
C S dConcurrent Systems and
Applications

T H

Applications

T H E O D O R E H O N G

T H E O D O R E . H O N G@ C L. C A M. A C. U K

Timetable change!

Next Concurrent Systems lecture will be y
TUESDAY at 12.

Next Software Engineering lecture will be Monday at
12 instead.

Outline of the course

Java review. Objects and classes. Packages, interfaces, nested classes.
Design patterns. [3 lectures, Hong]Design patterns. [3 lectures, Hong]

Distributed systems. Introduction. TCP and UDP. RPC and RMI.
Transactions. Enforcing isolation. Crash recovery and logging. [6 lectures,
Hand]Hand]

Advanced Java. Reflection and serialisation. Graphical interfaces. Memory
management. Native methods and class loaders. Generic types. [5 lectures,
H]Hong]

Testing. Software testing strategies. [1 lecture, Blackwell]

Concurrency. Threads. Mutual exclusion. Deadlock. Condition
synchronization. Worked examples. Low-level synchronization. [6 lectures,
Harris]

Resources

Course homepage
http://www.cl.cam.ac.uk/teaching/0809/ConcSys/

Java documentation on the webJava documentation on the web
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/javase/6/docs/api/

Past Tripos questions
Concurrent Systemsy
Concurrent Systems and Applications
Further Java
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/http://www.cl.cam.ac.uk/teaching/exams/pastpapers/

Reading list

Bruce Eckel, Thinking in Java (2006)
http://www.mindview.net/Books/TIJ4/

Erich Gamma et al., Design Patterns (1994)
Doug Lea Concurrent Programming in Java (1999)Doug Lea, Concurrent Programming in Java (1999)
Jean Bacon, Concurrent Systems (2002)
Jean Bacon and Tim Harris, Operating Systems: p g y

Concurrent and Distributed Software Design (2003)
Glenford Myers et al., The Art of Software Testing (2004)
James Gosling et al The Java Language SpecificationJames Gosling et al., The Java Language Specification

(2005)
http://java.sun.com/docs/books/jls/

Review: Programming with Objects

Introduction

Objects and classes

Packagesg

Interfaces

Nested classes

Design patterns

Defining an object

public class TelephoneEntry {
public String name;public String name;
public String number;

public TelephoneEntry(String name, String number) {
this name namethis.name = name;
this.number = number;

}

i i () {public String getName() {
return name;

}

public void contact() {
call(number);

}
}}

Defining an object

What is an object?j

Encapsulation: data + operations

Class definition, consists of:,
Field definition

this

M th d d fi itiMethod definition
constructor

Constructors

Ensure correct initialization of objectj

No return value

If the constructor signature changes, then other
classes using old signature will notice

Overloading constructors

Default 0-parameter constructor

Creating and using an object

TelephoneEntry tel = new TelephoneEntry("John", "76019");

System out println(tel name);System.out.println(tel.name);

TelephoneEntry tel2 = tel;

tel2.name = "Mary"

System.out.println(tel.name);

I t l t l2?Is tel == tel2?
Is tel.equals(tel2)?
Is tel2.equals(tel)?

tel = null;

System.out.println(tel.name);

What happens to tel2?

Classes vs. instances

Can't access non-static fields or methods from static
method

Method overloading

public class Renderer {

bli id d (Ci l) {public void draw(Circle c) {

...

}

public void draw(Rectangle r) {public void draw(Rectangle r) {

...

}

public void draw(Triangle t) {public void draw(Triangle t) {

...

}

}}

What about public int draw(Circle c) ?

Automatic casting

void f(int x, long y) {

...

}

void f(long x int y) {void f(long x, int y) {

...

}

f(10,10); ?

f(long)10, 10); ?

Constructors

public class TelephoneEntry {

bli T l h E t (St i St i b) {public TelephoneEntry(String name, String number) {

this.name = name;

this.number = number;

addToDirectory(this);

}

public TelephoneEntry(String name) {

TelephoneEntry(name, "0");

}}

...

