Lecture 07: Decomposition to Normal Forms

Outline

- Attribute closure algorithm
- Schema decomposition methods
- Problems with obtaining both dependency preservation and lossless-join property
By soundness and completeness

\[
\text{closure}(F, X) = \{ A \mid F \vdash X \rightarrow A \} = \{ A \mid X \rightarrow A \in F^+ \}
\]

Claim 2 (from previous lecture)

\(Y \rightarrow W \in F^+ \) if and only if \(W \subseteq \text{closure}(F, Y) \).

If we had an algorithm for \(\text{closure}(F, X) \), then we would have a (brute force!) algorithm for enumerating \(F^+ \):

\[
F^+
\]

- for every subset \(Y \subseteq \text{atts}(F) \)
 - for every subset \(Z \subseteq \text{closure}(F, Y) \),
 - output \(Y \rightarrow Z \)

Attribute Closure Algorithm

- **Input**: a set of FDs \(F \) and a set of attributes \(X \).
- **Output**: \(Y = \text{closure}(F, X) \)

1. \(Y := X \)
2. while there is some \(S \rightarrow T \in F \) with \(S \subseteq Y \) and \(T \not\subseteq Y \), then \(Y := Y \cup T \).
An Example (UW1997, Exercise 3.6.1)

$R(A, B, C, D)$ with F made up of the FDs

$$
A, B \rightarrow C \\
C \rightarrow D \\
D \rightarrow A
$$

What is F^+?

Brute force!
Let's just consider all possible nonempty sets X — there are only 15...

Example (cont.)

$$F = \{ A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A \}$$

For the single attributes we have

- $\{A\}^+ = \{A\}$,
- $\{B\}^+ = \{B\}$,
- $\{C\}^+ = \{A, C, D\}$,
 - $\{C\} \xrightarrow{C \rightarrow D} \{C, D\} \xrightarrow{D \rightarrow A} \{A, C, D\}$
- $\{D\}^+ = \{A, D\}$
 - $\{D\} \xrightarrow{D \rightarrow A} \{A, D\}$

The only new dependency we get with a single attribute on the left is $C \rightarrow A$.
Example (cont.)

\[F = \{A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A\} \]

Now consider pairs of attributes.

- \(\{A, B\}^+ = \{A, B, C, D\}\), so \(A, B \rightarrow D\) is a new dependency
- \(\{A, C\}^+ = \{A, C, D\}\), so \(A, C \rightarrow D\) is a new dependency
- \(\{A, D\}^+ = \{A, D\}\), so nothing new.
- \(\{B, C\}^+ = \{A, B, C, D\}\), so \(B, C \rightarrow A, D\) is a new dependency
- \(\{B, D\}^+ = \{A, B, C, D\}\), so \(B, D \rightarrow A, C\) is a new dependency
- \(\{C, D\}^+ = \{A, C, D\}\), so \(C, D \rightarrow A\) is a new dependency

Example (cont.)

\[F = \{A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A\} \]

For the triples of attributes:

- \(\{A, C, D\}^+ = \{A, C, D\}\),
- \(\{A, B, D\}^+ = \{A, B, C, D\}\), so \(A, B, D \rightarrow C\) is a new dependency
- \(\{A, B, C\}^+ = \{A, B, C, D\}\), so \(A, B, C \rightarrow D\) is a new dependency
- \(\{B, C, D\}^+ = \{A, B, C, D\}\), so \(B, C, D \rightarrow A\) is a new dependency

And since \(\{A, B, C, D\}^+ = \{A, B, C, D\}\), we get no new dependencies with four attributes.
Example (cont.)

We generated 11 new FDs:

\[
\begin{align*}
C & \rightarrow A & A, B & \rightarrow D \\
A, C & \rightarrow D & B, C & \rightarrow A \\
B, C & \rightarrow D & B, D & \rightarrow A \\
B, D & \rightarrow C & C, D & \rightarrow A \\
A, B, C & \rightarrow D & A, B, D & \rightarrow C \\
B, C, D & \rightarrow A
\end{align*}
\]

Can you see the Key?

