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Lecture 07: Decomposition to Normal Forms

Outline
Attribute closure algorithm
Schema decomposition methods
Problems with obtaining both dependency preservation and
lossless-join property
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Closure

By soundness and completeness

closure(F , X) = {A | F ` X→ A} = {A | X→ A ∈ F+}

Claim 2 (from previous lecture)
Y→W ∈ F+ if and only if W ⊆ closure(F , Y).

If we had an algorithm for closure(F , X), then we would have a (brute
force!) algorithm for enumerating F+:

F+

for every subset Y ⊆ atts(F )
I for every subset Z ⊆ closure(F , Y),

F output Y→ Z
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Attribute Closure Algorithm

Input : a set of FDs F and a set of attributes X.
Output : Y = closure(F , X)

1 Y := X
2 while there is some S→ T ∈ F with S ⊆ Y and T 6⊆ Y, then

Y := Y ∪ T.
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An Example (UW1997, Exercise 3.6.1)

R(A, B, C, D) with F made up of the FDs

A, B → C
C → D
D → A

What is F+?

Brute force!
Let’s just consider all possible nonempty sets X — there are only 15...
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Example (cont.)

F = {A, B → C, C → D, D → A}

For the single attributes we have

{A}+ = {A},
{B}+ = {B},
{C}+ = {A, C, D},

I {C} C→D
=⇒ {C, D} D→A

=⇒ {A, C, D}
{D}+ = {A, D}

I {D} D→A
=⇒ {A, D}

The only new dependency we get with a single attribute on the left is
C → A.
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Example (cont.)

F = {A, B → C, C → D, D → A}

Now consider pairs of attributes.

{A, B}+ = {A, B, C, D},
I so A, B → D is a new dependency
{A, C}+ = {A, C, D},

I so A, C → D is a new dependency
{A, D}+ = {A, D},

I so nothing new.
{B, C}+ = {A, B, C, D},

I so B, C → A, D is a new dependency
{B, D}+ = {A, B, C, D},

I so B, D → A, C is a new dependency
{C, D}+ = {A, C, D},

I so C, D → A is a new dependency
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Example (cont.)

F = {A, B → C, C → D, D → A}

For the triples of attributes:

{A, C, D}+ = {A, C, D},
{A, B, D}+ = {A, B, C, D},

I so A, B, D → C is a new dependency
{A, B, C}+ = {A, B, C, D},

I so A, B, C → D is a new dependency
{B, C, D}+ = {A, B, C, D},

I so B, C, D → A is a new dependency

And since {A, B, C, D}+ = {A, B, C, D}, we get no new
dependencies with four attributes.
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Example (cont.)

We generated 11 new FDs:

C → A A, B → D
A, C → D B, C → A
B, C → D B, D → A
B, D → C C, D → A

A, B, C → D A, B, D → C
B, C, D → A

Can you see the Key?
{A, B}, {B, C}, and {B, D} are keys.

Note: this schema is already in 3NF! Why?
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General Decomposition Method (GDM)

GDM
1 Understand your FDs F (compute F+),
2 find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD

Z→W ∈ F+ violating a condition of desired NF,
3 split R into two tables R1(Z, W) and R2(Z, Y)

4 wash, rinse, repeat

Reminder
For Z→W, if we assume Z ∩W = {}, then the conditions are

1 Z is a superkey for R (2NF, 3NF, BCNF)
2 W is a subset of some key (2NF, 3NF)
3 Z is not a proper subset of any key (2NF)
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The lossless-join condition is guaranteed by GDM

This method will produce a lossless-join decomposition because
of (repeated applications of) Heath’s Rule!
That is, each time we replace an S by S1 and S2, we will always
be able to recover S as S1 on S2.
Note that in GDM step 3, the FD Z→W may represent a key
constraint for R1.

But does the method always terminate? Please think about this ....
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Return to Example — Decompose to BCNF

R(A, B, C, D)

F = {A, B → C, C → D, D → A}

Which FDs in F+ violate BCNF?
C → A
C → D
D → A

A, C → D
C, D → A
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Return to Example — Decompose to BCNF

Decompose R(A, B, C, D) to BCNF
Use C → D to obtain

R1(C, D). This is in BCNF. Done.
R2(A, B, C) This is not in BCNF. Why? A, B and B, C are the only
keys, and C → A is a FD for R1. So use C → A to obtain

I R2.1(A, C). This is in BCNF. Done.
I R2.2(B, C). This is in BCNF. Done.

Exercise : Try starting with any of the other BCNF violations and see
where you end up.
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The GDM does not always preserve dependencies!

R(A, B, C, D, E)

A, B → C
D, E → C

B → D

{A, B}+ = {A, B, C, D},
so A, B → C, D,
and {A, B, E} is a key.

{B, E}+ = {B, C, D, E} ,
so B, E → C, D,
and {A, B, E} is a key (again)

Let’s try for a BCNF decomposition ...
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Decomposition 1

Decompose R(A, B, C, D, E) using A, B → C, D :
R1(A, B, C, D). Decompose this using B → D:

I R1.1(B, D). Done.
I R1.2(A, B, C). Done.

R2(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

D, E → C
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Decomposition 2

Decompose R(A, B, C, D, E) using B, E → C, D:
R3(B, C, D, E). Decompose this using D, E → C

I R3.1(C, D, E). Done.
I R3.2(B, D, E). Decompose this using B → D:

F R3.2.1(B, D). Done.
F R3.2.2(B, E). Done.

R4(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

A, B → C
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Summary

It always is possible to obtain BCNF that has the lossless-join
property (using GDM)

I But the result may not preserve all dependencies.
It is always possible to obtain 3NF that preserves dependencies
and has the lossless-join property.

I Using methods based on “minimal covers” (for example, see
EN2000).
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