Databases
Lectures 4, 5, and 6

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

Lecture 04: Database Updates

Outline

- Transactions
- Short review of ACID requirements
Transactions — ACID properties

Should be review from Concurrent Systems and Applications

Atomicity Either all actions are carried out, or none are
- logs needed to undo operations, if needed

Consistency If each transaction is consistent, and the database is initially consistent, then it is left consistent
- This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of other scheduled transactions
- Serializability, 2-phase commit protocol

Durability If a transactions completes successfully, then its effects persist
- Logging and crash recovery

Lecture 05: Functional Dependencies

Outline

- Update anomalies
- Functional Dependencies (FDs)
- Normal Forms, 1NF, 2NF, 3NF, and BCNF
Transactions from an application perspective

Main issues

- Avoid update anomalies
- Minimize locking to improve transaction throughput.
- Maintain integrity constraints.

These issues are related.

Update anomalies

Big Table

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King's</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- How can we tell if an insert record is consistent with current records?
- Can we record data about a course before students enroll?
- Will we wipe out information about a college when last student associated with the college is deleted?
Redundancy implies more locking ...

... at least for correct transactions!

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King's</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- Change New Hall to Murray Edwards College
 - Conceptually simple update
 - May require locking entire table.

Redundancy is the root of (almost) all database evils

- It may not be obvious, but redundancy is also the cause of update anomalies.
- By redundancy we do not mean that some values occur many times in the database!
 - A foreign key value may be have millions of copies!
- But then, what do we mean?
Functional Dependency

Functional Dependency (FD)
Let $R(X)$ be a relational schema and $Y \subseteq X$, $Z \subseteq X$ be two attribute sets. We say Y functionally determines Z, written $Y \rightarrow Z$, if for any two tuples u and v in an instance of $R(X)$ we have

$$u.Y = v.Y \rightarrow u.Z = v.Z.$$

We call $Y \rightarrow Z$ a functional dependency.

A functional dependency is a semantic assertion. It represents a rule that should always hold in any instance of schema $R(X)$.

Example FDs

<table>
<thead>
<tr>
<th>Big Table</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King’s</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- $sid \rightarrow name$
- $sid \rightarrow college$
- $course \rightarrow part$
- $course \rightarrow term_name$
Keys, revisited

Candidate Key
Let $R(X)$ be a relational schema and $Y \subseteq X$. Y is a candidate key if

1. The FD $Y \rightarrow X$ holds, and
2. for no proper subset $Z \subset Y$ does $Z \rightarrow X$ hold.

Prime and Non-prime attributes
An attribute A is prime for $R(X)$ if it is a member of some candidate key for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key functional dependencies!

First Normal Form (1NF)
We will assume every schema is in 1NF.

1NF
A schema $R(A_1 : S_1, A_2 : S_2, \ldots, A_n : S_n)$ is in First Normal Form (1NF) if the domains S_i are elementary — their values are atomic.

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy George Griffin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>first_name</th>
<th>middle_name</th>
<th>last_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy</td>
<td>George</td>
<td>Griffin</td>
</tr>
</tbody>
</table>
Second Normal Form (2NF)

A relational schema \(R \) is in 2NF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \), or
- \(A \) is a member of some key, or
- \(X \) is not a proper subset of any key.

3NF and BCNF

Third Normal Form (3CNF)

A relational schema \(R \) is in 3NF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \), or
- \(A \) is a member of some key.

Boyce-Codd Normal Form (BCNF)

A relational schema \(R \) is in BCNF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \).
Inclusions

Clearly BCNF \subseteq 3NF \subseteq 2NF. These are proper inclusions:

In 2NF, but not 3NF

\(R(\{A, B, C\}), \text{ with } F = \{A \rightarrow B, B \rightarrow C\}. \)

In 3NF, but not BCNF

\(R(\{A, B, C\}), \text{ with } F = \{A, B \rightarrow C, C \rightarrow B\}. \)

- This is in 3NF since \(AB \) and \(AC \) are keys, so there are no non-prime attributes
- But not in BCNF since \(C \) is not a key and we have \(C \rightarrow B \).

The Plan

Given a relational schema \(R(\mathbf{X}) \) with FDs \(F \):

- Reason about FDs
 - Is \(F \) missing FDs that are logically implied by those in \(F \)?
- Decompose each \(R(\mathbf{X}) \) into smaller \(R_1(\mathbf{X}_1), R_2(\mathbf{X}_2), \ldots R_k(\mathbf{X}_k) \), where each \(R_i(\mathbf{X}_i) \) is in the desired Normal Form.

Are some decompositions better than others?
Desired properties of any decomposition

Lossless-join decomposition
A decomposition of schema $R(X)$ to $S(Y \cup Z)$ and $T(Y \cup (X - Z))$ is a lossless-join decomposition if for every database instances we have $R = S \Join T$.

Dependency preserving decomposition
A decomposition of schema $R(X)$ to $S(Y \cup Z)$ and $T(Y \cup (X - Z))$ is dependency preserving, if enforcing FDs on S and T individually has the same effect as enforcing all FDs on $S \Join T$.

We will see that it is not always possible to achieve both of these goals.

