Lecture 5

PCF

PCF syntax

Types

\[\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau \]

Expressions

\[M ::= 0 \mid \text{succ}(M) \mid \text{pred}(M) \]
\[\mid \text{true} \mid \text{false} \mid \text{zero}(M) \]
\[\mid x \mid \text{if } M \text{ then } M \text{ else } M \]
\[\mid \text{fn } x : \tau . M \mid M \ M \mid \text{fix}(M) \]

where \(x \in \mathbb{V} \), an infinite set of variables.

Technicality: We identify expressions up to \(\alpha \)-conversion of bound variables (created by the \(\text{fn} \) expression-former): by definition a PCF term is an \(\alpha \)-equivalence class of expressions.

PCF typing relation, \(\Gamma \vdash M : \tau \)

- \(\Gamma \) is a type environment, \(i.e. \) a finite partial function mapping variables to types (whose domain of definition is denoted \(\text{dom}(\Gamma) \))
- \(M \) is a term
- \(\tau \) is a type.

Notation:

\(M : \tau \) means \(M \) is closed and \(\emptyset \vdash M : \tau \) holds.

PCF\(_\tau \) def = \{ M \mid M : \tau \} \)
Partial recursive functions in PCF

- Primitive recursion.
 \[
 \begin{align*}
 h(x, 0) &= f(x) \\
 h(x, y + 1) &= g(x, y, h(x, y))
 \end{align*}
 \]

- Minimisation.
 \[
 m(x) = \text{the least } y \geq 0 \text{ such that } k(x, y) = 0
 \]

PCF evaluation relation

\[
M \Downarrow \tau V
\]

where
- \(\tau \) is a PCF type
- \(M, V \in \text{PCF}_\tau \) are closed PCF terms of type \(\tau \)
- \(V \) is a value,

\[
V ::= 0 \mid \text{succ}(V) \mid \text{true} \mid \text{false} \mid \text{fn} \ x : \tau . \ M.
\]

PCF evaluation (sample rules)

\[
(V \Downarrow \text{val}) \quad V \Downarrow \tau V \quad (V \text{ a value of type } \tau)
\]

\[
(V \Downarrow \text{cbn}) \quad M_1 \Downarrow \tau, x : \tau . M'_1 \quad M'_1[M_2/x] \Downarrow \tau, V \quad \frac{}{M_1 M_2 \Downarrow \tau, V}
\]

\[
(V \Downarrow \text{fix}) \quad M \text{fix}(M) \Downarrow \tau V \quad \frac{}{\text{fix}(M) \Downarrow \tau V}
\]

Contextual equivalence

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.
Contextual equivalence of PCF terms

Given PCF terms \(M_1 \) and \(M_2 \), PCF types \(\tau \), and an environment \(\Gamma \), the relation

\[M_1 \xrightarrow{\text{ctx}} M_2 : \tau \]

is defined to hold if both typings \(\Gamma \vdash \mathcal{C}[M_1] : \tau \) and \(\Gamma \vdash \mathcal{C}[M_2] : \tau \) hold.

For all PCF contexts \(C \) for which \(\mathcal{C}[M_1] \) and \(\mathcal{C}[M_2] \) are closed terms of type \(\tau \), where \(\tau = \text{nat} \) or \(\tau = \text{bool} \), and for all values \(V \):

\[C[M_1] \xrightarrow{\text{ctx}} C[M_2] : \tau. \]

Theorem. For all types \(\tau \) and closed terms \(M_1, M_2 \in \text{PCF}_r \), if \(\mathcal{C}[M_1] \xrightarrow{\text{ctx}} \mathcal{C}[M_2] : \tau \), then:

\[M_1 \xi \text{ctx} M_2 : \tau. \]

Proof. It suffices to establish \(\mathcal{C}[M_1] = \mathcal{C}[M_2] \) in \(\mathcal{C}[\xi] \).

Compositionality.

For any type \(\tau \), \(M \vdash V \Rightarrow [M] = [V] \).

Soundness.

In particular, if \([M] = [V] \Rightarrow \mathcal{C}[M] = \mathcal{C}[V] \).

Adequacy.

For any type \(\tau \), \(M \vdash \mathcal{C}[M] : \tau \Rightarrow \mathcal{C}[M] = [M] : \tau \).

Proof principle.

To prove it suffices to establish \(M_1 \xi \text{ctx} M_2 : \tau \).

Given PCF terms \(M_1, M_2 \), PCF type \(\tau \), and a type environment \(\Gamma \), the relation \(\Gamma \vdash \mathcal{C}[M_1] = \mathcal{C}[M_2] : \tau \) is defined to hold if:

\[\mathcal{C}[M_1] \xrightarrow{\text{ctx}} \mathcal{C}[M_2] : \tau. \]

Closed PCF terms \(M : \tau \rightarrow \text{domains} \in \mathcal{C}[\tau] \).

Denotations of open terms will be continuous functions.

PCF denotational semantics — aims

and symmetrically.

\[\mathcal{C}[M_2] \xrightarrow{\text{ctx}} \mathcal{C}[M_1] : \tau \]

(adequacy)

(compositionality on \(\mathcal{C}[\xi] = \mathcal{C}[\xi] \))

(soundness)

The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?