}

Classes vs. instances

public class TelephoneEntry {
public static final String CAM PREFIX = "01223";p g _ ;
private static int entryCount = 0;
private int ID;

public static int getEntryCount() {
return entryCount;

}

public TelephoneEntry(String name, String number) {
this ID ++entryCountthis.ID = ++entryCount;

}
}

int i = TelephoneEntry.getEntryCount();int i TelephoneEntry.getEntryCount();
System.out.println(TelephoneEntry.CAM_PREFIX);

What about System.out.println(TelephoneEntry.getName()); ?

Inheritance

public class AddressEntry extends TelephoneEntry {

public String addr;public String addr;

public AddressEntry(String name, String number, String addr)
{

super(name, number);

this.addr = addr;

}

public String getAddr() { ... }

public void contact() { // override

if (!call(number))

write(addr);

}

}}

Inheritance

Inheritance typically models ‘is a’ relationship, e.g.
b Bi l d l P lTbetween Bicycle and a more general PersonnelTransport
between SpaceElevator and a more general SatelliteLauncher

defines more specialised sub-class in terms of existing
lsuper-class.

Reuse existing fields
Add new fields
Add new methodsAdd new methods
Override existing methods

Anything acting on the superclass can act on the subclass
I li itl i h it f j l Obj t d ll thImplicitly inherit from java.lang.Object, and calls the
Object() constructor
clone(), equals(), etc.

Inheritance vs. composition

public class TransportationVehicle {}

public class Car extends TransportationVehicle {
public Wheel[] wheels;
public Engine engine;

}}

public class Plane extends TransportationVehicle {
public Wing[] wings;public Wing[] wings;
public Tail tail;

}

Car is a TransportationVehicle
Car has an Engine

Inheritance and references

class A { ... }

class B extends A { }class B extends A { ... }

A objectA = new A();

B objectB = new B();j ();

A refToA;

B refToB;

refToA = objectA;

refToA = objectB;

Do these assignments work?
refToB = refToA;

refToB = (B) refToA;

refToB = (B) objectA;

Object references

Objects instantiated by newj y
(constructor implicitly called)

Objects manipulated through references
either a particular instance, or null

Two references can refer to the same object

Different types of object equality

Garbage collection

Arrays and inheritance

What is the relationship between the types A[] and B[]?

A[] arrayOfA = new A[10];
B[] arrayOfB = new B[10];

Do these assignments work?Do these assignments work?
arrayOfA[5] = new A();
arrayOfA[5] = new B();

[] ()arrayOfB[6] = new A();
arrayOfB[6] = new B();

A[] temp;
temp = arrayOfB;
temp = (A[]) arrayOfB;
What can you put in temp?

Methods and inheritance

class A {

A f() { return new A(); }A f() { return new A(); }

}

class B extends A {

A f() {

System.out.println("override"); return new A();

}

A f(i t) {A f(int x) {

System.out.println("overload"); return new A();

}

B f() {() {

System.out.println("covariant override"); return new B(); }

}

}

Overloading

Distinct parameter lists can distinguish overloaded p g
method calls

Distinct return types not enough

Methods and inheritance (2)

class A {

id f() { S t t i tl (" l ") }void f() { System.out.println("superclass"); }

}

class B extends A {

void f() { System out println("subclass"); }void f() { System.out.println("subclass"); }

void f2() { super.f(); }

}

What happens here?
B objectB = new B();

objectB.f();j ;

((A) objectB).f();

objectB.f2();

Methods and inheritance (3)

public class Renderer {
public void draw(Shape s) {p p {

s.draw();
}

}

{public class Circle extends Shape {
public void draw() { ... }

}

public class Rectangle extends Shape {public class Rectangle extends Shape {
public void draw() { ... }

}

public class Triangle extends Shape {public class Triangle extends Shape {
public void draw() { ... }

}

The dual of polymorphism.

Thought questions

super.super is not valid syntax in Java even though it might appear to
id h l f l ’ l Whprovide a means to access the super-class of a class’ super-class. Why

might the designers have disallowed this?

