Databases
Lecture 7

Timothy G. Giriffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 1/17

Lecture 07: Decomposition to Normal Forms

Outline
@ Attribute closure algorithm
@ Schema decomposition methods

@ Problems with obtaining both dependency preservation and
lossless-join property

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009

2/17

Closure

By soundness and completeness

closure(F, X)={A|FFX—- A} ={A|X - Ac F'}

Claim 2 (from previous lecture)
Y — W e FTif and only if W C closure(F, Y).

If we had an algorithm for closure(F, X), then we would have a (brute
force!) algorithm for enumerating F:

F+
@ for every subset Y C atts(F)

for every subset Z C closure(F, Y),
outputY — Z

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 3/17

Attribute Closure Algorithm

@ Input : a set of FDs F and a set of attributes X.
@ Output : Y = closure(F, X) J

Q@Y =X
© while thereissomeS — Tec FwithSCYandT Z Y, then
Y=YUT.

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 4/17

An Example (UW1997, Exercise 3.6.1)

R(A, B, C, D) with F made up of the FDs

AB—C
cC—D
D— A

What is F?
Brute force!

Let’s just consider all possible nonempty sets X — there are only 15... J

T. Griffin (cl.cam.ac.uk) Databases Lecture 7

DB 2009

5/17

Example (cont.)

F={AB—C, C—D, DA}]
For the single attributes we have
o {A}" ={A},
o {B}* ={B},

e {C}* ={A C, D},

{cy =P (c, by = (A C, D)
o {D}t ={A, D}

(D} = {A, D}

The only new dependency we get with a single attribute on the left is
C— A

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 6/17

Example (cont.)

F={AB—C, C—D, D— A}

Now consider pairs of attributes.

o {A
o {A
o {A
e {B,
° {B,

° {C7

B}t ={A, B, C, D},

so A, B — D is a new dependency
C}t ={A, C, D},

so A, C — D is a new dependency
Dy* = {A, D},

so nothing new.

Ct ={A, B, C, D},

so B, C — A, Dis a new dependency
D}t ={A, B, C, D},

so B,D — A, C is a new dependency
D}t ={A, C, D},

so C,D — Ais a new dependency

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009

7/17

Example (cont.)

F={AB—-C, C—D, D— A}

For the triples of attributes:

e {A C, D}t ={A C, D},
e {A B, D}T ={A, B, C, D},

so A, B, D — C is a new dependency
e {A B, C}"={A B, C, D},

so A, B, C — D is a new dependency
e {B, C, D} ={A, B, C, D},

so B,C,D — Ais a new dependency

And since {A, B, C, D}+ = {A, B, C, D}, we get no new

dependencies with four attributes.

T. Griffin (cl.cam.ac.uk) Databases Lecture 7

DB 2009 8/17

Example (cont.)

We generated 11 new FDs:

c — A AB — D
AC — D B.C — A
B.C — D B.D — A
B.D — C cC,D — A
ABC — D ABD — C
B,.C,.D — A
Can you see the Key?
{A, B}, {B, C}, and {B, D} are keys. J

Note: this schema is already in 3NF! Why?

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 9/17

General Decomposition Method (GDM)

GDM
@ Understand your FDs F (compute FT),

Q find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD
Z — W c FT violating a condition of desired NF,

© split R into two tables R{(Z, W) and Rx(Z, Y)
© wash, rinse, repeat

Reminder

ForZ — W, if we assume ZNW = {}, then the conditions are
@ Zis a superkey for R (2NF, 3NF, BCNF)
© W is a subset of some key (2NF, 3NF)
© Zis not a proper subset of any key (2NF)

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009

10/17

The lossless-join condition is guaranteed by GDM

@ This method will produce a lossless-join decomposition because
of (repeated applications of) Heath’s Rule!

@ That is, each time we replace an S by S; and S,, we will always
be able to recover S as S; x S,.

@ Note that in GDM step 3, the FD Z — W may represent a key
constraint for Ry.

But does the method always terminate? Please think about this

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 11/17

Return to Example — Decompose to BCNF

R(A, B,C,D)
F={AB—-C, C—D, D— A}

Which FDs in F* violate BCNF?

c —- A
cC —- D
D — A
AC — D
C,D — A

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 12/17

Return to Example — Decompose to BCNF

Decompose R(A, B, C, D) to BCNF
Use C — D to obtain

@ Ry(C, D). This is in BCNF. Done.

@ Ry (A, B, C) This is notin BCNF. Why? A, B and B, C are the only
keys, and C — Ais a FD for Ry. So use C — A to obtain
Ro.1(A, C). This is in BCNF. Done.
R>2(B, C). This is in BCNF. Done.

Exercise : Try starting with any of the other BCNF violations and see
where you end up.

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 13/17

The GDM does not always preserve dependencies!

R(A, B, C, D, E)

[SES
W mm
Ll
CEoXe)

o {A B}t ={A, B, C, D},
@ soAB— C,D,
@ and {A, B, E} is a key.

e {B, E}*={B, C, D, E},

@ soB,E— C,D,

@ and {A, B, E} is a key (again)
Let’s try for a BCNF decomposition ...

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 14 /17

Decomposition 1

Decompose R(A, B, C, D, E)using A,.B— C,D:
@ Ry(A, B, C, D). Decompose this using B — D:
Ri1(B, D). Done.
F!’1'2(A7 B, C) Done.

@ Ry(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

D E—C

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009

15/17

Decomposition 2

Decompose R(A, B, C, D, E) using B,E — C,D:
@ R3(B, C, D, E). Decompose this using D, E — C
R3'1(C, D, E) Done.
Rs2(B, D, E). Decompose this using B — D:
R3,2,1(B, D) Done.
Hg,z.z(B, E) Done.

@ R4(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

AB—C

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009

16/17

Summary

@ It always is possible to obtain BCNF that has the lossless-join
property (using GDM)
But the result may not preserve all dependencies.
@ It is always possible to obtain 3NF that preserves dependencies
and has the lossless-join property.

Using methods based on “minimal covers” (for example, see
EN2000).

T. Griffin (cl.cam.ac.uk) Databases Lecture 7 DB 2009 17/17

