
Concurrent Systems and Applications

Introduction to concurrency

CST Part 1B

Nov 19 – Dec 1 2008

Tim Harris

tharris@microsoft.com

Concurrency (1)

The next section of the course concerns different ways of

structuring systems in which concurrency is present and, in

particular, co-ordinating multiple threads, processes and

machines accessing shared resources and data.

Two main scenarios...

➤ Tasks operating with a shared address space—e.g. multiple

threads created within a Java application.

➤ Tasks communicating between address spaces—e.g. different

processes, whether on the same or separate machines.

In each case we must consider...

➤ How shared resources and data are named and referred to by

the participants.

➤ Conventions for representing shared data.

➤ How access to resources and data is controlled.

➤ What kinds of system failure are possible.

3

Concurrency (2)

➤ The focus in this introduction is on the practical foundations

of concurrent programming

➤ Previous examples have been implemented using a single

thread that runs the main method of a program.

➤ Java supports lightweight concurrency within an

application—multiple threads can be running at the same

time.

➤ Can simplify code structuring and aid interactive

response—e.g. one thread deals with user interaction, another

thread deals with computation.

➤ Can benefit from multi-processor and multi-core hardware

4

Concurrency (3)

Most OS introduce a distinction between processes (as

discussed in Part 1A) and threads.

Processes are the unit of protection and resource allocation.

Each process has a process control block (PCB) holding:

➤ identification (e.g. PID, UID, GID);

➤ memory management information;

➤ accounting information; and

➤ (references to) one or more TCB...

Threads are the entities considered by the scheduler. Each

thread has a thread control block (TCB) holding:

➤ thread state;

➤ saved context information;

➤ references to user (and kernel?) stack; and

➤ scheduling parameters (e.g. priority).

5

Concurrency (4)

Structure of this section:

➤ Managing threads in Java.

➤ Simple shared objects—shared counters, shared hashtables,

etc.

· Mutual exclusion locks (mutexes)

➤ Shared objects in Java with internal blocking—queues,

multi-reader single-writer (MRSW) locks.

· Condition variables (condvars)

➤ Implementation of mutexes and condvars.

· Direct scheduler support

· Semaphores

· Event counters / sequences

➤ Alternative abstractions

· Monitors

· Active objects

6

Creating threads in Java (1)

➤ There are two ways of creating a new thread. The simplest is

to define a sub-class of java.lang.Thread and to

override the run() method.

· run() provides the code that the thread will execute

while it is on the CPU.

· The thread terminates when run() returns.

· It is common to have daemonic threads in a loop: while
(!done) <code>

class MyThread extends Thread {

public void run() {

while (true) {

System.out.println("Hello from " +

this);

Thread.yield();

}

}

public static void main(String [] args) {

Thread t1 = new MyThread();

Thread t2 = new MyThread();

t1.start();

t2.start();

}

}

7

Creating threads in Java (2)

➤ The run method of the class MyThread defines the code

that the new thread(s) will execute. Just defining such a class

does not create any threads.

➤ The two calls to new instantiate the class to create two

objects representing the two threads that will be executed.

➤ The calls to start() actually start the two threads

executing.

➤ The program continues to execute until all ordinary threads

have finished, even after the main method has completed.

$ java MyThread

Hello from Thread[Thread-0,5,main]

Hello from Thread[Thread-1,5,main]

Hello from Thread[Thread-0,5,main]

Hello from Thread[Thread-1,5,main]

...

➤ A daemon thread will not prevent the application from

exiting.

t1.setDaemon(true);

8

Creating threads in Java (3)

➤ The second way of creating a new thread is to define a class

that implements the java.lang.Runnable interface.

class MyCode implements Runnable {

public void run() {

while (true) {

System.out.println("Hello from " +

Thread.currentThread());

Thread.yield();

}

}

public static void main(String [] args) {

MyCode mt = new MyCode();

Thread t_a = new Thread(mt);

Thread t_b = new Thread(mt);

t_a.start();

t_b.start();

}

}

9

Creating threads in Java (4)

➤ As before, the MyCode class defines the code that the new

threads will execute.

➤ The two calls to new instantiate two Thread objects,

passing a reference to an instance of MyCode to them as

their targets.

➤ The two calls to start() set the two threads executing.

➤ Note that here the run() methods of the two threads are

being executed on the same MyCode object, whereas two

separate MyThread objects were required.

➤ The second way of creating threads is more complex, but also

more flexible.