Why can't a class inherit from more than one superclass? What would
be the advantages and disadvantages of allowing this?

Some languages support dynamic inheritance, where a class can change
which other class it extends at runtime. Why might this be useful?
How might this cause confusion?

Thought questions

If B changes which class it inherits from (or removes g (
it altogether), C won't find out

Multiple inheritance can be useful, but diamond
problem – ambiguity. More subtly, how many copies
of common ancestor exist?

D i i h it h l l lti lDynamic inheritance can help solve multiple
inheritance problem. Also, combining hierarchies.
Obvious problemsObvious problems.

Packages

Java groups classes into packages.

package org.apache.commons.codec;

class Decoder { ... }

{ }class Encoder { ... }

decode(new org.apache.commons.codec.Decoder(), s);

import org.apache.commons.codec.Decoder;

import org.apache.commons.codec.*;

import org.apache.commons.*; ?

Packages

Classes within a package are typically written by co-p g yp y y
operating programmers and are expected to be used
together.

fully qualified name = package + class name

Don’t have to create the package in any way; just
t th i k t t tquote the name in any package statement.

Some compilers create subdirectories in the file
system nesting one directory level for each full stopsystem, nesting one directory level for each full stop
in the package’s fully-qualified name.

Packages don't inheritPackages don t inherit

Access modifiers

Modifier Class Package Subclass Worldg
public Y Y Y Y

protected Y Y Y

no modifier Y Y

private Yp

Access modifiers (2)

public class A {
t t d i t fi ld1protected int field1;

}

In another packageIn another package…

public class B extends A {
public void method2(B b ref A a ref) {public void method2(B b_ref, A a_ref) {

System.out.println(field1);
System.out.println(b_ref.field1);
System out println(a ref field1); ?System.out.println(a_ref.field1); ?

}
}

final

class FinalField {
fi l St i A "I iti l l "final String A = "Initial value";
final String B;

public static final int BLUE 1public static final int BLUE = 1;
public static final int WHITE = 2;
public static final int RED = 3;

FinalField() {
B = "Initial value";

}}

final void doCriticalTask() { ... }
}}

abstract

public class A {

b t t i t th dN ()abstract int methodName();

}

public class B extends A {public class B extends A {

int methodName() {

return 42;

}}

}

References to abstract classes

public abstract class A {
int x = 20;
abstract void method1(A a);

}

public class B extends A {
void method1(A a){
System.out.println("The A’s x is "+a.x);

}

void method2(A a) {
a.method1(a);
((B) a).method1(a);

}
}

public static void main(String [] args) {{
B objectB = new B();
objectB.method1(new A()); // ?
objectB.method1(new B()); // ?
objectB.method2(new B()); // ?

}}

Combining common functionality

public abstract AbstractList {

bli b t t Obj t t(i t i d)public abstract Object get(int index);

public List subList(int fromIndex, int toIndex) {

...

}

}

class java.util.AbstractMap

class java.util.AbstractList

static

Can be applied to any method or field definition (also
nested classes)nested classes)
The field/method is associated with the class as a whole
rather than with any particular object.

h l l f h h l l h hThere is only one value for the whole class, rather than a
separate value for each object.
Similarly, static methods are not associated with a y,
current object—unqualified instance field names and the
this keyword cannot be used.
Static methods called by explicitly naming the class y p y g
within which the method is defined. The named class is
searched, then its super-class, etc. Otherwise the search
begins from the class in which the method call is made.

