈ I is an element p(i) ∈ Di of the cpo Di;

• partial order v defined by

p v p′
def
⇔ ∀i ∈ I. p(i) vi p′(i).

As for the binary product (which is the particular case when I is a two-element set),
lubs in (

∏

i∈I Di , v) can be calculated componentwise: if p0 v p1 v p2 v . . . is
a chain in the product cpo, its lub is the function mapping each i ∈ I to the lub in
Di of the chain p0(i) v p1(i) v p2(i) v . . . . Thus

(
⊔

n≥0

pn)(i) =
⊔

n≥0

pn(i) (i ∈ I).

In particular, for each i ∈ I the ith projection function

πi :
∏

j∈I

Dj → Di

πi(p)
def
= p(i)

is continuous. If all the Di are domains, then so is their product—the least element
being the function mapping each i ∈ I to the least element of Di.
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Continuous functions of two arguments

Proposition. Let D, E and F be cpo’s. A function
f : D ×E → F is monotone if and only if it is monotone in each
argument separately:

∀d, d′ ∈ D, e ∈ E. d v d′ ⇒ f(d, e) v f(d′, e)

∀d ∈ D, e, e′ ∈ E. e v e′ ⇒ f(d, e) v f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains
in each argument separately:

f(
⊔

m≥0

dm , e) =
⊔

m≥0

f(dm, e)

f(d ,
⊔

n≥0

en) =
⊔

n≥0

f(d, en).

Slide 15

Proof of the Proposition on Slide 15. The ‘only if’ direction is straightforward; its
proof rests on the simple observations that if d v d′ then (d, e) v (d′, e), and
(
⊔

m≥0 dm , e) =
⊔

m≥0(dm , e), as well as the companion facts for the right
argument. For the ‘if’ direction, suppose first that f is monotone in each argument
separately. Then given (d, e) v (d′, e′) in D × E, by definition of the partial order
on the binary product we have d v d′ in D and e v e′ in E. Hence

f(d, e) v f(d′, e) by monotonicity in first argument
v f(d′, e′) by monotonicity in second argument

and therefore by transitivity, f(d, e) v f(d′, e′), as required for monotonicity of f .

Now suppose f is continuous in each argument separately. Then given a chain
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(d0, e0) v (d1, e1) v (d2, e2) v . . . in the binary product, we have

f(
⊔

n≥0

(dn, en)) = f(
⊔

i≥0

di ,
⊔

j≥0

ej) (cf. Slide 14)

=
⊔

i≥0

f(di,
⊔

j≥0

ej) by continuity in first argument

=
⊔

i≥0





⊔

j≥0

f(di, ej)



 by continuity in second argument

=
⊔

n≥0

f(dn, en) by lemma on Slide 16

as required for continuity of f .

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose the doubly indexed family of
elements dm,n ∈ D (m,n ≥ 0) satisfies

(†) m ≤ m′ & n ≤ n′ ⇒ dm,n v dm′,n′ .

Then
⊔

n≥0

d0,n v
⊔

n≥0

d1,n v
⊔

n≥0

d2,n v . . .

and

⊔

m≥0





⊔

n≥0

dm,n



 =
⊔

k≥0

dk,k =
⊔

n≥0





⊔

m≥0

dm,n



 .

Slide 16

Proof of the Lemma on Slide 16. We make use of the defining properties of lubs of
chains—(lub1) and (lub2) on Slide 9. First note that if m ≤ m′ then

dm,n v dm′,n by property (†) of the dm,n

v
⊔

n′≥0

dm′,n′ by (lub1)
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for all n ≥ 0, and hence
⊔

n≥0 dm,n v
⊔

n′≥0 dm′,n′ by (lub2). Thus we do indeed
get a chain of lubs

⊔

n≥0

d0,n v
⊔

n≥0

d1,n v
⊔

n≥0

d2,n v . . .

and can form its lub,
⊔

m≥0

⊔

n≥0 dm,n. Using property (lub1) twice we have

dk,k v
⊔

n≥0

dk,n v
⊔

m≥0

⊔

n≥0

dm,n

for each k ≥ 0, and hence by (lub2)

(5)
⊔

k≥0

dk,k v
⊔

m≥0

⊔

n≥0

dm,n.

Conversely, for each m, n ≥ 0, note that

dm,n v dmax{m,n},max{m,n} by property (†)

v
⊔

k≥0

dk,k by (lub1)

and hence applying (lub2) twice we have

(6)
⊔

m≥0

⊔

n≥0

dm,n v
⊔

k≥0

dk,k.

Combining (5) and (6) with the anti-symmetry property of v yields the desired
equality. We obtain the additional equality by the same argument but interchanging
the roles of m and n.

3.2 Function domains

The set of continuous functions between two cpo’s/domains can be made into a
cpo/domain as shown on Slide 17. The terminology ‘exponential cpo/domain’ is
sometimes used instead of ‘function cpo/domain’.
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Function cpo’s and domains

Given cpo’s (D,vD) and (E,vE), the function cpo
(D → E,v) has underlying set

D → E
def
= {f | f : D → E is a continuous function}

and partial order: f v f ′ def
⇔ ∀d ∈ D . f(d) vE f ′(d).

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

(
⊔

n≥0

fn)(d) =
⊔

n≥0

fn(d).

If E is a domain, then so is D → E and ⊥D→E(d) = ⊥E , all
d ∈ D.

Slide 17

Proof of Slide 17. We should show that the lub of a chain of functions,
⊔

n≥0 fn, is
continuous. The proof uses the ‘interchange’ law of Slide 16]. Given a chain in D,

(
⊔

n≥0

fn)((
⊔

m≥0

dm)) =
⊔

n≥0

(fn(
⊔

m≥0

dm)) definition of
⊔

n≥0

fn

=
⊔

n≥0

(
⊔

m≥0

fn(dm)) continuity of each fn

=
⊔

m≥0

(
⊔

n≥0

fn(dm)) interchange law

=
⊔

m≥0

((
⊔

n≥0

fn)(dm)) definition of
⊔

n≥0

fn.

Proposition 3.2.1 (Evaluation and ‘Currying’). Given cpo’s D and E, the function

ev : (D → E) × D → E

ev(f, d)
def
= f(d)
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is continuous. Given any continuous function f : D′ ×D →E (with D′ a cpo), for
each d′ ∈ D′ the function d ∈ D 7→ f(d′, d) is continuous and hence determines
an element of the function cpo D → E that we denote by cur(f)(d′). Then

cur(f) : D′ → (D → E)

cur(f)(d′)
def
= λd ∈ D . f(d′, d)

is a continuous function.1

Proof. For continuity of ev note that

ev(
⊔

n≥0

(fn, dn)) = ev(
⊔

i≥0

fi ,
⊔

j≥0

dj) lubs in products are componenwise

= (
⊔

i≥0

fi) (
⊔

j≥0

dj) by definition of ev

=
⊔

i≥0

fi(
⊔

j≥0

dj) lubs in function cpo’s are argumentwise

=
⊔

i≥0

⊔

j≥0

fi(dj) by continuity of each fi

=
⊔

n≥0

fn(dn) by the Lemma on Slide 16

=
⊔

n≥0

ev(fn, dn) by definition of ev .

The continuity of each cur(f)(d′) and then of cur(f) follows immediately from
the fact that lubs of chains in D1 × D2 can be calculated componentwise.

1This ‘Curried’ version of f is named in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.
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Continuity of the fixpoint operator

Proposition. Let D be a domain. By Tarski’s Fixed Point
Theorem (Slide 13) we know that each continuous function
f ∈ (D → D) possesses a least fixed point, fix (f) ∈ D.

Then the function

fix : (D → D) → D

is continuous.

Slide 18

Proof of the Proposition on Slide 18. We must first prove that fix : (D → D) → D
is a monotone function. Suppose f1 v f2 in the function domain D →D. We have
to prove fix (f1) v fix (f2). But:

f1(fix (f2)) v f2(fix (f2)) since f1 v f2

v fix (f2) by (lfp1) for fix (f2).

So fix (f2) is a pre-fixed point for f1 and hence by (lfp2) (for fix (f1)) we have
fix (f1) v fix (f2), as required.

Turning now to the preservation of lubs of chains, suppose f0 v f1 v f2 v . . .
in D → D. Recalling Remark 2.1.7, we just have to prove that

fix (
⊔

n≥0

fn) v
⊔

n≥0

fix (fn)

and by the property (lfp2) of least pre-fixed points (see Slide 12), for this it suffices
to show that

⊔

n≥0 fix (fn) is a pre-fixed point for the function
⊔

n≥0 fn. This is the
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case because:

(
⊔

m≥0

fm)(
⊔

n≥0

fix (fn)) =
⊔

m≥0

fm(
⊔

n≥0

fix (fn)) function lubs are argumentwise

=
⊔

m≥0

⊔

n≥0

fm(fix (fn)) by continuity of each fm

=
⊔

k≥0

fk(fix (fk)) by the Lemma on Slide 16

v
⊔

k≥0

fix (fk) by (lfp1) for each fk.

3.3 Flat domains

In order to model the PCF ground types nat and bool , we will use the notion of flat
domain given on Slide 19.

Discrete cpo’s and flat domains

For any set X , the relation of equality

x v x′ def
⇔ x = x′ (x, x′ ∈ X)

makes (X,v) into a cpo, called the discrete cpo with underlying
set X .

Let X⊥
def
= X ∪ {⊥}, where ⊥ is some element not in X . Then

d v d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,v) into a domain (with least element ⊥), called the
flat domain determined by X .

Slide 19

The flat domain of natural numbers, N⊥, is pictured in Figure 1; the flat domain
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of booleans, B⊥ looks like:

true false

⊥

The following instances of continuous functions involving flat domains will also be
needed for the denotational semantics of PCF. We leave the proofs as exercises.

Proposition 3.3.1. Let f : X ⇀ Y be a partial function between two sets. Then

f⊥ : X⊥ → Y⊥

f⊥(d)
def
=











f(d) if d ∈ X and f is defined at d

⊥ if d ∈ X and f is not defined at d

⊥ if d = ⊥

defines a continuous function between the corresponding flat domains.

Proposition 3.3.2. For each domain D the function

if : B⊥ × (D × D) → D

if (x, (d, d′))
def
=











d if x = true

d′ if x = false

⊥D if x = ⊥

is continuous.