· It doesn’t consume the single opportunity to sub-class a

parent class.

➤ Generally, the fields in the class containing the run()
method will hold per-thread state—e.g. which part of a

problem a particular thread is tackling.

10

Creating threads in Java (5)

➤ In some situations a thread is interrupted immediately if it is

blocked—e.g. sleep may throw InterruptedException.

For example:

class Example {

public static void main(String [] args) {

Thread t = new Thread() {

public void run() {

try {

do {

Thread.sleep(1000); // 1s sleep

} while (true);

} catch (InterruptedException ie) {

// Interrupted: better exit

}

}

};

t.start();

t.interrupt();

}

}

➤ If the thread didn’t block then the while (true) could

perhaps be

while (!isInterrupted());

11

Join

➤ The join method on java.lang.Thread causes the

currently running thread to wait until the target thread dies.

class Example {

public void startThread(void)

throws InterruptedException

{

Thread t = new Thread() {

public void run() {

System.out.println("Hello world!");

}

};

t.start();

t.join(0);

}

}

➤ The call to join waits for the thread started on the previous

line to finish. The parameter specifies a time in milliseconds

(0 → wait forever).

➤ The throws clause on startThread is required: the call

to join may be interrupted.

12

Priority controls

➤ Methods setPriority and getPriority on

java.lang.Thread allow the priority to be controlled.

➤ A number of standard priority levels are defined:

MIN PRIORITY, NORM PRIORITY, MAX PRIORITY.

➤ The programmer can also try to influence thread scheduling

using the yield method on java.lang.Thread. This is

a hint to the system that it should try switching to a different

thread—note how it was used in the previous examples.

· In a non-preemptive system even low priority threads may

continue to run unless they periodically yield.

➤ Selecting priorities becomes complex when there are many

threads or when multiple programmers are working together.

➤ Although it may work on some systems, the variation in

behaviour between different JVMs means that it is never

correct to use thread priorities to control access to shared

data in portable code.

13

Thread scheduling

➤ The choice of exactly which thread(s) execute at any given

time can depend both on the operating system and on the

JVM.

➤ Some systems are preemptive—i.e. they switch between the

threads that are eligible to run. Typically these are systems

in which the OS supports threads directly, i.e. maintaining

separate PCBs and TCBs.

➤ Other systems are non-preemptive—i.e. they only switch

when the running thread yields, becomes blocked, or exits.

Typically these systems implement threads within the JVM.

➤ The Java language specification says that, in general, threads

with higher priorities will run in preference to those with

lower priorities.

➤ To write correct, portable code it is therefore important to

think about what the JVM is guaranteed to do—not just

what it does on one system. Different behaviour might occur

at different nodes within a distributed system!

14

The volatile modifier (1)

static boolean signal = false;

public void run() {

while (!signal) {

doSomething();

}

}

If some other thread sets the signal field to true then

what will happen?

➤ The thread running the code above might keep executing the

while loop.

➤ This might happen if the JVM produces machine code that

loads the value of signal into a processor register and just

tests that register value each time around the loop.

· This is common when the body of the loop is short—no

need for compiler to re-use the register containing

signal.

· Commonly seen in embedded C/Java systems.

➤ Such behaviour is valid and might help performance.

15

The volatile modifier (2)

volatile is a modifier that can be applied to fields, e g.

static volatile boolean signal = false;

When a thread reads or writes a volatile field it must

actually access the memory location in which that field’s

value is held.

The precise rules about when it is permitted for the JVM to

re-use a value that is held in a register are still being

formulated. However, in general, if a shared field is being

accessed then either:

➤ the thread updating the field must release a mutual exclusion

lock that the thread reading from the field acqiures; or

➤ the field should be volatile.

As we will see, the first condition is satisfied by the usual use

of synchronized methods (or classes) → volatile is

rarely seen in practice.

For more details, see Section 2.2 of Doug Lea’s book (online at

http://gee.cs.oswego.edu/dl/cpj/jmm.html).

16

Exercises

1. Describe the facilities in Java for creating multiple threads of

execution.

2. What is the difference between a preemptive and a

non-preemptive scheduler? Write a Java class containing a

method

boolean probablyPreemptive();

which returns true if the JVM running it appears to be

preemptive and returns false otherwise. (Hint: your

solution will probably need to start multiple threads that

perform some kind of experiment.)