Lecture 06: Reasoning about FDs

Outline
- Implied dependencies (closure)
- Armstrong’s Axioms
Semantic Closure

Notation

\(F \models Y \rightarrow Z \)

means that any database instance that satisfies every FD of \(F \),
must also satisfy \(Y \rightarrow Z \).

The **semantic closure** of \(F \), denoted \(F^+ \), is defined to be

\[F^+ = \{ Y \rightarrow Z \mid Y \cup Z \subseteq \text{atts}(F) \land F \models Y \rightarrow Z \}. \]

The **membership problem** is to determine if \(Y \rightarrow Z \in F^+ \).

Reasoning about Functional Dependencies

We write \(F \vdash Y \rightarrow Z \) when \(Y \rightarrow Z \) can be derived from \(F \) via the following rules.

Armstrong’s Axioms

- **Reflexivity** If \(Z \subseteq Y \), then \(F \vdash Y \rightarrow Z \).
- **Augmentation** If \(F \vdash Y \rightarrow Z \), then \(F \vdash Y, W \rightarrow Z, W \).
- **Transitivity** If \(F \vdash Y \rightarrow Z \) and \(F \models Z \rightarrow W \), then \(F \vdash Y \rightarrow W \).
Logical Closure (of a set of attributes)

Notation

\[\text{closure}(F, X) = \{ A \mid F \vdash X \rightarrow A \} \]

Claim 1

If \(Y \rightarrow W \in F \) and \(Y \subseteq \text{closure}(F, X) \), then \(W \subseteq \text{closure}(F, X) \).

Claim 2

\(Y \rightarrow W \in F^+ \) if and only if \(W \subseteq \text{closure}(F, Y) \).

Soundness and Completeness

Soundness

\[F \vdash f \implies f \in F^+ \]

Completeness

\[f \in F^+ \implies F \vdash f \]
Proof of Completeness (soundness left as an exercise)

Show \(\neg(F \vdash f) \iff \neg(F \models f) \):

- Suppose \(\neg(F \vdash Y \rightarrow Z) \) for \(R(X) \).
- Let \(Y^+ = \text{closure}(F, Y) \).
- \(\exists B \in Z, \text{ with } B \notin Y^+ \).
- Construct an instance of \(R \) with just two records, \(u \) and \(v \), that agree on \(Y^+ \) but not on \(X - Y^+ \).
- By construction, this instance does not satisfy \(Y \rightarrow Z \).
- But it does satisfy \(F \)! Why?
 - let \(S \rightarrow T \) be any FD in \(F \), with \(u[S] = v[S] \).
 - So \(S \subseteq Y^+ \), and so \(T \subseteq Y^+ \) by claim 1,
 - and so \(u[T] = v[T] \)

Consequences of Armstrong’s Axioms

Union If \(F \models Y \rightarrow Z \) and \(F \models Y \rightarrow W \), then \(F \models Y \rightarrow W, Z \).

Pseudo-transitivity If \(F \models Y \rightarrow Z \) and \(F \models U, Z \rightarrow W \), then \(F \models Y, U \rightarrow W \).

Decomposition If \(F \models Y \rightarrow Z \) and \(W \subseteq Z \), then \(F \models Y \rightarrow W \).

Exercise: Prove these using Armstrong’s axioms!
Proof of the Union Rule

Suppose we have

\[F \models Y \rightarrow Z, \]
\[F \models Y \rightarrow W. \]

By augmentation we have

\[F \models Y, Y \rightarrow Y, Z, \]

that is,

\[F \models Y \rightarrow Y, Z. \]

Also using augmentation we obtain

\[F \models Y, Z \rightarrow W, Z. \]

Therefore, by transitivity we obtain

\[F \models Y \rightarrow W, Z. \]

Example application of functional reasoning.

Heath’s Rule

Suppose \(R(A, B, C) \) is a relational schema with functional dependency \(A \rightarrow B \), then

\[R = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R). \]
Proof of Heath’s Rule

We first show that $R \subseteq \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

- If $u = (a, b, c) \in R$, then $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- Since $\{(a, b)\} \bowtie_A \{(a, c)\} = \{(a, b, c)\}$ we know $u \in \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

In the other direction we must show $R' = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R) \subseteq R$.

- If $u = (a, b, c) \in R'$, then there must exist tuples $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- This means that there must exist a $u' = (a, b', c) \in R$ such that $u_2 = \pi_{A,C}((a, b', c))$.
- However, the functional dependency tells us that $b = b'$, so $u = (a, b, c) \in R$.

Closure Example

$R(A, B, C, D, D, F)$ with

$A, B \rightarrow C$
$B, C \rightarrow D$
$D \rightarrow E$
$C, F \rightarrow B$

What is the closure of $\{A, B\}$?

$\{A, B\}$

$\begin{align*}
A, B &\rightarrow C \\
B, C &\rightarrow D \\
D &\rightarrow E
\end{align*}$

$\{A, B, C\}$

$\begin{align*}
A, B, C &\rightarrow D \\
A, B, C, D &\rightarrow E
\end{align*}$

$\{A, B, C, D\}$

$\{A, B, C, D, E\}$

So $\{A, B\}^+ = \{A, B, C, D, E\}$ and $A, B \rightarrow C, D, E$.