Other modifiers

strictfp – method/class implemented using IEEE
/ fl i i i h i id i l l ll754/854 floating point arithmetic; identical results on all

hardware
synchronized - only one thread can access thesynchronized only one thread can access the
class/method at a time.
volatile – variable re-read from memory each time,
caching not permitted between threadscaching not permitted between threads
transient – in Serialization API, not sent over the
network when classes are copied from machine to
machine
native - implemented in native code

Interfaces

public interface Set {
b l dd(E)boolean add(E e);
boolean remove(Object o);

}

public interface SortedSet {
E first();

}}

public class HashSet implements Set
public class ArraySet implements Setpublic class ArraySet implements Set

public class ArrayList implements List
public class LinkedList implements Listpublic class LinkedList implements List

Interfaces

Groups of classes that provide different
implementations of the same kind of functionality.p y
· e.g. the collection classes in java.util—HashSet and
ArraySet provide set operations; ArrayList and
LinkedList provide list-based operations.
In that example there are some operations available on all
collections, further operations on all sets, and a third set of
operations on the HashSet class itself.
Inheritance and abstract classes can be used to move
common functionality into super-classes such as
Collection and SetCollection and Set.
· Each class can only has a single super-class (in Java),
so should HashSet extend a class representing the
hashtable aspects of its behaviour (capacity, load factor), or a class
representing the set-like operations available on it?representing the set like operations available on it?
More generally, it is often desireable to separate the
definition of a standard programming interface (e.g.
set-like operations) from their implementation using an
actual data structure (e.g. a hash table).

Interfaces

Each Java class may extend only a single super-class, but
it can implement a number of interfaces.

An interface definition just declares method signatures
d t ti fi l fi ld (t t)and static final fields (constants).

An ordinary interface may have public or default access.

javaAll methods and fields are implicitly publicjavaAll methods and fields are implicitly public.

An interface may extend one or more super-interfaces.

A class that implements an interface must either: supplyA class that implements an interface must either: supply
definitions for each of the declared methods; or be
declared an abstract class.

Nested classes

A nested class/interface is one whose definition appears
i id h l i finside another class or interface.

There are four cases:There are four cases:
inner classes – enclosed class is an ordinary (non-static)
class
static nested classes - enclosed definition is declared
static;
nested interfaces - interface is declared within annested interfaces interface is declared within an
enclosing class or interface
anonymous inner classes.

Nested classes

In general nested classes are used:g

· (i) for programming convenience to put classes
nearby

· (ii) logical grouping of classes

· (iii) to provide one class with access to private

members or local variables from its enclosing class.

Helper classes

Nested classes

An inner class definition associates each instance of the enclosed class with an instance of the
enclosing class, e.g.

class Bus {
Engine e;

l Wh l {class Wheel {
...
}

}

Each instance of Wheel is associated with an enclosing instance of Bus. e.g. Wheel methods can
access the field without qualification or access the enclosing Bus as Bus.this.

Can Bus find out what Wheels are associated with it?

static nested class - not associated with any instance of an enclosing class.
nested interfaces – implicitly static

Anonymous inner class

A short-hand way of defining inner classes.
class A {
void method1() {
Object ref = new Object() {

void method2() {};
};

}
}

An anonymous inner class may be defined using an interface name rather than a class name—providing inline
implementations of all the methods.

class A {
void method1() {
Ifc i = new Ifc() {

public void interfaceMethod() {
};}

};
}

}

Event adapter

//An example of using an anonymous inner class.

i {public class MyClass extends Applet {

...

someObject.addMouseListener(new MouseAdapter() {

{public void mouseClicked(MouseEvent e) {

...//Event listener implementation goes here...

}

}});

...

}

}}

MouseAdapter is an empty MouseListener implementation.

Example: Closures

An enthusiast for programming with closures proposes a new language extending Java
so that the following method definition would be valid:g

Closure myCounter(int start) {
int counter = start;
return {return {

System.out.println(counter++);
}

}

interface Closure {
void apply();

}

No output is printed when the method is executed – instead it returns an object
implementing the Closure interface.

Invoking apply() on the Closure object will cause successive values to be printed.