3.4 Exercises
Exercise 3.4.1. Verify that the constructions given on Slide 14, in Definition 3.1.2,
and on Slides 17 and 19 do give cpo’s and domains (i.e. that properties (i), (ii) and
(ii) mentioned at the start of this section do hold in each case). Give the proofs of
Propositions 3.3.1 and 3.3.2.

Exercise 3.4.2. Let X and Y be sets and X⊥ and Y⊥ the corresponding flat
domains, as on Slide 19. Show that a function f : X⊥ → Y⊥ is continuous if
and only if one of (a) or (b) holds:

(a) f is strict, i.e. f(⊥) = ⊥.
(b) f is constant, i.e. ∀x ∈ X . f(x) = f(⊥).

Exercise 3.4.3. Let {>} be a one-element set and {>}⊥ the corresponding flat
domain. Let Ω be the domain of ‘vertical natural numbers’, pictured in Figure 1.
Show that the function domain Ω →{>}⊥ is in bijection with Ω.
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4 Scott Induction
4.1 Chain-closed and admissible subsets
In Section 2 we saw that the least fixed point of a continuous function f : D→D on a
domain D can be expressed as the lub of the chain obtained by repeatedly applying
f starting with the least element ⊥ of D: fix (f) =

⊔

n≥0 fn(⊥) (cf. Slide 13).
This construction allows one to prove properties of fix (f) by using Mathematical
Induction for n to show that each fn(⊥) has the property, provided the property in
question satisfies the condition shown on Slide 20. It is convenient to package up
this use of Mathematical Induction in a way that hides the explicit construction of
fix (f) as the lub of a chain. This is done on Slide 21. To see the validity of the
statement on that slide, note that f 0(⊥) = ⊥ ∈ S by the Base case; and fn(⊥) ∈ S
implies fn+1(⊥) = f(fn(⊥)) ∈ S by the Induction step. Hence by induction
on n, we have ∀n ≥ 0 . fn(⊥) ∈ S. Therefore by the chain-closedness of S,
fix (f) =

⊔

n≥0 fn(⊥) ∈ S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff for all
chains d0 v d1 v d2 v . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒ (
⊔

n≥0

dn) ∈ S

If D is a domain, S ⊆ D is called admissible iff it is a
chain-closed subset of D and ⊥ ∈ S.

A property Φ(d) of elements d ∈ D is called chain-closed/admissible
iff {d ∈ D | Φ(d)} is a chain-closed/admissible subset of D.

Slide 20

Note. The terms inclusive, or inductive, are often used as synonyms of ‘chain-
closed’.

Example 4.1.1. Consider the domain Ω of ‘vertical natural numbers’ pictured in
Figure 1. Then

• any finite subset of Ω is chain-closed;
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• {0, 2, 4, 6, . . .} is not a chain-closed subset of Ω;
• {0, 2, 4, 6, . . .} ∪ {ω} is a chain-closed (indeed, is an admissible) subset of Ω.

Scott’s Fixed Point Induction Principle

Let f : D → D be a continuous function on a domain D.

For any admissible subset S ⊆ D, to prove that the least fixed
point of f is in S, i.e. that

fix (f) ∈ S

it suffices to prove

∀d ∈ D (d ∈ S ⇒ f(d) ∈ S).

Slide 21

4.2 Examples
Example 4.2.1. Suppose that D is a domain and that f : (D × (D × D)) → D is
a continuous function. Let g : (D × D) → (D × D) be the continuous function
defined by

g(d1, d2)
def
= (f(d1, (d1, d2)), f(d1, (d2, d2))) (d1, d2 ∈ D).

Then u1 = u2, where (u1, u2)
def
= fix (g). (Note that g is continuous because we

can express it in terms of composition, projections and pairing and hence apply
Proposition 3.1.1 and Slide 37: g = 〈f ◦ 〈π1, 〈π1, π2〉〉, f ◦ 〈π1, 〈π2, π2〉〉〉.)

Proof. We have to show that fix (g) ∈ ∆ where

∆
def
= {(d1, d2) ∈ D × D | d1 = d2}.

It is not hard to see that ∆ is an admissible subset of the product domain D × D.
So by Scott’s Fixed Point Induction Principle, we just have to check that

∀(d1, d2) ∈ D × D ((d1, d2) ∈ ∆ ⇒ g(d1, d2) ∈ ∆)
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or equivalently, that

∀(d1, d2) ∈ D × D (d1 = d2 ⇒ f(d1, d1, d2) = f(d1, d2, d2)),

which is clearly true.

The next example shows that Scott’s Induction Principle can be useful for
proving (the denotational version of) partial correctness assertions about programs,
i.e. assertions of the form ‘if the program terminates, then such-and-such a property
holds of the results’. By contrast, a total correctness assertion would be ‘the program
does terminate and such-and-such a property holds of the results’. Because Scott
Induction can only be applied for properties Φ for which Φ(⊥) holds, it is not so
useful for proving total correctness.

Example 4.2.2. Let f : D → D be the continuous function defined on Slide 6
whose least fixed point is the denotation of the command

while X > 0 do (Y := X ∗ Y ; X := X − 1).

We will use Scott Induction to prove

(7) ∀x, y ≥ 0 . fix (f)(x, y) 6= ⊥ ⇒ fix (f)(x, y) = (0, (!x) ∗ y)

where for w ∈ D = (Z × Z) ⇀ (Z × Z) we write w(x, y) 6= ⊥ to mean ‘the
partial function w is defined at (x, y)’. (In other words, one can identify D with the
domain of (continuous) functions from the discrete cpo Z × Z to the flat domain
(Z × Z)⊥.)

Proof. Let

S
def
= {w ∈ D | ∀x, y ≥ 0 . w(x, y) 6= ⊥ ⇒ w(x, y) = (0, (!x) ∗ y)}.

It is not hard to see that S is admissible. Therefore, to prove (7), by Scott
Induction it suffices to check that w ∈ S implies f(w) ∈ S, for all w ∈ D. So
suppose w ∈ S, that x, y ≥ 0, and that f(w)(x, y) 6= ⊥. We have to show that
f(w)(x, y) = (0, (!x) ∗ y). We consider the two cases x = 0 and x > 0 separately.

If x = 0, then by definition of f (See Slide 6)

f(w)(x, y) = (x, y) = (0, y) = (0, 1 ∗ y) = (0, (!0) ∗ y) = (0, (!x) ∗ y).

On the other hand, if x > 0, then by definition of f

w(x − 1, x ∗ y) = f(w)(x, y) 6= ⊥ (by assumption)

and then since w ∈ S and x − 1, x ∗ y ≥ 0, we must have w(x − 1, x ∗ y) =
(0, !(x− 1) ∗ (x ∗ y)) and hence once again

f(w)(x, y) = w(x − 1, x ∗ y) = (0, !(x− 1) ∗ (x ∗ y)) = (0, (!x) ∗ y).
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The difficulty with applying Scott’s Fixed Point Induction Principle in any
particular case usually lies in identifying an appropriate admissible subset S (i.e. in
finding a suitably strong ‘induction hypothesis’). The next example illustrates this.

Example (cf. CST Pt II, 1988, p4, q3)

Let D be a domain and p : D → B⊥, h, k : D → D be
continuous functions, with h strict (i.e. h(⊥) = ⊥).

Let f1, f2 : (D × D) → D be the least continuous functions
such that for all d1, d2 ∈ D

f1(d1, d2) = if (p(d1) , d2 , h(f1(k(d1), d2)))

f2(d1, d2) = if (p(d1) , d2 , f2(k(d1), h(d2)))

where if (b, d1, d2) =











d1 if b = true

d2 if b = false

⊥ if b = ⊥

.

Then f1 = f2.

Slide 22

Proof of the Example on Slide 22. First note that by definition of f1 and f2, we
have (f1, f2) = fix (g) where g is the continuous function defined on Slide 23.
(Note that one can prove that g is continuous either directly, or via the results of
Section 3.) Thus to prove that f1 = f2, it suffices to show that fix (g) is in the
admissible subset {(u1, u2) ∈ E × E | u1 = u2}. To use the Scott Induction
Principle for this admissible subset, we would have to prove

∀(u1, u2) ∈ E × E ((u1, u2) ∈ ∆ ⇒ g(u1, u2) ∈ ∆)

i.e. that ∀u ∈ E . g1(u, u) = g2(u, u). It is clear from the definition of g1 and g2 on
Slide 23 that g1(u, u)(d1, d2) = g2(u, u)(d1, d2) holds provided h(u(k(d1), d2)) =
u(k(d1), h(d2)). Unfortunately, there is no reason why the latter condition should
be satisfied by an arbitrary element u of E (although it does indeed hold when
u = f1, as we shall see).



4.2 Examples 33

Let D, p, h, and k be as on Slide 22. Defining E to be the
function domain (D × D) → D, let

g
def
= 〈g1, g2〉 : (E × E) → (E × E)

where g1, g2 : (E × E) → E are the continuous functions
defined by

g1(u1, u2)(d1, d2)
def
=











d2 if p(d1) = true

h(u1(k(d1), d2)) if p(d1) = false

⊥ if p(d1) = ⊥

g2(u1, u2)(d1, d2)
def
=











d2 if p(d1) = true

u2(k(d1), h(d2)) if p(d1) = false

⊥ if p(d1) = ⊥

(all u1, u2 ∈ E and d1, d2 ∈ D).

Slide 23

We can circumvent this problem by applying Scott Induction to a smaller subset
than {(u1, u2) ∈ E × E | u1 = u2}, namely

S
def
= {(u1, u2) ∈ E × E | u1 = u2 & ∀(d1, d2) ∈ D × D

h(u1(d1, d2)) = u1(d1, h(d2))}.

We first have to check that S is admissible. It is chain-closed because if
(u1,0, u2,0) v (u1,1, u2,1) v (u1,2, u2,2) v . . . is a chain in E × E each of whose
elements is in S, then

⊔

n≥0(u1,n, u2,n) = (
⊔

i≥0 u1,i,
⊔

j≥0 u2,j) is also in S since

⊔

n≥0

u1,n =
⊔

n≥0

u2,n (because u1,n = u2,n, each n)
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and

h((
⊔

n≥0

u1,n)(d1, d2)) = h(
⊔

n≥0

u1,n(d1, d2)) function lubs are argumentwise

=
⊔

n≥0

h(u1,n(d1, d2)) h is continuous

=
⊔

n≥0

u1,n(d1, h(d2)) each (u1,n, u2,n) is in S

= (
⊔

n≥0

u1,n)(d1, h(d2)) function lubs are argumentwise.