3. A Java-based file server is to use a separate thread for each

user granted access. Discuss the merits of this approach from

the point of view of security, possible performance, and likely

ease of implementation.

4. Examine the behaviour that one or more JVMs provide for

the following aspects of thread management:

(i) whether scheduling is preemptive;

(ii) whether the highest-priority runnable-thread is

guaranteed to run; and

(iii) the impact on performance of making a

frequently-accessed field volatile.

17

Mutual exclusion

Previous lecture

➤ Creating and terminating threads

➤ volatile

Overview of this lecture

➤ Shared data structures

➤ Mutual exclusion locks

1

Safety

In concurrent environments we must ensure that the system

remains safe no matter what the thread scheduler does—i.e.

that ‘nothing bad happens’.

➤ Unlike type-soundness, it is usually the case that this cannot

be checked automatically by compilers or tools (although

some exist to help).

➤ It is often useful to think of safety in terms of

invariants—things that must remain true, no matter how

different parts of the system evolve during execution.

· e.g. a ‘transfer’ operation between bank accounts

preserves the total amount.

➤ We can identify consistent object states in which all

invariants are satisfied.

➤ ...and aim that each of the operations available on the system

keeps it in a consistent state.

➤ Therefore many of the problems that we will see come down

to deciding when different threads can be allowed access to

objects in various ways.

2

Liveness

As well as safety, we would also like liveness—i.e. ‘something

good eventually happens’. We often distinguish per-thread

and system-wide liveness.

Standard problems include:

➤ Deadlock—a circular dependency between processes holding

resources and processes requiring them. Typically the

‘resources’ are exclusive access to locks.

➤ Livelock—a thread keeps executing instructions but makes no

useful progress, e.g. busy-waiting on a condition that will

never become true.

➤ Missed wake-up (wake-up waiting)—a thread misses a

notification that it should continue with some operation and

instead remains blocked.

➤ Starvation—a thread is waiting for some resource but never

receives it—e.g. a thread with a very low scheduling priority

may never receive the CPU.

➤ Distribution failures—of nodes or network connections in a

distributed system.

3

Shared data (1)

➤ Most useful multi-threaded applications will share data

between threads.

➤ Sometimes this is straightforward, e.g. data passed to a

thread through fields in the object containing the run()
method.

➤ More generally, threads may share state through...

· static fields in mutually-accessible classes, e.g.

System.out.

· objects to which multiple threads have references.

➤ What happens to field o.x:

Thread A Thread B

o.x = 17; o.x = 42;

➤ Most field accesses are atomic in Java (and many other

languages)—the value read from o.x after those updates will

be either 17 or 42.

➤ The only exceptions are numeric fields of type double or

type long—some third value may be read in those cases.

4

Shared data (2)

➤ This is an example of a race condition: the result depends on

the uncontrolled interleaving of the threads’ executions.

➤ We need some way of controlling how threads are executed

when accessing shared data.

➤ The basic notion is of critical regions: parts of the program

during which a thread should have exclusive access to some

data structures while making a number of operations on

them.

➤ Careful programming is rarely sufficient, e.g.

boolean busy;

int x;

...

while (busy) { /* nothing */ }

busy = true;

x = x + 1;

busy = false;

➤ Using x++ would be no better.

5

Locks in Java (1)

➤ Simple shared data structures can be managed using mutual

exclusion locks (‘mutexes’) and the synchronized
keyword to delimit critical regions.

➤ The JVM associates a separate mutex with each object. Each

acts like the ‘busy’ flag on the previous slide except:

· There is no need to spin while waiting for it—the thread is

blocked.

· The race condition between the while loop and

busy=true; is avoided.

➤ The synchronized keyword can be used in two

ways—either applied to a method or applied to a block of

code.

➤ For example, suppose we want to maintain an invariant

between multiple fields:

class BankAccounts {

private int balanceA;

private int balanceB;

synchronized void transferToB(int v) {

balanceA = balanceA - v;

balanceB = balanceB + v;

}

}

6

Locks in Java (2)

➤ When a synchronized method is called, the thread must lock

the mutex associated with the object.

➤ If the lock is already held by another thread then the called

thread is blocked until the lock becomes available.

➤ Locks therefore operate on a per-object basis—that is, only

one synchronized method can be called on a particular object

at any time.

· ...and similarly, it is OK for multiple threads to be calling

the same method, so long as they do so on different

objects.

➤ Locks are re-entrant, meaning that the thread may call one

synchronized method from another.