Closure

class Wow {
public static void main(String[] args) {

Wow w = new Wow();
Closure c = w.myCounter(15);
c.apply();

}

{Closure myCounter (int start) {
return new ClosureImplementation(start);

}

class ClosureImplementation implements Closure {class ClosureImplementation implements Closure {
private int counter;

ClosureImplementation(int start) { counter = start; }
public void apply () {System.out.println(counter++);}public void apply () {System.out.println(counter++);}

}
}

Package as inner class

Design patterns

Common idioms frequently emerge in object-orientedq y g j

programming. Studying these design patterns

provides:p

common terminology for describing program gy g p g
organisation and conveying the purposes of inter-
related classes; and

examples of how to structure programs for flexibility
and re-use.

Singleton

class Singleton {
t ti Si l t th I t llstatic Singleton theInstance = null;
private Singleton() {...}

static Singleton getInstance() {static Singleton getInstance() {
if (theInstance == null)

return (theInstance = new Singleton());
return theInstance;return theInstance;

}

void method1() { }void method1() {...}
void method2() {...}
void method3() {...}

}}

Singleton

Ensures that a class can be instantiated at most once.

Private constructor ensures external classes cannot
instantiate the class by calling new.

A static method creates an instance when first called and
subsequently returns an object reference to the same
instance.

More flexible than a suite of static methods: allows
sub-classing, e.g. getInstance on ToolKit might return
MotifToolKit or MacToolKit as appropriateMotifToolKit or MacToolKit as appropriate.

The constraint is enforced (and could subsequently be
relaxed) in a single place.

Abstract factory

Suppose we have a set of interfaces: Window, ScrollBar, etc., defining
components used to build GUIs There may be several sets of thesecomponents used to build GUIs. There may be several sets of these
components—e.g. with different visual appearances.

How does an application get hold of the appropriate instances of pp g pp p
classes implementing those interfaces?

One possibility:

switch (APPLICATION_MODE) {
case MACINTOSH: w = new MacWindow(); break;
case MOTIF : w = new MotifWindow(); break;
...

}

Abstract factory

Disadvantagesg

It would be lots of work to add support for a new GUI

system.y

And we would have to change every application!

A buggy application might try to use a MacWindowggy pp g y
with a

MotifScrollBar.

Abstract factory

public interface GUIFactory {
Window makeWindow();;
ScrollBar makeScrollBar();

}

public class MacFactory implements GUIFactory {
{ }Window makeWindow() { return new MacWindow(); }

ScrollBar makeScrollBar() { return new MacScrollBar(); }
}

public class MotifFactory implements GUIFactory {public class MotifFactory implements GUIFactory {
Window makeWindow() { return new MotifWindow(); }
ScrollBar makeScrollBar() { return new MotifScrollBar(); }

}

In program:
GUIFactory factory = new XXXFactory();
w = factory.makeWindow();
s = factory.makeScrollBar();

Abstract factory

The factory class instantiates objects on behalf of the client
from one of a family of related classes, e.g. MotifFactoryy , g y
instantiates MotifWindow and MotifScrollBar.

New families can be introduced by providing the client with
an instance of a new sub-class of Factory.

The factory can ensure classes are instantiated
consistently—e.g. MotifWindow always with
MotifScrollBar.

Adding a new operation involves co-ordinated change to
the Factory class and all its sub-classes.

... but the problem hasn’t entirely gone away: how does... but the problem hasn t entirely gone away: how does
the application know which Factory to use?

An instance of more general Strategy pattern

Adapter

Suppose you’ve got an existing application that accesses a data structure through the
Dictionary interface:y

public interface Dictionary {
int size();
boolean isEmpty();boolean isEmpty();
Object get(Object key);

}

and you have a good implementation BinomialTree that instead uses another... and you have a good implementation BinomialTree that instead uses another
interface, say LookupTable

public interface LookupTable {
int numElements();
Object lookupKey(Object key)Object lookupKey(Object key);

}

The Client wishes to invoke operations on the Target interface which the Adaptee does
not implementnot implement.