Also, S contains the least element (⊥,⊥) of E × E, because when (u1, u2) =
(⊥,⊥) clearly u1 = u2 and furthermore for all (d1, d2) ∈ D × D

h(u1(d1, d2)) = h(⊥(d1, d2))

= h(⊥) by definition of ⊥ ∈ (D × D) → D

= ⊥ h is strict, by assumption
= ⊥(d1, h(d2)) by definition of ⊥ ∈ (D × D) → D

= u1(d1, h(d2)).

To prove f1 = f2 it is enough to show that (f1, f2) = fix (g) ∈ S; and since S
is admissible, by Scott Induction it suffices to prove for all (u1, u2) ∈ E × E that

(u1, u2) ∈ S ⇒ (g1(u1, u2), g2(u1, u2)) ∈ S.

So suppose (u1, u2) ∈ S, i.e. that u1 = u2 and

(8) ∀(d1, d2) ∈ D × D . h(u1(d1, d2)) = u1(d1, h(d2)).

It is clear from the definition of g1 and g2 on Slide 23 that u1 = u2 and (8)
imply g1(u1, u2) = g2(u1, u2). So to prove (g1(u1, u2), g2(u1, u2)) ∈ S, we
just have to check that h(g1(u1, u2)(d1, d2)) = g1(u1, u2)(d1, h(d2)) holds for all
(d1, d2) ∈ D × D. But

h(g1(u1, u2)(d1, d2)) =











h(d2) if p(d1) = true

h(h(u1(k(d1), d2))) if p(d1) = false

h(⊥) if p(d1) = ⊥

g1(u1, u2)(d1, h(d2)) =











h(d2) if p(d1) = true

h(u1(k(d1), h(d2))) if p(d1) = false

⊥ if p(d1) = ⊥.

So since h(h(u1(k(d1), d2))) = h(u1(k(d1), h(d2))) by (8), and since h(⊥) = ⊥,
we get the desired result.



4.3 Building chain-closed subsets 35

4.3 Building chain-closed subsets
The power of Scott induction depends on having a good stock of chain-closed
subsets. Fortunately we are able to ensure that a good many subsets are chain-closed
by virtue of the way in which they are built up.

Basic relations: Let D be a cpo. The subsets

{(x, y) ∈ D × D | x v y} and {(x, y) ∈ D × D | x = y}

of D×D are chain-closed (Why?). The properties (or predicates) x v y and x = y
on D × D determine chain-closed sets.

Inverse image and substitution: Let f : D → E be a continuous function between
cpos D and E. Suppose S is a chain-closed subset of E. Then the inverse image

f−1S = {x ∈ D | f(x) ∈ S}

is an chain-closed subset of D (Why?).
Suppose the subset S is defined by the property P on E i.e.

S = {y ∈ E | P (y)}.

Then
f−1S = {x ∈ D | P (f(x))}.

So, if a property P (y) on E determines a chain-closed subset of E and f : D → E
is a continuous function, then the property P (f(x)) on D determines a chain-closed
subset of D.
Logical operations: Let D be a cpo. Let S ⊆ D and T ⊆ D be chain-closed
subsets of D. Then

S ∪ T and S ∩ T

are chain-closed subsets (Why?). In terms of properties, if P (x) and Q(x) determine
chain-closed subsets of D, then so do

P (x) or Q(x), P (x) & Q(x).

If Si, i ∈ I , is a family of chain-closed subsets of D indexed by a set I , then
⋂

i∈I Si is a chain-closed subset of D (Why?).
Consequently, if a property P (x, y) determines a chain-closed subset of D×E,

then the property ∀x ∈ D. P (x, y) determines a chain-closed subset of E. This is
because

{y ∈ E | ∀x ∈ D. P (x, y)} =
⋂

d∈D

{y ∈ E | P (d, y)}

=
⋂

d∈D

fd
−1{(x, y) ∈ D × E | P (x, y)}
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where fd : D ×E → D ×E is the continuous function such that fd(x, y) = (d, y)
for each d ∈ D.

In fact, any property built-up as a universal quantification over several variables
of conjunctions and disjunctions of basic properties of the form f(x1, · · · , xk) v
g(x1, · · · , xl) or f(x1, · · · , xk) = g(x1, · · · , xl), where f and g are continuous,
will determine a chain-closed subset of the product cpo appropriate to the non-
quantified variables.

Note, however, that infinite unions of chain-closed subsets need not be chain-
closed; finite subsets are always chain complete but arbitrary unions of them need
not be. Accordingly, we cannot in general build chain-closed subsets with existential
quantifications.

4.4 Exercises
Exercise 4.4.1. Answer all the “Why?”s above in the building of chain-closed
subsets.

Exercise 4.4.2. Give an example of a subset S ⊆ D × D′ of a product cpo that is
not chain-closed, but which satisfies:

(a) for all d ∈ D, {d′ | (d, d′) ∈ S} is a chain-closed subset of D′; and
(b) for all d′ ∈ D′, {d | (d, d′) ∈ S} is a chain-closed subset of D.

[Hint: consider D = D′ = Ω, the cpo in Figure 1.]
(Compare this with the property of continuous functions given on Slide 15.)
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5 PCF
The language PCF (‘Programming Computable Functions’) is a simple functional
programming language that has been used extensively as an example language in the
development of the theory of both denotational and operational semantics (and the
relationship between the two). Its syntax was introduced by Dana Scott circa 1969
as part of a ‘Logic of Computable Functions’1 and was studied as a programming
language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational semantics of the particular
version of PCF we use in these notes. In Section 6 we will see how to give it a
denotational semantics using domains and continuous function.

5.1 Terms and types
The types, expressions, and terms of the PCF language are defined on Slide 24.

PCF syntax

Types τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M) | zero(M)

| true | false | if M then M else M

| x | fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.

We identify expressions up to α-conversion of bound variables
(created by the fn expression-former): by definition a PCF term is
an α-equivalence class of expressions.

Slide 24

The intended meaning of the various syntactic forms is as follows.

• nat is the type of the natural numbers, 0, 1, 2, 3, . . . . In PCF these are gen-
erated from 0 by repeated application of the successor operation, succ(−),
whose intended meaning is to add 1 to its argument. The predecessor op-
eration pred(−) subtracts 1 from strictly positive natural numbers (and is
undefined at 0).

1This logic was the stimulus for the development of the ML language and LCF system for
machine-assisted proofs by Milner, Gordon et al—see Paulson 1987; Scott’s original work
was eventually published as Scott 1993.
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• bool is the type of booleans, true and false. The operation zero(−) tests
whether its argument is zero or strictly positive and returns true or false

accordingly. The conditional expression if M1 then M2 else M3 behaves
like either M2 or M3 depending upon whether M1 evaluates to true or false
respectively.

• A PCF variable, x, stands for an unknown expression. PCF is a pure func-
tional language—there is no state that changes during expression evaluation
and in particular variables are ‘identifiers’ standing for a fixed expression,
rather than ‘program variables’ whose contents may get mutated during eval-
uation.

• τ → τ ′ is the type of (partial) functions taking a single argument of type τ
and (possibly) returning a result of type τ ′. fnx : τ . M is the notation we
will use for function abstraction (i.e. lambda abstraction) in PCF; note that
the type τ of the abstracted variable x is given explicitly. The application
of function M1 to argument M2 is indicated by M1 M2. As usual, the
scope of a function abstraction extends as far to the right of the dot as
possible and function application associates to the left (i.e. M1 M2 M3 means
(M1 M2) M3, not M1 (M2 M3)).

• The expression fix(M) indicates an element x recursively defined by
x = M x. The lambda calculus equivalent is Y M , where Y is a suitable
fixpoint combinator.

5.2 Free variables, bound variables and substitution
PCF contains one variable-binding form: free occurrences of x in M become bound
in fnx : τ . M . The finite set of free variables of an expression M , fv(M), is
defined by induction on its structure, as follows:

fv(0) = fv(true) = fv(false)
def
= ∅

fv(succ(M)) = fv(pred(M)) = fv(zero(M)) = fv(fix(M))
def
= fv(M)

fv(if M then M ′ else M ′′)
def
= fv(M) ∪ fv(M ′) ∪ fv(M ′′)

fv(M M ′)
def
= fv(M) ∪ fv(M ′)

fv(x)
def
= {x}

fv(fnx : τ . M)
def
= {x′ ∈ fv(M) | x′ 6= x}.

One says that M is closed if fv(M) = ∅ and open otherwise.



5.3 Typing 39

As indicated on Slide 24, we will identify α-convertible PCF expressions,
i.e. ones that differ only up to the names of their bound variables. Thus by definition,
a PCF term is an equivalence class of PCF expressions for the equivalence relation
of α-conversion. However, we will always refer to a term via some representative
expression, usually choosing one whose bound variables are all distinct from each
other and from any other variables in the context in which the term is being used.
The operation of substituting a term M for all free occurrences of a variable x in a
term M ′ will be written

M ′[M/x].

The operation is carried out by textual substitution of an expression representing M
for free occurrences of x in an expression representing M ′ whose binding variables
are distinct from the free variables in M (thereby avoiding ‘capture’ of free variables
in M by binders in M ′).

5.3 Typing
PCF is a typed language: types are assigned to terms via the relation shown on
Slide 25 whose intended meaning is “if each x ∈ dom(Γ) has type Γ(x), then M
has type τ”.

PCF typing relation, Γ ` M : τ

• Γ is a type environment , i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted
dom(Γ))

• M is a term

• τ is a type.

Relation is inductively defined by the axioms and rules in Figure 2.

Notation:

M : τ means M is closed and ∅ ` M : τ holds.

PCFτ
def
= {M | M : τ}.

Slide 25
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Γ ` 0 : nat(:0)

Γ ` M : nat

Γ ` succ(M) : nat
(:succ)

Γ ` M : nat

Γ ` pred(M) : nat
(:pred)

Γ ` M : nat

Γ ` zero(M) : bool
(:zero)

Γ ` b : bool (b = true, false)(:bool)

Γ ` M1 : bool Γ ` M2 : τ Γ ` M3 : τ

Γ ` if M1 then M2 else M3 : τ
(:if )

Γ ` x : τ if x ∈ dom(Γ) & Γ(x) = τ(:var)

Γ[x 7→ τ ] ` M : τ ′

Γ ` fnx : τ . M : τ → τ ′
if x /∈ dom(Γ)(:fn)

Γ ` M1 : τ → τ ′ Γ ` M2 : τ

Γ ` M1 M2 : τ ′
(:app)

Γ ` M : τ → τ

Γ ` fix(M) : τ
(:fix)

In rule (:fn), Γ[x 7→ τ ] denotes the type environment mapping x to τ and
otherwise acting like Γ.