➤ If a static synchronized method is called then the

thread must acquire a lock associated with the class rather

than with an individual object.

➤ The synchronized modifier cannot be used directly on

classes or on fields.

7

Locks in Java (3)

➤ The second form of the synchronized keyword allows it

to be used within methods, e.g.

void methodA(Object x) {

synchronized (x) {

System.out.println("1");

}

...

synchronized (x) {

System.out.println("2");

}

}

➤ The first synchronized region locks the mutex associated

with the object to which x refers, performs the println
operation, and then releases the lock.

➤ Before entering the second region, the mutex must be

re-acquired.

This kind of usage is good if an intervening operation, not

requiring the mutual exclusion, may take a long time to

execute: other threads may acquire the lock while the

computation proceeds.

8

What about exceptions and errors?

➤ What if an exception is thrown inside a synchronized
region or a synchronized method?

➤ If the exception is not caught inside the region/method, then

the flow of execution leaves the synchronized region.

➤ The JVM will release the mutex automatically before

executing the catch block.

· This helps prevent deadlock caused by accidentally not

releasing a mutex.

· But sometimes we need to exercise a little caution...

void screwItUp(Bank college) {

try {

synchronized (college) {

college.credit(fees);

}

} catch (OutOfMoneyException oome) {

System.out.println("Credit to "+

college+" failed!");

// oops... that access on ’college’

// wasn’t thread-safe!

}

}

9

Compound data structures (1)

➤ How can we use locks on a data structure built from multiple

objects, e.g. a hashtable?

➤ One “big lock” associated with the hashtable object itself:

Hash

Advantages

➤ Easy to implement

➤ “Obviously correct”

➤ Good performance under light load: only one lock to

acquire/release per operation.

Disadvantage

➤ Poor performance in most other cases—only one operation

can proceed at a time.

10

Compound data structures (2)

➤ Separate “small locks”, e.g. associated with each bucket of

the hashtable:

Hash

Advantage

➤ Operations using different buckets can proceed concurrently.

Disadvantage

➤ Harder to implement—consider resizing the hashtable...

In general designing an effective fine-grained locking scheme

is hard:

➤ A poor scheme may leave the program spending its time

juggling locks rather than doing useful work.

➤ Having many locks does not automatically imply better

concurrency.

➤ Deadlock problems...

11

Exercises

1. Describe how the mutual-exclusion locks provided by the

synchronized keyword can be used to control access to

shared data structures.

2. Describe what a race condition is, with the aid of example

code.

“A Java class is safe for use by multiple threads if all of its

methods are synchronized.”

To what extent do you agree with this statement?

3. Suppose that, instead of using mutual exclusion locks, a

programmer attempts to support critical regions by

manipulating the running thread’s scheduling priority in a

class extending java.lang.Thread:

void enterCriticalRegion() {

oldPriority = getPriority();

setPriority(Thread.MAX_PRIORITY);

}

void exitCriticalRegion() {

setPriority(oldPriority);

}

What assumptions are needed to guarantee this works? Does

your JVM guarantee them?

12

Deadlock

Previous lecture

➤ Safety and liveness requirements

➤ Mutual exclusion locks

Overview of this lecture

➤ Deadlock

➤ Automatic detection

➤ Avoidance

1

Deadlock (1)

Suppose that a and b refer to two different shared objects,

Thread P Thread Q

synchronized (a) synchronized (b)
synchronized

(b)
synchronized

(a)
{ {
... ...

} }
➤ If P locks both a and b then it can complete its operation

and release both locks, thereby allowing Q to acquire them.

➤ Similarly, Q might acquire both locks, then release them and

thus allow P to continue.

➤ But, if P locks a and Q locks b then neither thread can

continue: they are each deadlocked waiting for the resources

that the other has.

2

Deadlock (2)

Whether this deadlock actually occurs depends on the

dynamic behaviour of the applications. We can show this

graphically in terms of the threads’ progress:

lock(a) unlock(a)unlock(b)lock(b)

Progress of P

lock(b)

unlock(b)

lock(a)

unlock(a)

of Q
Progress (1)

(2)

(3)

➤ In the horizontal area one thread is blocked by the other

waiting to lock a. In the vertical area it is lock b.

➤ Paths (1) and (2) show how these threads may be scheduled

without reaching deadlock.

➤ Deadlock is inevitable on path (3) (but hasn’t yet occurred in

the position indicated).