Adapter

Could do this:
i i i i i i ipublic class BinomialDictionary extends BinomialTree

implements Dictionary {

int size() { return numElements() }int size() { return numElements(); }

boolean isEmpty() { return (numElements() == 0); }

Object get(Object key) { return lookupKey(key); }

}}

Adapter

Better:
i i i i {public class LookupTableAdapter implements Dictionary {

private LookupTable t;

LookupTableAdapter(LookupTable table) {

this.t = table;

}

{ }int size() { return t.numElements(); }

boolean isEmpty() { return (t.numElements() == 0); }

Object get(Object key) { return t.lookupKey(key); }

}}

The Adapter class implements the Target interface in p p g
terms of operations the Adaptee supports.

The adapter can be used with any sub-class of the
adaptee

(unlike sub-classing adaptee directly).

Decorator

public class OutputStream {
void write(byte[] b)void write(byte[] b)

}

public class BufferedOutputStream extends OutputStream

Suppose we want to add a cipher capability to all streams, buffered or not:

public class CipheredBufferedOutputStream extends
BufferedOutputStreamBufferedOutputStream

public class CipheredUnbufferedOutputStream extends
OutputStream

The problem gets worse with more functionalities:
CheckedCipheredBufferedOutputStream
CheckedUncipheredBufferedOutputStream etc...

Decorator

interface OutputStream

class SimpleOutputStream implements OutputStream

abstract class OutputStreamDecorator implements OutputStream {
protected OutputStream os;
public OutputStreamDecorator(OutputStream os) {
this.os = os;

}
}

class BufferedOutputStream extends OutputStreamDecorator {
write(byte[] b) {
// do buffering
os.write(...);

}
}}

To use:
OutputStream myStream = new CipheredOutputStream(new BufferedOutputStream(new

SimpleOutputStream()));

Decorator

The decorator pattern is an alternative to subclassing.
Subclassing adds behaviour at compile time whereasSubclassing adds behaviour at compile time whereas
decorating can provide new behaviour at runtime.
This difference becomes most important when there are

l i d d t f t di f ti lit Iseveral independent ways of extending functionality. In
some object-oriented programming
languages, classes cannot be created at runtime, and it is
typically not possible to predict what combinations oftypically not possible to predict what combinations of
extensions will be needed at design time. This would
mean that a new class would have to be made for every
possible combination. By contrast, decorators arepossible combination. By contrast, decorators are
objects, created at runtime, and can be combined on a
per-use basis. An example of the decorator pattern is
the Java I/O Streams implementation./ p

Observer (MVC) pattern

Suppose we have a user interface in which we need to permit the
user to specify the colour of an on-screen item (like a fish in theuser to specify the colour of an on-screen item (like a fish in the
tank...).

The client’s specification demands there be three ways to specify p y p y
colours:

Text boxes for red, green, and blue elements;
Sliders for red, green, and blue elements; and
Selecting from a palette of commonly-used coloursSelecting from a palette of commonly used colours.

BUT more than one of these input mechanisms might be displayed
simultaneously.y

AND when the user operates one of them, the others must update
appropriately.

class ColourTextBoxes {
ColourSlider cs;;
ColourPalette cp;
...
void changeTo(int r,int g,int b) {

setColour(r,g,b);
cs.update(r,g,b);
cp.update(r,g,b);cp.update(r,g,b);

}
}

class ColourSlider {
ColourTextBoxes ct;
ColourPalette cp;ColourPalette cp;
...
void changeTo(int r,int g,int b) {

setColour(r,g,b);
ct.update(r,g,b);
cp.update(r,g,b);

}}
}

class ColourPalette {
ColourTextBoxes ct;
ColourSlider cs;
...
void changeTo(int r,int g,int b) {

setColour(r,g,b);
ct.update(r,g,b);
cs.update(r,g,b);

}
}

Advantagesg

Simple and efficient.

Disadvantages

If we want to add a fourth way to select colours then y
we have to change the code in several places.

In general, each of the colour selection classes needs
to know about all the others.

class Colour {
int r,g,b;
ColourTextBoxes ct;
ColourSlider cs;
ColourPalette cp;
void setColour(int r,int g,int b) {
this.r = r; this.g = g; this.b = b;
ct.update();
cs.update();
cp.update();

}
}

class ColourTextBoxes extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}
}

class ColourSlider extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}
}}

class ColourPalette extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}}
}

Advantagesg

Remains simple.

