Databases Lecture 8

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK

Databases, Lent 2009

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

1 / 15

Lecture 08: Multivalued Dependencies

Outline

- Multivalued Dependencies
- Fourth Normal Form (4NF)
- General integrity Constraints

Another look at Heath's Rule

Given $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ with FDs F

If $\mathbf{Z} \to \mathbf{W} \in F^+$, the

$$R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$$

What about an implication in the other direction? That is, suppose we have

$$R = \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R).$$

- Q Can we conclude anything about FDs on R? In particular, is it true that $\mathbf{Z} \to \mathbf{W}$ holds?
- A No!

◆ロ → ◆昼 → ◆ 邑 → □ ● か へ ○

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

3 / 15

We just need one counter example ...

$$R = \pi_{A,B}(R) \bowtie \pi_{A,C}(R)$$

$$\begin{array}{c|cccc}
A & B & C \\
\hline
a & b_1 & c_1 \\
a & b_2 & c_2 \\
a & b_1 & c_2 \\
a & b_2 & c_1
\end{array}$$

$$\begin{array}{c|c} A & B \\ \hline a & b_1 \\ a & b_2 \end{array}$$

Clearly $A \rightarrow B$ is not an FD of R.

A concrete example

course_name	lecturer	text
Databases	Tim	Ullman and Widom
Databases	Fatima	Date
Databases	Tim	Date
Databases	Fatima	Ullman and Widom

Assuming that texts and lecturers are assigned to courses independently, then a better representation would in two tables:

course_name	lecturer	course_name	text
Databases	Tim	Databases	Ullman and Widom
Databases	Fatima	Databases	Date

	•	< ₽ >	< ₹ >	∢ ≣ →	=	990
T. Griffin (cl.cam.ac.uk)	Databases Lecture 8			DB 20	09	5 / 15

Time for a definition!

Multivalued Dependencies (MVDs)

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. A multivalued dependency, denoted $\mathbf{Z} \rightarrow \mathbf{W}$, holds if whenever t and u are two records that agree on the attributes of \mathbf{Z} , then there must be some tuple v such that

- \bigcirc v agrees with both t and u on the attributes of **Z**,
- 2 v agrees with t on the attributes of \mathbf{W} ,
- \circ v agrees with u on the attributes of **Y**.

A few observations

Note 1

Every functional dependency is multivalued dependency,

$$(\textbf{Z} \rightarrow \textbf{W}) \implies (\textbf{Z} \twoheadrightarrow \textbf{W}).$$

To see this, just let v = u in the above definition.

Note 2

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema, then

$$(Z \rightarrow W) \iff (Z \rightarrow Y),$$

by symmetry of the definition.

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

/ 15

MVDs and lossless-join decompositions

Fun Fun Fact

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. The decomposition $R_1(\mathbf{Z}, \mathbf{W})$, $R_2(\mathbf{Z}, \mathbf{Y})$ is a lossless-join decomposition of R if and only if the MVD $\mathbf{Z} \rightarrow \mathbf{W}$ holds.

Proof of Fun Fun Fact

Proof of $(\mathbf{Z} \rightarrow \mathbf{W}) \implies R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$

- Suppose Z → W.
- We know (from proof of Heath's rule) that $R \subseteq \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R)$. So we only need to show $\pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \subseteq R$.
- Suppose $r \in \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- So there must be a $t \in R$ and $u \in R$ with $\{r\} = \pi_{\mathbf{Z}, \mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z}, \mathbf{Y}}(\{u\}).$
- In other words, there must be a $t \in R$ and $u \in R$ with $t.\mathbf{Z} = u.\mathbf{Z}$.
- So the MVD tells us that then there must be some tuple $v \in R$ such that
 - \bigcirc v agrees with both t and u on the attributes of **Z**,
 - 2 v agrees with t on the attributes of \mathbf{W} ,
 - \odot v agrees with u on the attributes of **Y**.
- This v must be the same as r, so $r \in R$.

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

9/15

Proof of Fun Fun Fact (cont.)

Proof of $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R) \implies (\mathbf{Z} \twoheadrightarrow \mathbf{W})$

- Suppose $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- Let *t* and *u* be any records in *R* with $t.\mathbf{Z} = u.\mathbf{Z}$.
- Let v be defined by $\{v\} = \pi_{\mathbf{Z},\mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(\{u\})$ (and we know $v \in R$ by the assumption).
- Note that by construction we have

 - v.W = t.W.
 - \circ $v.\mathbf{Y} = u.\mathbf{Y}.$
- Therefore, Z → W holds.

Fourth Normal Form

Trivial MVD

The MVD $\mathbf{Z} \rightarrow \mathbf{W}$ is trivial for relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ if

- **1 Z** \cap **W** \neq {}, or
- **2** $Y = \{\}.$

4NF

A relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ is in 4NF if for every MVD $\mathbf{Z} \rightarrow \mathbf{W}$ either

- Z → W is a trivial MVD, or
- Z is a superkey for R.

Note: $4NF \subset BCNF \subset 3NF \subset 2NF$

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

11 / 15

General Decomposition Method Revisited

GDM++

- ① Understand your FDs and MVDs F (compute F^+),
- ind $R(\mathbf{X}) = R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ (sets \mathbf{Z}, \mathbf{W} and \mathbf{Y} are disjoint) with either $FD \mathbf{Z} \to \mathbf{W} \in F^+$ or MVD $\mathbf{Z} \to \mathbf{W} \in F^+$ violating a condition of desired NF,
- **3** split R into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

Summary

We always want the lossless-join property. What are our options?

	3NF	BCNF	4NF
Preserves FDs	Yes	Maybe	Maybe
Preserves MVDs	Maybe	Maybe	Maybe
Eliminates FD-redundancy	Maybe	Yes	Yes
Eliminates MVD-redundancy	No	No	Yes

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009

3 / 15

General integrity constraints

- Suppose that C is some constraint we would like to enforce on our database.
- Let $Q_{\neg C}$ be a query that captures all violations of C.
- Enforce (somehow) that the assertion that is always $Q_{\neg C}$ empty.

Example

- $C = \mathbf{Z} \rightarrow \mathbf{W}$, and FD that was not preserved for relation $R(\mathbf{X})$,
- Let Q_R be a join that reconstructs R,
- Let Q'_{R} be this query with $\mathbf{X} \mapsto \mathbf{X}'$ and
- $Q_{\neg C} = \sigma_{\mathbf{W} \neq \mathbf{W}'}(\sigma_{\mathbf{Z} = \mathbf{Z}'}(Q_R \times Q_R'))$

Assertions in SQL