Figure 2: Axioms and rules for PCF typing relation
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Proposition 5.3.1.

(i) If Γ ` M : τ holds, then fv(M) ⊆ dom(Γ). If both Γ ` M : τ and Γ ` M : τ ′

hold, then τ = τ ′. In particular a closed term has at most one type.
(ii) If Γ ` M : τ and Γ[x 7→ τ ] ` M ′ : τ ′ both hold, then so does

Γ ` M ′[M/x] : τ ′.

Proof. These properties of the inductively defined typing relation are easily proved
by rule induction. The fact that a term has at most one type for a given assignment
of types to its free variables relies upon the fact that types of bound variables are
given explicitly in function abstractions.

Example 5.3.2 (Partial recursive functions in PCF). Although the PCF syntax is
rather terse, the combination of increment, decrement, test for zero, condition-
als, function abstraction and application, and fixpoint recursion makes it Turing
expressive—in the sense that all partial recursive functions1 can be coded. For ex-
ample, recall that the partial function h : N×N ⇀N defined by primitive recursion
from f : N ⇀ N and g : N × N × N ⇀ N satisfies that for all x, y ∈ N

{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y)).

Thus if f has been coded in PCF by a term F : nat → nat and g by a term
G : nat → (nat → (nat → nat)), then h can be coded by

H
def
= fix(fnh : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then F x else G x y (h x y)).

Apart from primitive recursion, the other construction needed for defining partial
recursive functions is minimisation. For example, the partial function m : N ⇀ N

defined from k : N × N ⇀ N by minimisation satisfies that for all x ∈ N

m(x) = least y ≥ 0 such that k(x, y) = 0 and
∀z. 0 ≤ z < y ⇒ k(x, z) > 0.

This can also be expressed using fixpoints, although not so easily as in the
case of primitive recursion. For if k has been coded in PCF by a term
K : nat → (nat → nat), then in fact m can be coded as fnx : nat . M ′ x0

where

M ′ def
= fix(fnm′ : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(K x y) then y else m′ x succ(y)).

1See the Part IB course on Computation Theory.
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5.4 Evaluation
We give the operational semantics of PCF in terms of an inductively defined relation
of evaluation whose form is shown on Slide 26. As indicated there, the results of
evaluation are PCF terms of a particular form, called values (and sometimes also
called ‘canonical forms’). The only values of type bool are true and false. The
values of type nat are unary representations of natural numbers, succn(0) (n ∈ N),
where

{

succ0(0)
def
= 0

succn+1(0)
def
= succ(succn(0)).

Values at function types, being function abstractions fnx : τ . M , are more
‘intensional’ than those at the ground data types, since the body M is an unevaluated
PCF term. The axioms and rules for generating the evaluation relation are given in
Figure 3.

PCF evaluation relation

takes the form
M ⇓τ V

where

• τ is a PCF type

• M,V ∈ PCFτ are closed PCF terms of type τ

• V is a value,
V ::= 0 | succ(V ) | true | false | fnx : τ .M .

The evaluation relation is inductively defined by the axioms and
rules in Figure 3.

Slide 26

Proposition 5.4.1. Evaluation in PCF is deterministic: if both M⇓τ V and M⇓τ V ′

hold, then V = V ′.

Proof. By rule induction: one shows that

{(M, τ, V ) | M ⇓τ V & ∀V ′ (M ⇓τ V ′ ⇒ V = V ′)}

is closed under the axioms and rules defining ⇓. We omit the details.
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V ⇓τ V (V a value of type τ )(⇓val)

M ⇓
nat

V

succ(M) ⇓
nat

succ(V )
(⇓succ)

M ⇓
nat

succ(V )

pred(M) ⇓nat V
(⇓pred)

M ⇓nat 0

zero(M) ⇓
bool

true
(⇓zero1)

M ⇓nat succ(V )

zero(M) ⇓bool false
(⇓zero2)

M1 ⇓bool true M2 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if1)

M1 ⇓bool false M3 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if2)

M1 ⇓τ→τ ′ fnx : τ . M ′
1 M ′

1[M2/x] ⇓τ ′ V

M1 M2 ⇓τ ′ V
(⇓cbn)

M fix(M) ⇓τ V

fix(M) ⇓τ V
(⇓fix)

Figure 3: Axioms and rules for PCF evaluation
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Example 5.4.2. The proposition shows that every closed typeable term evaluates to
at most one value. Of course there are some typeable terms that do not evaluate to
anything. We write M 6 ⇓τ iff M : τ and 6 ∃V. M ⇓τ V . Then for example

Ωτ
def
= fix(fnx : τ . x)

satisfies Ωτ 6 ⇓τ . (For if for some V there were a proof of fix(fnx : τ . x) ⇓τ V ,
choose one of minimal height. This proof, call it P , must look like

fnx : τ . x ⇓ fnx : τ . x
(⇓val)

P ′

fix(fnx : τ . x) ⇓ V

(fnx : τ . x) (fix(fnx : τ . x)) ⇓ V
(⇓cbn)

fix(fnx : τ . x) ⇓ V
(⇓fix)

where P ′ is a strictly shorter proof of fix(fnx : τ . x) ⇓τ V , which contradicts the
minimality of P .)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ transition
relation. Let the relation M →τ M ′ (for M, M ′ ∈ PCFτ ) be inductively defined
by the axioms and rules in Figure 4. Then one can show that for all τ and
M, V ∈ PCFτ with V a value

M ⇓τ V ⇔ M(→τ)∗V

where (→τ )∗ denotes the reflexive-transitive closure of the relation →τ .

5.5 Contextual equivalence versus equality in denotation

We aim to give a denotational semantics to PCF that is compositional (cf. Slide 2)
and that matches its operational semantics. These requirements are made more
precise on Slide 27.
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M →nat M ′

op(M) →τ op(M ′)

(where op = succ,pred & τ = nat ,
or op = zero & τ = bool)

pred(succ(V )) →nat V (V a value of type nat)

zero(0) →bool true

zero(succ(V )) →bool false (V a value of type nat)

M1 →bool M ′
1

if M1 then M2 else M3 →τ if M ′
1 then M2 else M3

if true then M1 else M2 →τ M1

if false then M1 else M2 →τ M2

M1 →τ→τ ′ M ′
1

M1 M2 →τ ′ M ′
1 M2

(fnx : τ . M1) M2 →τ ′ M1[M2/x]

fix(M) →τ M fix(M)

Figure 4: Axioms and rules for PCF transition relation
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PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].
(More generally, denotations of open terms will be continuous
functions.)

• Compositionality—cf. Slide 2. In particular:
[[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness: for any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy : for τ = bool or nat ,
[[M ]] = [[V ]] ∈ [[τ ]] ⇒ M ⇓τ V .

Slide 27

The soundness and adequacy properties make precise the connection between
the operational and denotational semantics for which we are aiming. Note that the
adequacy property only involves the ‘ground’ datatypes nat and bool . One cannot
expect such a property to hold at function types because of the ‘intensional’ nature
of values at such types (mentioned above). Indeed such an adequacy property at
function types would contradict the compositionality and soundness properties we
want for [[−]], as the following example shows.

Example 5.5.1. Consider the following two PCF value terms of type nat → nat :

V
def
= fnx : nat . (fn y : nat . y)0 and V ′ def

= fnx : nat .0.

Now V 6 ⇓
nat→nat

V ′, since by (⇓val), V ⇓
nat→nat

V 6= V ′ and by Proposition 5.4.1
evaluation is deterministic. However, the soundness and compositionality proper-
ties of [[−]] imply that [[V ]] = [[V ′]]. For using (⇓val) and (⇓cbn) we have

(fn y : nat . y)0 ⇓nat 0.

So by soundness [[(fn y : nat . y)0]] = [[0]]. Therefore by compositionality for
C[−]

def
= fnx : nat .− we have

[[C[(fn y : nat . y)0]]] = [[C[0]]]

i.e. [[V ]] = [[V ′]].
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Definition 5.5.2 (Contexts). As the preceding example should make clear, the
notation C[M ] used on Slide 27 indicates a PCF term containing occurrences of
a term M , and then C[M ′] is the term that results from replacing these occurrences
by M ′. More precisely, the PCF contexts are generated by the grammar for PCF
expressions augmented by the symbol ‘−’ representing a place, or ‘hole’ that can
be filled with a PCF term:

C ::= − | 0 | succ(C) | pred(C) | zero(C) | true | false

| if C then C else C | x | fnx : τ . C | C C | fix(C)

Given such a context C,1 we write C[M ] for the PCF expression that results from
replacing all the occurrences of − in C by M . This form of substitution may well
involve the capture of free variables in M by binders in C. For example, if C is
fnx : τ .−, then C[x] is fnx : τ . x. Nevertheless it is possible to show that if M
and M ′ are α-convertible then so are C[M ] and C[M ′]. Hence the operation on PCF
expressions sending M to C[M ] induces a well-defined operation on PCF terms ( =
α-equivalence classes of expressions).

Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a
complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

Slide 28

Slide 28 recalls (from the CST Part IB course on Semantics of Programming
Languages) the general notion of contextual equivalence of phrases in a program-
ming language. It is really a family of notions, parameterised by the particular
choices one takes for what constitutes a ‘program’ in the language and what are the
‘observable results’ of executing such programs. For PCF it is reasonable to take

1It is common practice to write C[−] instead of C to indicate the symbol being used to
mark the ‘holes’ in C.
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the programs to be closed terms of type nat or bool and to observe the values that
result from evaluating such terms. This leads to the definition given on Slide 29.

Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment
Γ, the relation Γ ` M1

∼=ctx M2 : τ is defined to hold iff

• Both the typings Γ ` M1 : τ and Γ ` M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are
closed terms of type γ, where γ = nat or γ = bool ,
and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.

Slide 29

Notation 5.5.3. For closed PCF terms, we write

M1
∼=ctx M2 : τ

for ∅ ` M1
∼=ctx M2 : τ .

