Databases Lectures 9 and 10

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK

Databases, Lent 2009

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

1/1

Lecture 09 and 10

Two Themes ...

- Redundancy can be a GOOD thing!
- Duplicates, aggregates, and group by in SQL, and evolution to "Data Cube"

.... come together in OLAP

- OLTP: Online Transaction Processing (traditional databases)
 - Data is normalized for the sake of updates.
- OLAP : Online Analytic Processing
 - These are (almost) read-only databases.
 - Data is de-normalized for the sake of queries!
 - Multi-dimensional data cube emerging as common data model.
 - This can be seen as a generalization of SQL's group by

Materialized Views

- Suppose *Q* is a very expensive, and very frequent query.
- Why not de-normalize some data to speed up the evaluation of Q?
 - This might be a reasonable thing to do, or ...
 - ... it might be the first step to destroying the integrity of your data design.
- Why not store the value of Q in a table?
 - This is called a materialized view.
 - But now there is a problem: How often should this view be refreshed?

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

3/1

FIDO = Fetch Intensive Data Organization

Example: Embedded databases

990 < □ > < 圖 > < 필 > < 필 >

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

5/1

Example: Hinxton Bioinformatics

Example: Data Warehouse (Decision support)

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

7/1

OLAP vs. OLTP

OLTP Online Transaction Processing **OLAP** Online Analytical Processing

 Commonly associated with terms like Decision Support, Data Warehousing, etc.

	OLAP	OLTP
Supports	analysis	day-to-day operations
Data is	historical	current
Transactions mostly	reads	updates
optimized for	query processing	updates
Normal Forms	not important	important

OLAP Databases: Data Models and Design

The big question

Is the relational model and its associated query language (SQL) well suited for OLAP databases?

- Aggregation (sums, averages, totals, ...) are very common in OLAP queries
 - Problem : SQL aggregation quickly runs out of steam.
 - Solution: Data Cube and associated operations (spreadsheets on steroids)
- Relational design is obsessed with normalization
 - Problem : Need to organize data well since all analysis queries cannot be anticipated in advance.
 - Solution : Multi-dimensional fact tables, with hierarchy in dimensions, star-schema design.

Let's start by looking at aggregate queries in SQL ...

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

2/1

An Example ...

```
mysql> select * from marks;
           course
    ev77 | databases |
   | ev77 | spelling |
                           99 |
   | tgg22 | spelling | |
   | tgg22 | databases | 100 |
   | fm21 | databases |
                           92 I
   | fm21
           | spelling |
                          100 I
   | jj25
          | databases |
                           88 |
          | spelling |
     j j 25
                           92 I
```

... of duplicates

```
mysql> select mark from marks;
+----+
| mark |
+----+
| 92 |
| 99 |
| 3 |
| 100 |
| 92 |
| 100 |
| 88 |
| 92 |
+----+
```

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

2/1

Why Multisets?

Duplicates are important for aggregate functions.

The group by clause

```
mysql> select course,
             min (mark),
             max(mark),
              avg(mark)
       from marks
       group by course;
  course | min(mark) | max(mark) | avg(mark)
                               100 | 93.0000 |
| databases |
                   88 I
| spelling |
                               100 | 73.5000 |
                   3 |
```

4□ > 4□ > 4 = > 4 = > = 9 q @

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009 17 / 1

Visualizing group by

sid	course	mark
ev77	databases	92
ev77	spelling	99
tgg22	spelling	3
tgg22	databases	100
fm21	databases	92
fm21	spelling	100
jj25	databases	88
jj25	spelling	92

course	mark
spelling	99
spelling	3
spelling	100
spelling	92

course	mark
databases	92
databases	100
databases	92
databases	88

Visualizing group by

course	mark
spelling	99
spelling	3
spelling	100
spelling	92

course	mark
databases	92
databases	100
databases	92
databases	88

course	min(mark)
spelling	3
databases	88

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

a / 1

The having clause

How can we select on the aggregated columns?

Use renaming to make things nicer ...

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

23 / 1

Limits of SQL aggregation

sale	prodid	storeld	amt					
	p1	c1	12			c1	c2	c3
	p2	c1	11	\leftrightarrow	p1	12		50
	p1	c3	50		p2	11	8	
	n2	c2	0					

- Flat tables are great for processing, but hard for people to read and understand.
- Pivot tables and cross tabulations (spreadsheet terminology) are very useful for presenting data in ways that people can understand.
- SQL does not handle pivot tables and cross tabulations well.

A very influential paper [G+1997]

Data Mining and Knowledge Discovery 1, 29–53 (1997) © 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals*

JIM GRAY

SURAJIT CHAUDHURI

ADAM BOSWORTH

ADAM BOSWORTH

ANDREW LAYMAN

ANDREW LAYMAN

DON REICHART

MURALI VENKATRAO

Microsoft Research, Advanced Technology Division, Microsoft Corporation, On Microsoft Way, Redmond, WA 98052

Gray@Microsoft.com

SURAJIVE Microsoft.com

MuraliV@Microsoft.com

Microsoft Research, Advanced Technology Division, Microsoft Corporation, On Microsoft Way, Redmond, WA 98052

FRANK PELLOW Pellow@vnet.IBM.com HAMID PIRAHESH Pirahesh@Almaden.IBM.com IBM Research, 500 Harry Road, San Jose, CA 95120

▲□▶▲圖▶▲≣▶ ■ り90

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

25 / 1

From aggregates to data cubes

The Data Cube

Dimensions: Product, Location, Time

- Data modeled as an n-dimensional (hyper-) cube
- Each dimension is associated with a hierarchy
- Each "point" records facts
- Aggregation and cross-tabulation possible along all dimensions

T. Griffin (cl.cam.ac.uk)

Databases Lectures 9 and 10

DB 2009

27 / 1

Hierarchy for Location Dimension

Cube Operations

 T. Griffin (cl.cam.ac.uk)
 Databases Lectures 9 and 10
 DB 2009
 29 / 1

The Star Schema as a design tool

◆□▶◆□▶◆■▶◆■▶ ● 9へ○