\{A, B\}, \{B, C\}, and \{B, D\} are keys.

Note: this schema is already in 3NF! Why?

General Decomposition Method (GDM)

GDM

1. Understand your FDs \(F \) (compute \(F^+ \)),
2. find \(R(X) = R(Z, W, Y) \) (sets \(Z, W \) and \(Y \) are disjoint) with FD \(Z \rightarrow W \in F^+ \) violating a condition of desired NF,
3. split \(R \) into two tables \(R_1(Z, W) \) and \(R_2(Z, Y) \)
4. wash, rinse, repeat

Reminder

For \(Z \rightarrow W \), if we assume \(Z \cap W = \{\} \), then the conditions are

1. \(Z \) is a superkey for \(R \) (2NF, 3NF, BCNF)
2. \(W \) is a subset of some key (2NF, 3NF)
3. \(Z \) is not a proper subset of any key (2NF)
The lossless-join condition is guaranteed by GDM

- This method will produce a lossless-join decomposition because of (repeated applications of) Heath’s Rule!
- That is, each time we replace an S by S_1 and S_2, we will always be able to recover S as $S_1 \Join S_2$.
- Note that in GDM step 3, the FD $Z \rightarrow W$ may represent a key constraint for R_1.

But does the method always terminate? Please think about this....

Return to Example — Decompose to BCNF

$R(A, B, C, D)$

$F = \{ A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A \}$

Which FDs in F^+ violate BCNF?

- $C \rightarrow A$
- $C \rightarrow D$
- $D \rightarrow A$
- $A, C \rightarrow D$
- $C, D \rightarrow A$
Return to Example — Decompose to BCNF

Decompose $R(A, B, C, D)$ to BCNF

Use $C \rightarrow D$ to obtain

- $R_1(C, D)$. This is in BCNF. Done.
- $R_2(A, B, C)$ This is not in BCNF. Why? A, B and B, C are the only keys, and $C \rightarrow A$ is a FD for R_1. So use $C \rightarrow A$ to obtain
 - $R_{2.1}(A, C)$. This is in BCNF. Done.
 - $R_{2.2}(B, C)$. This is in BCNF. Done.

Exercise: Try starting with any of the other BCNF violations and see where you end up.

The GDM does not always preserve dependencies!

$R(A, B, C, D, E)$

- $\{A, B\}^+ = \{A, B, C, D\}$,
- so $A, B \rightarrow C, D$,
- and $\{A, B, E\}$ is a key.
- $\{B, E\}^+ = \{B, C, D, E\}$,
- so $B, E \rightarrow C, D$,
- and $\{A, B, E\}$ is a key (again)

Let’s try for a BCNF decomposition ...
Decomposition 1

Decompose $R(A, B, C, D, E)$ using $A, B \rightarrow C, D$:

- $R_1(A, B, C, D)$. Decompose this using $B \rightarrow D$:
 - $R_{1.1}(B, D)$. Done.
 - $R_{1.2}(A, B, C)$. Done.
- $R_2(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$D, E \rightarrow C$$

Decomposition 2

Decompose $R(A, B, C, D, E)$ using $B, E \rightarrow C, D$:

- $R_3(B, C, D, E)$. Decompose this using $D, E \rightarrow C$
 - $R_{3.1}(C, D, E)$. Done.
 - $R_{3.2}(B, D, E)$. Decompose this using $B \rightarrow D$:
 - $R_{3.2.1}(B, D)$. Done.
 - $R_{3.2.2}(B, E)$. Done.
- $R_4(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$A, B \rightarrow C$$
It always is possible to obtain BCNF that has the lossless-join property (using GDM)
 ▶ But the result may not preserve all dependencies.

It is always possible to obtain 3NF that preserves dependencies and has the lossless-join property.
 ▶ Using methods based on “minimal covers” (for example, see EN2000).