Although ∼=ctx is a natural notion of semantic equivalence for PCF given its
operational semantics, it is hard to work with, because of the universal quantification
over contexts that occurs in the definition. As the theorem stated on Slide 30 shows,
if we have a denotational semantics of PCF satisfying the properties on Slide 27,
we can use it to establish instances of contextual equivalence by showing that terms
have equal denotation. In many cases this is an easier task than proving contextual
equivalence directly from the definition. The theorem on Slide 30 generalises to
open terms: if the continuous functions that are the denotations of two open terms (of
the same type for some type environment) are equal, then the terms are contextually
equivalent.
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Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,
if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then
M1

∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V ]] (soundness)

⇒ [[C[M2]]] = [[V ]] (compositionality
on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.

Slide 30

We turn now to the task of showing that PCF has a denotational semantics with
these properties of compositionality, soundness and adequacy.

5.6 Exercises

Exercise 5.6.1. Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.6.2. Recall that Church’s fixpoint combinator in the untyped lambda
calculus is Y

def
= λf . (λx . f (x x)) (λx . f (x x)). Show that there are no PCF

types τ1, τ2, τ3 so that the typing relation

∅ ` fn f : τ1 . (fnx : τ2 . f (x x)) (fnx : τ2 . f (x x)) : τ3

is provable from the axioms and rules in Figure 2.
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Exercise 5.6.3. Define the following PCF terms:

plus
def
= fix(fn p : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then x else succ(p xpred(y)))

times
def
= fix(fn t : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then 0 else plus (t xpred(y)) x)

fact
def
= fix(fn t : nat → nat . fnx : nat .

if zero(x) then succ(0) else times x(f pred(x))).

Show by induction on n ∈ N that for all m ∈ N

plus succm(0) succn(0) ⇓nat succm+n(0)

times succm(0) succn(0) ⇓
nat

succm∗n(0)

fact succn(0) ⇓nat succ!n(0).
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6 Denotational Semantics of PCF
6.1 Denotation of types
For each PCF type τ , we define a domain [[τ ]] by induction on the structure of τ as
on Slide 31.

Denotational semantics of PCF types

[[nat ]]
def
= N⊥ (flat domain)

[[bool ]]
def
= B⊥ (flat domain)

[[τ → τ ′]]
def
= [[τ ]] → [[τ ′]] (function domain).

where N = {0, 1, 2, . . . } and B = {true, false}.

Slide 31

6.2 Denotation of terms
For each PCF term M and type environment Γ, recall from Proposition 5.3.1 that
there is at most one type τ for which the typing relation Γ ` M : τ is derivable
from the axioms and rules in Figure 2. We only give a denotational semantics to
such typeable terms. Specifically, given such M and Γ, we will define a continuous
function between domains

(9) [[Γ ` M ]] : [[Γ]] → [[τ ]]

where τ is the type for which Γ ` M : τ holds, and where [[Γ]] is the following
dependent product domain (see Definition 3.1.2):

(10) [[Γ]]
def
=

∏

x∈dom(Γ)

[[Γ(x)]].
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The elements of the domain (10) will be called Γ-environments: they are func-
tions ρ mapping each variable x in the domain of definition of Γ to an element
ρ(x) ∈ [[Γ(x)]] in the domain which is the denotation of the type Γ(x) assigned to
x by the type environment Γ. The continuous function (9) is defined by induction
on the structure of M , or equivalently, by induction on the derivation of the typing
relation Γ ` M : τ . The definition is given on Slides 32–35, where we show the
effect of each function on a Γ-environment, ρ.

Denotational semantics of PCF terms, I

[[Γ ` 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ` true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ` false]](ρ)
def
= false ∈ [[bool ]]

[[Γ ` x]](ρ)
def
= ρ(x) ∈ [[Γ(x)]] (x ∈ dom(Γ)).

Slide 32
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Denotational semantics of PCF terms, II

[[Γ ` succ(M)]](ρ)
def
=

{

[[Γ ` M ]](ρ) + 1 if [[Γ ` M ]](ρ) 6= ⊥

⊥ if [[Γ ` M ]](ρ) = ⊥

[[Γ ` pred(M)]](ρ)
def
=

{

[[Γ ` M ]](ρ) − 1 if [[Γ ` M ]](ρ) > 0

⊥ if [[Γ ` M ]](ρ) = 0,⊥

[[Γ ` zero(M)]](ρ)
def
=











true if [[Γ ` M ]](ρ) = 0

false if [[Γ ` M ]](ρ) > 0

⊥ if [[Γ ` M ]](ρ) = ⊥

Slide 33

Denotational semantics of PCF terms, III

[[Γ ` if M1 then M2 else M3]](ρ)
def
=











[[Γ ` M2]](ρ) if [[Γ ` M1]](ρ) = true

[[Γ ` M3]](ρ) if [[Γ ` M1]](ρ) = false

⊥ if [[Γ ` M1]](ρ) = ⊥

[[Γ ` M1 M2]](ρ)
def
= ([[Γ ` M1]](ρ)) ([[Γ ` M2]](ρ))

Slide 34
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Denotational semantics of PCF terms, IV

[[Γ ` fnx : τ .M ]](ρ)
def
=

λd ∈ [[τ ]] . [[Γ[x 7→ τ ] ` M ]](ρ[x 7→ d])

(where x /∈ dom(Γ))

[[Γ ` fix(M)]](ρ)
def
= fix ([[Γ ` M ]](ρ)).

ρ[x 7→ d] ∈ [[Γ[x 7→ τ ]]] is the function mapping x to d ∈ [[τ ]] and
otherwise acting like ρ.

fix is the function assigning least fixed points to continuous functions.

Slide 35

Denotations of closed terms

If M ∈ PCFτ , then by definition ∅ ` M : τ holds, so we get
[[∅ ` M ]] : [[∅]] → [[τ ]].

When Γ = ∅, the only Γ-environment is the totally undefined
partial function—call it ⊥.

So in this case [[Γ]] is a one-element domain, {⊥}. Continuous
functions f : {⊥}→ D are in bijection with elements f(⊥) ∈ D, and
in particular we can identify the denotation of closed PCF terms with
elements of the domain denoting their type:

[[M ]]
def
= [[∅ ` M ]](⊥) ∈ [[τ ]] (M ∈ PCFτ )

Slide 36
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[[Γ ` M ]] : [[Γ]] → [[τ ]] is a well-defined continuous function because the base
cases of the definition (on Slide 32) are continuous functions and at each induction
step, in giving the denotation of a compound phrase in terms of the denotations of
its immediate subphrases, we make use of constructions preserving continuity—as
we now indicate.

0, true, and false: The denotation of these terms (Slide 32) are all functions
that are constantly equal to a particular value. We noted in Example 2.1.9 that such
functions are continuous.

variables: The denotation of a variable (Slide 32) is a projection function. We
noted in Definition 3.1.2 that such functions are continuous, because of the way
lubs are computed componentwise in dependent product domains.

Composition preserves continuity

Proposition. If f : D → E and g : E → F are continuous
functions between cpo’s, then their composition

g ◦ f : D → F

(g ◦ f)(d)
def
= g(f(d))

is also continuous.

Slide 37

succ, pred, and zero: We need to make use of the fact that composition of
functions preserves continuity—see the Proposition on Slide 37. We leave its proof
as a simple exercise. In particular, the denotation of succ(M) (Slide 33) is the
composition

s⊥ ◦ [[Γ ` M ]]

where by induction hypothesis [[Γ ` M ]] : [[Γ]] → N⊥ is a continuous function, and
where s⊥ : N⊥ →N⊥ is the continuous function on the flat domain N⊥ induced, as
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in Proposition 3.3.1, by the function s : N ⇀ N mapping each n to n + 1.
Similarly

[[Γ ` pred(M)]] = p⊥ ◦ [[Γ ` M ]] and [[Γ ` zero(M)]] = z⊥ ◦ [[Γ ` M ]],

for suitable functions p : N ⇀ N and z : N ⇀ B. (Only p is a properly partial
function, undefined at 0; s and z are totally defined functions.)

conditional: By induction hypothesis we have continuous functions [[Γ ` M1]] :
[[Γ]] → B⊥, [[Γ ` M2]] : [[Γ]] → [[τ ]], and [[Γ ` M3]] : [[Γ]] → [[τ ]]. Then
[[Γ ` if M1 then M2 else M3]] is continuous because we can express the defini-
tion on Slide 34 in terms of composition, the pairing operation of Proposition 3.1.1,
and the continuous function : B⊥ × ([[τ ]] × [[τ ]]) → [[τ ]] of Proposition 3.3.2:

[[Γ ` if M1 then M2 else M3]] = if ◦ 〈[[Γ ` M1]], 〈[[Γ ` M2]], [[Γ ` M3]]〉〉.

application: By induction hypothesis we have continuous functions [[Γ ` M1]] :
[[Γ]] → ([[τ ]] → [[τ ′]]) and [[Γ ` M2]] : [[Γ]] → [[τ ]]. Then [[Γ ` M1 M2]] is continuous
because we can express the definition on Slide 34 in terms of composition, pairing,
and the evaluation function ev : ([[τ ]]→[[τ ′]])×[[τ ]]→[[τ ′]] that we proved continuous
in Proposition 3.2.1:

[[Γ ` M1 M2]] = ev ◦ 〈[[Γ ` M1]], [[Γ ` M2]]〉.

function abstraction: By induction hypothesis we have a continuous function
[[Γ[x 7→ τ ] ` M ]] : [[Γ[x 7→ τ ]]]→ [[τ ′]] with x /∈ dom(Γ). Note that each Γ[x 7→ τ ]-
environment, ρ′ ∈ [[Γ[x 7→ τ ]]], can be uniquely expressed as ρ[x 7→ d], where ρ is
the restriction of the function ρ′ to dom(Γ) and where d = ρ′(x); furthermore the
partial order respects this decomposition: ρ1[x 7→ d1] v ρ2[x 7→ d2] in [[Γ[x 7→ τ ]]]
iff ρ1 v ρ2 in [[Γ]] and d1 v d2 in [[τ ]]. Thus we can identify [[Γ[x 7→ τ ]]] with
the binary product domain [[Γ]] × [[τ ]]. So we can apply the ‘Currying’ operation of
Proposition 3.2.1 to obtain a continuous function

cur([[Γ[x 7→ τ ] ` M ]]) : [[Γ]] → ([[τ ]] → [[τ ′]])=[[τ → τ ′]].