Efficient.

Easier to maintain.

Disadvantages

Messy—why should Colour have to know about all y y
the sub-classes?

Adds clutter to Colour.

class Colour {
int r,g,b;
void setColour(int r,int g,int b) {
this.r = r;
this.g = g;
this.b = b;

}
}

abstract class ColourObserver {
ColourSubject colsubj;
abstract void update();

}

class ColourSubject {
Colour c;
ColourObserver observers [];
void setColour(int r,int g,int b) {
c.setColour(r,g,b);
for (int x=0;x<observers.length;++x)
observers[x].update();

}
void addObserver(ColourObserver co) {
/* insert into observers[] */
...

}
}

class ColourSlider extends ColourObserver {

void update() {void update() {

/* read colour, redraw our GUI */

...

}}

void changeTo(int r,int g,int b) {

colsubj.setColour(r,g,b);

}

}

class ColourTextBoxes extends ColourObserver

class ColourPalette extends ColourObserverclass ColourPalette extends ColourObserver

Advantages
Ob b i l t d i t f th thObservers can be implemented as interfaces rather than as
concrete classes. Doesn’t use up the single opportunity to
sub-class another class.
A many to many dynamically changing relationship can existA many-to-many, dynamically changing relationship can exist
between subjects and observers.

DisadvantagesDisadvantages
The flexibility limits the extent of compile-time type-checking.
If observers can change the subject then cascading or cyclic
updates could occurupdates could occur.
Potential for a large amount of computational overhead.
Consider slowly dragging the slider from left to right.

Visitor

public class Car {
Wheel w;
Engine e;

Data myData;

public int cost() {
return someFunction(myData) + w.cost() + e.cost();

}
}

public class Wheel {
Data myData;
public int cost() { return someFunction(myData); }

}

public class Engine {{
Data myData;
public int cost() { return someFunction(myData); }

}

How to add a new function over the data structure?

Visitor

Alternate strategy:

public class CostCalculator {

public int cost (Car c) {

int cost = 0;;

cost += someFunction(c.getData());

cost += someFunction(c.getWheel().getData());

cost += someFunction(c.getEngine().getData());

}

}

What's wrong with this?

Visitor

class CostVisitor {
int cost = 0;
void visit(Element e) { cost += someFunction(e); }

}

public class Car extends Element {
Wheel wheel;
Engine engine;

void accept(CostVisitor v) {
v.visit(this);

// send visitor to children
wheel.accept(v);
engine.accept(v);

}
}}

public class Wheel extends Element {
void accept(CostVisitor v) { v.visit(this); }

}

Visitor

Implement different visitors for different tasks, e.g.

abstract class Visitor {
abstract void visit(Element e);

}

class CostVisitor extends Visitor {
int cost = 0;
void visit(Element e) { cost += someFunction(e.getData()); }

}}

class FooVisitor extends Visitor {
int bar = 0;
void visit(Element e) { … someOtherFunction(e) … }

}

Separate data from algorithms

The abstract Visitor class defines operations to perform on
each node.

It might perform different tasks on each different· It might perform different tasks on each different
sub-class of Element.

A concrete sub-class of Visitor is constructed for each kind
f i h dof operation on the data structure.

The methods implementing a particular operation are kept
together in a single sub-class of Visitor.

But changing the data structure requires changes to many
classes.

Common themes

Explicitly creating objects by specifying their class
commits to a particular implementation.

It is often better to separate code responsible for instantiating
objects—Abstract Factory and Singleton patterns.objects Abstract Factory and Singleton patterns.

Extending functionality by subclassing commits at
compile time to a particular organisation of extensions.

Composition and delegation may be preferable – Adapter and
Decorator patterns

Tight coupling between classes makes independent reuseTight coupling between classes makes independent reuse
difficult.

Separate data storage from different ways of operating on the data –
Observer and Visitor patternsObserver and Visitor patterns