3

Requirements for deadlock

If all of the following conditions are true then deadlock exists:

1. A resource request can be refused—e.g. a thread cannot

acquire a mutual-exclusion lock because it is already held by

another thread.

2. Resources are held while waiting—e.g. while a thread blocks

waiting for a lock it does not have to release any others that

it holds.

3. No preemption of resources is permitted—e.g. once a thread

acquires a lock then it is up to that thread to choose when to

release it, it cannot be taken away from the thread.

4. Circular wait—a cycle of threads exists such that each holds

a lock requested by the next process in the cycle, and that

request has been refused.

In the case of mutual exclusion locks in Java, 1–3 are always

true (they are static properties of the language), and so the

existence of a circular wait leads to deadlock.

4

Object allocation graphs

An object allocation graph shows the various tasks in a

system and the resources that they have acquired and are

requesting. We will use a simplified form in which resources

are considered to be individual objects.

a is held by thread P and P is requesting object b:

a P b

a is held by P, b is held by Q:

a P

bQ

Should r2 be allocated to S or T?

S

Tr1 r2

5

Deadlock detection (1)

Deadlock can be detected by looking for cycles in object

allocation graphs (as in the second example on the previous

slide).

Let A be the object allocation matrix, with one thread per

row and one column per object. Aij indicates whether thread

i holds a lock on object j.

Let R be the object request matrix. Rij indicates whether

thread i is waiting to lock object j.

We proceed by marking rows of A indicating threads that are

not part of a deadlocked set. Initially no rows are marked. A

working vector W indicates which objects are available.

1. Select an unmarked row i such that Ri ≤ W—i.e. a thread

whose requests can be met. Terminate if no such row exists.

2. Set W = W + Ai, mark row i, and repeat.

This identifies when deadlock has occurred—we might be

interested in other properties such as whether deadlock is:

➤ inevitable (must happen in all possible execution paths); or

➤ possible (might happen in some paths).

6

Deadlock detection (2)

A =

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

R =

0 1 0 0 1

0 0 1 0 1

0 0 0 0 1

1 0 0 0 1

1. W = (0, 0, 0, 1, 1)

2. Thread 3’s requests can be met ⇒ it is not deadlocked so can

continue and might release object 1.

3. W = (1, 0, 0, 1, 1)

4. Thread 4’s requests can now be met ⇒ it is not deadlocked.

5. W = (1, 0, 0, 1, 1)

➤ Nothing more can be done: threads 1 and 2 are deadlocked.

7

Deadlock avoidance (1)

A conservative approach:

➤ Require that each process identifies the maximum set of

resources that it might ever lock, Cij.

➤ When a thread i requests a resource then construct a

hypothetical allocation matrix A′ in which it has been made

and a hypothetical request matrix B′ in which every other

process makes its maximum request.

➤ If A′ and B′ do not indicate deadlock then the allocation is

safe.

Advantage

➤ This does avoid deadlock—might be preferable to deadlock

recovery.

Disadvantages

➤ Need to know maximum requests.

➤ Run-time overhead.

➤ What if there are no safe states?

➤ Objects are usually instantiated dynamically...

8

Deadlock avoidance (2)

It is often more practical to prevent deadlock by careful

design. How else can we tackle the four requirements for

deadlock?

➤ Use locking schemes that allow greater concurrency—e.g.

multiple-readers, single-writer in preference to mutual

exclusion.

➤ Do not hold resources while waiting—e.g. acquire all

necessary locks at the same time.

➤ Allow preemption of locks and roll-back (not a primitive in

Java if using built-in locks).

· Hardware/software transactional memories...

Two practical schemes that are widely applicable:

➤ Coalesce locks so that only one ever needs to be held—e.g.

have one lock protecting all bank accounts.

➤ Enforce a lock acquisition order, making it impossible for

circular waits to arise, e.g. lock two ‘bank account’ objects in

order of increasing account number.

...trade-off between simplicity of implementation and possible

concurrency.

9

Priority inversion (1)

Another liveness problem in priority-based systems:

➤ Consider low, medium, and high priority threads called Plow,

Pmed, and Phigh respectively.

1. First Plow starts, and acquires a lock on object a.

2. Then the other two processes start.

3. Phigh runs since it has the highest scheduling priority,

tries to lock a, and blocks.

4. Then Pmed gets to run, thus preventing Plow from

releasing a, and hence Phigh from running.