But this is precisely the function used to define [[Γ ` fnx : τ . M ]] on Slide 35.

fixpoints: By induction hypothesis we have a continuous function [[Γ ` M ]] :
[[Γ]]→[[τ→τ ]]. Now [[τ→τ ]] is the function domain [[τ ]]→[[τ ]] and from the definition
on Slide 35 we have that [[Γ ` fix(M)]] = fix ◦ [[Γ ` M ]] is the composition with
the function fix : ([[τ ]] → [[τ ]]) → [[τ ]] assigning least fixpoints, which we proved
continuous in the Proposition on Slide 18.
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6.3 Compositionality
The fact that the denotational semantics of PCF terms is compositional—i.e. that
the denotation of a compound term is a function of the denotations of its immediate
subterms—is part and parcel of the definition of [[Γ ` M ]] by induction on the
structure of M . So in particular, each of the ways of constructing terms in PCF
respects equality of denotations: this is summarised in Figure 5. Then the property
of closed terms stated on Slide 27, viz.

[[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]]

follows from this by induction on the structure of the context C[−]. More generally,
for open terms we have

Proposition 6.3.1. Suppose

[[Γ ` M ]] = [[Γ ` M ′]] : [[Γ]] → [[τ ]]

and that C[−] is a PCF context such that Γ′ ` C[M ] : τ ′ and Γ′ ` C[M ′] : τ ′ hold
for some some type τ ′ and some type environment Γ′. Then

[[Γ′ ` C[M ]]] = [[Γ′ ` C[M ′]]] : [[Γ′]] → [[τ ′]].

Substitution property of [[−]]

Proposition. Suppose

Γ ` M : τ

Γ[x 7→ τ ] ` M ′ : τ ′

(so that by Proposition 5.3.1(ii) we also have
Γ ` M ′[M/x] : τ ′). Then for all ρ ∈ [[Γ]]

[[Γ ` M ′[M/x]]](ρ) =

[[Γ[x 7→ τ ] ` M ′]](ρ[x 7→ [[Γ ` M ]]]).

In particular when Γ = ∅, [[x 7→ τ ` M ′]] : [[τ ]] → [[τ ′]] and

[[M ′[M/x]]] = [[x 7→ τ ` M ′]]([[M ]])

Slide 38
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• If [[Γ ` M ]] = [[Γ ` M ′]] : [[Γ]] → [[nat ]], then

[[Γ ` op(M)]] = [[Γ ` op(M ′)]] : [[Γ]] → [[τ ]]

(where op = succ,pred and τ = nat , or op = zero and τ = bool ).
• If [[Γ ` M1]] = [[Γ ` M ′

1]] : [[Γ]] → [[bool ]], [[Γ ` M2]] = [[Γ ` M ′
2]] :

[[Γ]] → [[τ ]], and [[Γ ` M3]] = [[Γ ` M ′
3]] : [[Γ]] → [[τ ]], then

[[Γ ` if M1 then M2 else M3]] = [[Γ ` if M ′
1 then M ′

2 else M ′
3]] : [[Γ]].

• If [[Γ ` M1]] = [[Γ ` M ′
1]] : [[Γ]] → [[τ → τ ′]] and [[Γ ` M2]] = [[Γ ` M ′

2]] :
[[Γ]] → [[τ ]], then

[[Γ ` M1 M2]] = [[Γ ` M ′
1 M ′

2]] : [[Γ]] → [[τ ′]].

• If [[Γ[x 7→ τ ] ` M ]] = [[Γ[x 7→ τ ] ` M ′]] : [[Γ[x 7→ τ ]]] → [[τ ′]], then

[[Γ ` fnx : τ . M ]] = [[Γ ` fnx : τ . M ′]] : [[Γ]] → [[τ → τ ′]].

• If [[Γ ` M ]] = [[Γ ` M ′]] : [[Γ]] → [[τ → τ ]], then

[[Γ ` fix(M)]] = [[Γ ` fix(M ′)]] : [[Γ]] → [[τ ]].

Figure 5: Compositionality properties of [[−]]
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The substitution property stated on Slide 38 gives another aspect of the compo-
sitional nature of the denotational semantics of PCF. It can be proved by induction
on the structure of the term M ′.

6.4 Soundness
The second of the aims mentioned on Slide 27 is to show that if a closed PCF term
M evaluates to a value V in the operational semantics, then M and V have the same
denotation.

Theorem 6.4.1. For all PCF types τ and all closed terms M, V ∈ PCFτ with V a
value, if M ⇓τ V is derivable from the axioms and rules in Figure 3 then [[M ]] and
[[V ]] are equal elements of the domain [[τ ]].

Proof. One uses Rule Induction for the inductively defined relation ⇓. Specifically,
defining

Φ(M, τ, V )
def
⇔ [[M ]] = [[V ]] ∈ [[τ ]]

one shows that the property Φ(M, τ, V ) is closed under the axioms and rules in
Figure 3. We give the argument for rules (⇓cbn) and (⇓fix), and leave the others as
easy exercises.

Case (⇓cbn). Suppose

[[M1]] = [[fnx : τ . M ′
1]] ∈ [[τ → τ ′]](11)

[[M ′
1[M2/x]]] = [[V ]] ∈ [[τ ′]].(12)

We have to prove that [[M1 M2]] = [[V ]] ∈ [[τ ′]]. But

[[M1 M2]] = [[M1]]([[M2]]) by Slide 34
= [[fnx : τ . M ′

1]]([[M2]]) by (11)
= (λd ∈ [[τ ]] . [[x 7→ τ ` M ′

1]](d))([[M2]]) by Slide 35
= [[x 7→ τ ` M ′

1]]([[M2]])

= [[M ′
1[M2/x]]] by Slide 38

= [[V ]] by (12).

Case (⇓fix). Suppose

(13) [[M fix(M)]] = [[V ]] ∈ [[τ ]].
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We have to prove that [[fix(M)]] = [[V ]] ∈ [[τ ]]. But

[[fix(M)]] = fix ([[M ]]) by Slide 35
= [[M ]](fix([[M ]])) by fixed point property of fix

= [[M ]] [[fix(M)]] by Slide 35
= [[M fix(M)]] by Slide 34
= [[V ]] by (13).

We have now established two of the three properties of the denotational
semantics of PCF stated on Slide 27 (and which in particular are needed to use
denotational equality to prove PCF contextual equivalences). The third property,
adequacy, is not so easy to prove as are the first two. We postpone the proof until
we have introduced a useful principle of induction tailored to reasoning about least
fixed points. This is the subject of the next section.

6.5 Exercises
Exercise 6.5.1. Prove the Propositions on Slides 37 and 38.

Exercise 6.5.2. Defining Ωτ
def
= fix(fnx : τ . x), show that [[Ωτ ]] is the least

element ⊥ of the domain [[τ ]]. Deduce that [[fnx : τ . Ωτ ]] = [[Ωτ→τ ]].
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7 Relating Denotational and Operational Semantics

We have already seen (in Section 6.4) that the denotational semantics of PCF given
in Section 6 is sound for the operational semantics, in the sense defined on Slide 27.
Here we prove the property of adequacy defined on that slide. So we have to prove
for any closed PCF terms M and V of type τ = nat or bool with V a value, that

[[M ]] = [[V ]] ⇒ M ⇓τ V.

Perhaps surprisingly, this is not easy to prove. We will employ a method due to
Plotkin (although not quite the one used in his original paper on PCF, Plotkin 1977)
and Mulmuley (1987) making use of the following notion of ‘formal approximation’
relations.

7.1 Formal approximation relations

We define a certain family of binary relations

Cτ ⊆ [[τ ]] × PCFτ

indexed by the PCF types, τ . Thus each Cτ relates elements of the domain [[τ ]] to
closed PCF terms of type τ . We use infix notation and write d Cτ M instead of
(d, M) ∈ Cτ . The definition of these relations Cτ proceeds by induction on the
structure of the type τ and is given on Slide 39. (Read the definition in conjunction
with the definition of [[τ ]] given on Slide 31.)

The key property of the relations Cτ is that they are respected by the various
syntax-forming operations of the PCF language. This is summed up by the
Proposition on Slide 40 which makes use of the following terminology.

Definition 7.1.1. For each typing environment Γ (= a finite partial function from
variables to PCF types), a Γ-substitution σ is a function mapping each variable
x ∈ dom(Γ) to a closed PCF term σ(x) of type Γ(x). Recall from Section 6.2 that
a Γ-environment ρ is a function mapping each variable x ∈ dom(Γ) to an element
ρ(x) of the domain [[Γ(x)]]. We define

ρ CΓ σ
def
⇔ ∀x ∈ dom(Γ) . ρ(x) CΓ(x) σ(x).
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Definition of d Cτ M (d ∈ [[τ ]],M ∈ PCFτ )

d Cnat M
def
⇔ (d ∈ N ⇒ M ⇓nat succd(0))

d Cbool M
def
⇔ (d = true ⇒ M ⇓bool true)

& (d = false ⇒ M ⇓bool false)

d Cτ→τ ′ M
def
⇔ ∀e,N (e Cτ N ⇒ d(e) Cτ ′ M N)

Slide 39

Fundamental property of the relations Cτ

Proposition. If Γ ` M : τ is a valid PCF typing, then for all
Γ-environments ρ and all Γ-substitutions σ

ρ CΓ σ ⇒ [[Γ ` M ]](ρ) Cτ M [σ]

• ρ CΓ σ means that ρ(x) CΓ(x) σ(x) holds for each
x ∈ dom(Γ).

• M [σ] is the PCF term resulting from the simultaneous substitution
of σ(x) for x in M , each x ∈ dom(Γ).

Slide 40
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Note that the Fundamental Property of Cτ given on Slide 40 specialises in case
Γ = ∅ to give

[[M ]] Cτ M

for all types τ and all closed PCF terms M : τ . (Here we are using the notation for
denotations of closed terms introduced on Slide 36.) Using this, we can complete
the proof of the adequacy property, as shown on Slide 41.

Proof of [[M ]] = [[V ]] ⇒ M ⇓τ V (τ = nat , bool)

Case τ = nat .

V = succn(0) for some n ∈ N and hence

[[M ]] = [[succn(0)]]

⇒ n = [[M ]] Cτ M by Fundamental Property (Slide 40)

⇒ M ⇓ succn(0) by definition of Cnat

Case τ = bool is similar.

Slide 41

7.2 Proof of the Fundamental Property of C

To prove the Proposition on Slide 40 we need the following properties of the formal
approximation relations.

Lemma 7.2.1.

(i) ⊥ Cτ M holds for all M ∈ PCFτ .
(ii) For each M ∈ PCFτ , {d | d Cτ M} is a chain-closed subset of the domain

[[τ ]]. Hence by (i), it is also an admissible subset (cf. Slide 20).
(iii) If d2 v d1, d1 Cτ M1, and ∀V (M1 ⇓τ V ⇒ M2 ⇓τ V ), then d2 Cτ M2.

Proof. Each of these properties follows easily by induction on the structure of τ ,
using the definitions of Cτ and of the evaluation relation ⇓τ .
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Proof of the Proposition on Slide 40 [NON-EXAMINABLE]. We use Rule In-
duction for the inductively defined typing relation Γ ` M : τ . Define

Φ(Γ, M, τ)
def
⇔ Γ ` M : τ & ∀ρ, σ (ρ CΓ σ ⇒ [[Γ ` M ]](ρ) Cτ M [σ])

Then it suffices to show that Φ is closed under the axioms and rules in Figure 2
inductively defining the typing relation.

Case (:0). Φ(Γ,0, nat) holds because 0 Cnat 0.

Case (:succ). We have to prove that Φ(Γ, M, nat) implies Φ(Γ, succ(M), nat).
But this follows from the easily verified fact that

d Cnat M ⇒ s⊥(d) Cnat succ(M)

where s⊥ : N⊥ →N⊥ is the continuous function used in Section 6.2 to describe the
denotation of successor terms, succ(M).

Cases (:pred) and (:zero) are similar to the previous case.

Case (:bool). Φ(Γ, true, bool) holds because true Cbool true. Similarly for
Φ(Γ, false, bool).

Case (:if ). It suffices to show that if d1 Cbool M1, d2 Cτ M2, and d3 Cτ M3,
then

(14) if (d1, (d2, d3)) Cτ if M1 then M2 else M3

where if is the continuous function : B⊥ × ([[τ ]] × [[τ ]]) → [[τ ]] of Proposition 3.3.2
that was used in Section 6.2 to describe the denotation of conditional terms. If
d1 = ⊥ ∈ B⊥, then if (d1, (d2, d3)) = ⊥ and (14) holds by Lemma 7.2.1(i). So we
may assume d1 6= ⊥, in which case either d1 = true or d1 = false. We consider
the case d1 = true; the argument for the other case is similar.

Since true = d1 Cbool M1, by the definition of Cbool (Slide 39) we have
M1 ⇓bool

true. It follows from rule (⇓if1) in Figure 3 that

∀V (M2 ⇓τ V ⇒ if M1 then M2 else M3 ⇓τ V ).

So Lemma 7.2.1(iii) applied to d2 Cτ M2 yields that

d2 Cτ if M1 then M2 else M3

and then since d2 = if (true, (d2, d3)) = if (d1, (d2, d3)), we get (14), as required.

Case (:var). Φ(Γ, x, Γ(x)) holds because if ρ CΓ σ, then for all x ∈ dom(Γ) we
have [[Γ ` x]](ρ)

def
= ρ(x) CΓ(x) σ(x)

def
= x[σ].
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Case (:fn). Suppose Φ(Γ[x 7→ τ ], M, τ ′) and ρ CΓ σ hold. We have to show that
[[Γ ` fnx : τ . M ]](ρ) Cτ→τ ′ (fnx : τ . M)[σ], i.e. that d Cτ N implies

(15) [[Γ ` fnx : τ . M ]](ρ)(d) Cτ ′ ((fnx : τ . M)[σ])N.

From Slide 35 we have

(16) [[Γ ` fnx : τ . M ]](ρ)(d) = [[Γ[x 7→ τ ] ` M ]](ρ[x 7→ d]).

Since (fnx : τ . M)[σ] = fnx : τ . M [σ] and (M [σ])[N/x] = M [σ[x 7→ N ]], by
rule (⇓cbn) in Figure 3 we have

(17) ∀V (M [σ[x 7→ N ]] ⇓τ ′ V ⇒ ((fnx : τ . M)[σ])N ⇓τ ′ V ).

Since ρ CΓ σ and d Cτ N , we have ρ[x 7→ d] CΓ[x7→τ ] σ[x 7→ N ]; so by
Φ(Γ[x 7→ τ ], M, τ ′) we have

[[Γ[x 7→ τ ] ` M ]](ρ[x 7→ d]) Cτ ′ M [σ[x 7→ N ]].

Then (15) follows from this by applying Lemma 7.2.1(iii) to (16) and (17).

Case (:app). It suffices to show that if d1 Cτ→τ ′ M1 and d2 Cτ M2, then
d1(d2) Cτ ′ M1 M2. But this follows immediately from the definition of Cτ→τ ′ .

Case (:fix). Suppose Φ(Γ, M, τ → τ) holds. For any ρ CΓ σ, we have to prove
that

(18) [[Γ ` fix(M)]](ρ) Cτ fix(M)[σ].

Referring to Slide 35, we have [[Γ ` fix(M)]](ρ) = fix (f), where f
def
= [[Γ `

M ]](ρ). By Lemma 7.2.1(ii)

S
def
= {d | d Cτ fix(M)[σ]}

is an admissible subset of the domain [[τ ]]. So by Scott’s Fixed Point Induction
Principle (Slide 21) to prove (18) it suffices to prove

∀d ∈ [[τ ]] (d ∈ S ⇒ f(d) ∈ S).

Now since ρ CΓ σ, by Φ(Γ, M, τ → τ) and by definition of f we have f Cτ→τ

M [σ]. So if d ∈ S, i.e. d Cτ fix(M)[σ], then by definition of Cτ→τ , it is the case
that

(19) f(d) Cτ (M [σ])(fix(M)[σ]).

Rule (⇓fix) in Figure 3 implies

(20) ∀V ((M [σ])(fix(M)[σ]) ⇓τ V ⇒ fix(M)[σ] ⇓τ V ).

Then applying Lemma 7.2.1(iii) to (19) and (20) yields f(d) Cτ fix(M)[σ],
i.e. f(d) ∈ S, as required.
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7.3 Extensionality

Recall the notion of contextual equivalence of PCF terms from Slide 29. The
contextual preorder is the one-sided version of this relation defined on Slide 42.
Clearly

Γ ` M1
∼=ctx M2 : τ ⇔ (Γ ` M1 ≤ctx M2 : τ & Γ ` M2 ≤ctx M1 : τ).

As usual we write M1 ≤ctx M2 : τ for ∅ ` M1 ≤ctx M2 : τ in case M1 and M2

are closed terms.

The formal approximation relations Cτ actually characterise the PCF contextual
preorder between closed terms, in the sense shown on Slide 43.

Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment
Γ, the relation Γ ` M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ ` M1 : τ and Γ ` M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are
closed terms of type γ, where γ = nat or γ = bool ,
and for all values V : γ,

C[M1] ⇓γ V ⇒ C[M2] ⇓γ V.

Slide 42
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Contextual preorder from formal approximation

Proposition. For all PCF types τ and all closed terms
M1,M2 ∈ PCFτ

M1 ≤ctx M2 : τ ⇔ [[M1]] Cτ M2.

Slide 43

Proof of the Proposition on Slide 43. It is not hard to prove that for closed terms
M1, M2 ∈ PCFτ , M1 ≤ctx M2 : τ holds if and only if for all M ∈ PCFτ→bool

M M1 ⇓bool true ⇒ M M2 ⇓bool true.

Now if [[M1]] Cτ M2, then for any M ∈ PCFτ→bool since by the Fundamental
Property of C we have [[M ]] Cτ→bool M , the definition of Cτ→bool implies that

(21) [[M M1]] = [[M ]]([[M1]]) Cbool M M2.

So if M M1 ⇓bool true, then [[M M1]] = true (by the Soundness property) and
hence by definition of Cbool from (21) we get M M2 ⇓bool true. Thus using the
characterisation of ≤ctx mentioned above, we have M1 ≤ctx M2 : τ .

This establishes the right-to-left implication on Slide 43. For the converse, it is
enough to prove

(22) (d Cτ M1 & M1 ≤ctx M2 : τ) ⇒ d Cτ M2.

For then if M1 ≤ctx M2 : τ , since [[M1]] Cτ M1 (by the Fundamental Property),
(22) implies [[M1]] Cτ M2. Property (22) follows by induction on the structure of
the type τ , using the following easily verified properties of ≤ctx:
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• If τ = nat or bool , then M1 ≤ctx M2 : τ implies

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V ).

• If M1 ≤ctx M2 : τ → τ ′, then M1 M ≤ctx M2 M : τ ′, for all M : τ .

The bi-implication on Slide 43 allows us to transfer the extensionality properties
enjoyed by the domain partial orders v to the contextual preorder, as shown on
Slide 44. (These kind of properties of PCF were first proved by Milner 1977, First
Context Lemma, page 6.)

Extensionality properties of ≤ctx

For τ = bool or nat , M1 ≤ctx M2 : τ holds if and only if

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V ).

At a function type τ → τ ′, M1 ≤ctx M2 : τ → τ ′ holds if and
only if

∀M : τ (M1 M ≤ctx M2 M : τ ′).

Slide 44

Proof of the properties on Slide 44. The ‘only if’ directions are easy consequences
of the definition of ≤ctx.

For the ‘if’ direction in case τ = bool or nat , we have

[[M1]] = [[V ]] ⇒ M1 ⇓τ V by the adequacy property
⇒ M2 ⇓τ V by assumption

and hence [[M1]] Cτ M2 by definition of C at these ground types. Now apply the
Proposition on Slide 43.
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For the ‘if’ direction in case of a function type τ → τ ′, we have

d Cτ M ⇒ [[M1]](d) Cτ ′ M1 M since [[M1]] Cτ M1

⇒ [[M1]](d) Cτ ′ M2 M by (22), since M1 M ≤ctx M2 M : τ ′

by assumption

and hence [[M1]] Cτ→τ ′ M2 by definition of C at type τ → τ ′. So once again we
can apply the Proposition on Slide 43 to get the desired conclusion.

7.4 Exercises
Exercise 7.4.1. For any PCF type τ and any closed terms M1, M2 ∈ PCFτ , show
that

(23) ∀V : τ (M1 ⇓τ V ⇔ M2 ⇓τ V ) ⇒ M1
∼=ctx M2 : τ.

[Hint: combine the Proposition on Slide 43 with Lemma 7.2.1(iii).]

Exercise 7.4.2. Use (23) to show that β-conversion in valid up to contextual
equivalence in PCF, in the sense that for all fnx : τ . M1 ∈ PCFτ→τ ′ and
M2 ∈ PCFτ

(fnx : τ . M1) M2
∼=ctx M1[M2/x] : τ ′.

Exercise 7.4.3. Is the converse of (23) valid at all types? [Hint: recall the
extensionality property of ≤ctx at function types (Slide 44) and consider the terms
fix(fn f : (nat→nat) . f) and fnx : nat .fix(fnx′ : nat . x′) of type nat→nat .]
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8 Full Abstraction

8.1 Failure of full abstraction

As we saw on Slide 30, the adequacy property implies that contextual equivalence
of two PCF terms can be proved by showing that they have equal denotations:
[[M1]] = [[M2]] ∈ [[τ ]] ⇒ M1

∼=ctx M2 : τ . Unfortunately the converse is false:
there are contextually equivalence PCF terms with unequal denotations. In general
one says that a denotational semantics is fully abstract if contextual equivalence
coincides with equality of denotation. Thus the denotational semantics of PCF using
domains and continuous functions fails to be fully abstract. The classic example
demonstrating this failure is due to Plotkin (1977) and involves the parallel-or
function shown on Slide 45.

Parallel-or function

is the continuous function por : B⊥ → (B⊥ → B⊥) defined by

por true false ⊥

true true true true

false true false ⊥

⊥ true ⊥ ⊥

Slide 45

Contrast por with the ‘sequential-or’ function shown on Slide 46. Both
functions give the usual boolean ‘or’ function when restricted to {true, false},
but differ in their behaviour at arguments involving the element ⊥ denoting ‘non-
termination’. Note that por(d1, d2) = true if either of d1 or d2 is true , even if the
other argument is ⊥; whereas orelse(d1, d2) = true implies d1 6= ⊥.
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Left sequential-or function

The function orelse : B⊥ → (B⊥ → B⊥) defined by

orelse true false ⊥

true true true true

false true false ⊥

⊥ ⊥ ⊥ ⊥

is the denotation of the PCF term

fnx : bool . fn x′ : bool . if x then true else x′

of type bool → (bool → bool).

Slide 46

As noted on Slide 46, orelse can be defined in PCF, in the sense that there is
a closed PCF term M : bool → (bool → bool) with [[M ]] = orelse. This term
M tests whether its first argument is true or false (and so diverges if that first
argument diverges), in the first case returning true (leaving the second argument
untouched) and in the second case returning the second argument. By contrast, for
por we have the Proposition stated on Slide 47. We will not give the proof of this
proposition here. Plotkin (1977) proves it via an ‘Activity Lemma’, but there are
alternative approaches using ‘stable’ continuous functions (Gunter 1992, p 181), or
using ‘sequential logical relations’ (Sieber 1992). The key idea is that evaluation in
PCF proceeds sequentially. So whatever P is, evaluation of P M1 M2 must at some
point involve full evaluation of either M1 or M2 (P cannot ignore its arguments
if it is to return true in some cases and false in others); whereas an algorithm to
compute por at a pair of arguments must compute the values of those arguments ‘in
parallel’ in case one diverges whilst the other yields the value true.

One can exploit the undefinability of por in PCF to manufacture a pair of
contextually equivalent closed terms in PCF with unequal denotations. Such a pair
is given on Slide 48.
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Undefinability of parallel-or

Proposition. There is no closed PCF term

P : bool → (bool → bool)

satisfying
[[P ]] = por .

Slide 47

Failure of full abstraction

Proposition. For i = 1, 2 define

Ti
def
= fn f : bool → (bool → bool) .

if (f trueΩ) then

if (f Ω true) then

if (f false false) then Ω else Bi

else Ω

else Ω

where B1
def
= true, B2

def
= false, and

Slide 48



74 8 FULL ABSTRACTION

Ω
def
= fix(fn x : bool . x). Then

T1
∼=ctx T2 : (bool → (bool → bool)) → bool

[[T1]] 6= [[T2]] ∈ (B⊥ → (B⊥ → B⊥)) → B⊥

Slide 49

Proof of the Proposition on slide 48. From the definition of por on Slide 45 and the
definition of [[−]] in Section 6.2, it is not hard to see that

[[Ti]](por) =

{

true if i = 1

false if i = 2.

Thus [[T1]](por) 6= [[T2]](por) and therefore [[T1]] 6= [[T2]].
To see that T1

∼=ctx T2 : (bool→(bool→bool))→bool we use the extensionality
results on Slide 44. Thus we have to show for all M : bool → (bool → bool) and
V ∈ {true, false} that

(24) T1 M ⇓bool V ⇔ T2 M ⇓bool V.

But the definition of Ti is such that Ti M ⇓bool V only holds if

M trueΩ ⇓bool true, M Ω true ⇓bool true, M false false ⇓bool false.

By the soundness property of Slide 27 this means that

[[M ]](true)(⊥) = true, [[M ]](⊥)(true) = true, [[M ]](false)(false) = false.

(Recall from Exercise 6.5.2 that [[Ω]] = ⊥.) It follows in that case that the
continuous function [[M ]] : (B⊥×B⊥)→B⊥ coincides with por (see Exercise 8.4.1).
But this is impossible, by the Proposition on Slide 47. Therefore (24) is trivially
satisfied for all M , and thus T1 and T2 are indeed contextually equivalent.
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8.2 PCF+por
The failure of full abstraction for the denotational semantics of PCF can be repaired
by extending PCF with extra terms for those elements of the domain-theoretic model
that are not definable in the language as originally given. We have seen that por is
one such element ‘missing’ from PCF, and one of the remarkable results in (Plotkin
1977) is that this is the only thing we need add to PCF to obtain full abstraction.
This is stated without proof on Slides 50 and 51.

PCF+por

Expressions M ::= · · · | por(M,M)

Typing
Γ ` M1 : bool Γ ` M2 : bool

Γ ` por(M1,M2) : bool

Evaluation

M1 ⇓bool true

por(M1,M2) ⇓bool true

M2 ⇓bool true

por(M1,M2) ⇓bool true

M1 ⇓bool false M2 ⇓bool false

por(M1,M2) ⇓bool false

Slide 50
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Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by
extending the definition on Slides 32–35 with the clause

[[Γ ` por(M1,M2)]](ρ)
def
=

por([[Γ ` M1]](ρ))([[Γ ` M2]](ρ))

where por : B⊥ → (B⊥ → B⊥) is as on Slide 45.

This denotational semantics is fully abstract for contextual
equivalence of PCF+por terms:

Γ ` M1
∼=ctx M2 : τ ⇔ [[Γ ` M1]] = [[Γ ` M2]].

Slide 51

8.3 Fully abstract semantics for PCF
The evaluation of PCF terms involves a form of ‘sequentiality’ which is not reflected
in the denotational semantics of PCF using domains and continuous functions: the
continuous function por does not denote any PCF term and this results in a mis-
match between denotational equality and contextual equivalence. But what precisely
does ‘sequentiality’ mean in general? Can we characterise it in an abstract way,
independent of the particular syntax of PCF terms, and hence give a more refined
form of denotational semantics that is fully abstract for contextual equivalence for
PCF (and for other types of language besides the simple, pure functional language
PCF)? These questions have motivated the development much domain theory and
denotational semantics since the appearance of (Plotkin 1977): see the survey by
Ong (1995), for example.

It is only within the last couple of years that definitive answers have emerged
even for such an apparently simple language as PCF. O’Hearn and Riecke (1995)
construct a fully abstract model of PCF by using certain kinds of ‘logical relation’
to repair the deficiencies of the standard model we have described here. Although
this does provide a solution, it does not seem to give much insight into the nature
of sequential computation. By contrast, Abramsky, Jagadeesan, and Malacaria
(2000) and Hyland and Ong (2000) solve the problem by introducing what appears
to be a radically different and very promising approach to giving semantics to
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programming languages (not just PCF), based upon certain kinds of two-player
game: see (Abramsky 1997) and (Hyland 1997) for introductions to this ‘game
semantics’.

Finally, a negative result by Loader should be mentioned. Note that the material
in Section 8.1 does not depend upon the presence of numbers and arithmetic in
PCF. Let PCF2 denote the fragment of PCF only involving bool and the function
types formed from it, true, false, conditionals, variables, function abstraction and
application, and a divergent term Ωbool : bool . Since B⊥ is a finite domain and
since the function domain formed from finite domains is again finite, the domain
associated to each PCF2 type is finite.1 The domain model is adequate for PCF2

and hence there are only finitely many different PCF2 terms of each type, up to
contextual equivalence. Given these finiteness properties, and the terribly simple
nature of the language, one might hope that the following questions are decidable
(uniformly in the PCF2 type τ ):

• Which elements of [[τ ]] are definable by PCF2 terms?

• When are two PCF2 of type τ contextually equivalent?

Quite remarkably Loader (2001) shows that these are recursively undecidable
questions.

8.4 Exercises
Exercise 8.4.1. Suppose that a monotonic function p : (B⊥ × B⊥) → B⊥ satisfies

p(true,⊥) = true, p(⊥, true) = true, and p(false, false) = false.

Show that p coincides with the parallel-or function on Slide 45 in the sense that
p(d1, d2) = por(d1)(d2), for all d1, d2 ∈ B⊥.

Exercise 8.4.2. Show that even though there are two evaluation rules on Slide 50
with conclusion por(M1, M2) ⇓bool

true, nevertheless the evaluation relation for
PCF+por is still deterministic (in the sense of Proposition 5.4.1).

Exercise 8.4.3. Give the axioms and rules for an inductively defined transition
relation for PCF+por. This should take the form of a binary relation M → M ′

between closed PCF+por terms. It should satisfy

M ⇓ V ⇔ M →∗ V

(where →∗ is the reflexive-transitive closure of →).

1A further simplification arises from the fact that if the domains D and D′ are finite, then
they contain no non-trivial chains and hence the continuous functions D → D ′ are just the
monotone functions.



Postscript
The main mathematical idea introduced in these notes is the use of order-theoretic
structures (domains and continuous functions) to provide a setting for solving fixed
point equations and thereby providing compositional denotational semantics of
various programming language constructs involving recursion. However, it turns
out that the domains required to give denotational semantics for many programming
languages more complicated than PCF are themselves specified by fixed point
equations. A usefully wide range of such ‘domain equations’ have solutions (indeed,
have solutions that are sufficiently minimal to admit the kind of adequacy results
discussed here for PCF). It is beyond the scope of these notes to describe any of the
various methods for constructing such recursively defined domains: the interested
reader is referred to (Winskel 1993, Chapter 12), (Gunter 1992, Chapter 10), or to
(Pitts 1996, Section 3) for a brief overview of a modern approach.
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