➤ Usual solution is priority inheritance:

· associate with every lock the priority p of the highest

priority process waiting for it; then

· temporarily boost the priority of the holder of the lock up

to p.

· We can use handoff scheduling to implement this.

➤ Windows 2000 “solution”: priority boosts

· checks if ∃ a thread in the ready-to-run state but not run

for ≥ 300 ticks.

· if so, double the on-CPU time quantum and boost priority

to 15.

➤ What happens in Java?

10

Priority inversion (2)

➤ With basic priority inheritance we can distinguish (assuming

a uni-processor with strict-priority scheduling)

· direct blocking of a thread waiting for a lock; and

· push-through blocking of a thread at one priority by an

originally-lower-priority thread that has inherited a higher

priority.

➤ A thread Phigh can be blocked by each lower priority thread

Plow for at most one of Plow’s critical sections.

➤ A thread Phigh can experience push-through blocking for any

lock accessed by a lower-priority thread and by a job which

has (or can inherit) a priority ≥ Phigh.

This can give an upper bound on the total blocking delay

that a thread encounters, but

➤ chains of blocking may limit the bounded and practical

performance: the former is a particular problem for real-time

systems; and

➤ remember: does not prevent deadlock.

11

Exercises (1)

1. In the dining philosophers problem, five philosophers spend

their time alternately thinking and eating. They each have a

chair around a common, circular table. In the centre of the

table is a bowl of spaghetti and the table is set with five

forks, one between each pair of adjacent chairs. From time to

time philosophers might get hungry and try to pick up the

two closest forks. A philosopher may only pick up one fork at

a time. It is a common axiom of philosophic thought that one

is only allowed to eat with the aid of two forks and that, of

course, both forks are put down while thinking.

Model this problem in Java using a separate thread for each

philosopher.

Does your simulation illustrate either deadlock or livelock? If

so, then what changes could you make to avoid it?

2. Write a Java class that attempts to cause priority inversion

with a medium-priority thread preventing a high-priority

thread from making progress. Do you observe priority

inversion in practise?

12

Exercises (2)

3. Show how the deadlock detection algorithm can be extended

to manage locks that support a separate write mode (in which

it can be held by at most one thread at a time) and a read

mode (in which it can be held by multiple threads at once).

The lock cannot be held in both modes at the same time.

4. One way to avoid deadlock is for a thread to simultaneously

acquire all of the locks that it needs for an operation.

However, Java’s synchronized keyword can only acquire

or release a single lock at a time.

Sketch the design of a class LockManager that implements

the LockManagerIfc interface (below) so that the

doWithLocks operation:

1. appears to atomically acquire locks on all of the objects in

the array o;

2. invokes op.doOp(arg) keeping the result of that

method as the eventual result of doWithLocks(); and

3. releases all of the locks initially acquired.

13

Exercises (3)

interface Operation {

Object doOp(Object arg);

}

interface LockManagerIfc {

Object doWithLocks(Object o[],

Operation op,

Object arg);

}

Hint: one approach is to assume initially some mechanism for

mapping each object to a unique integer value and later to

examine how to provide that mechanism.

14

Condition synchronization

Previous lecture

➤ Deadlock

➤ Ordered acquisition

➤ Priority inversion and inheritance

Overview of this lecture

➤ Condition synchronization

➤ wait, notify, notifyAll

1

Limitations of mutexes (1)

➤ Suppose we want a one-cell buffer with a putValue
operation (store something if the cell is empty) and a

removeValue operation (read something if there is

anything in the cell).

class Cell {

private int value;

private boolean full;

public synchronized int removeValue() {

if (full) {

full = false;

return value;

} else {

/* ??? */

}

}

...

}

➤ What can we write in place of “/* ??? */” to finish the

code?

2

Limitations of mutexes (2)

➤ We could keep testing full—i.e. implement a ‘spin lock’...

1 class Cell { /* Incorrect */

2 private int value;

3 private boolean full;

4

5 public int removeValue() {

6 while (!full) {/* nothing */}

7 synchronized (this) {

8 full = false;

9 return value;

10 }

11 }

12 }

But this is...

1. incorrect: if multiple threads try to remove values then they

might each see full false at Line 6 and independently

execute 7–10;

2. inefficient: threads consume CPU time while waiting → this

might impede a thread about to put a value into the cell; and

3. incorrect: full needs to be volatile anyway!

3

Limitations of mutexes (3)

➤ Another problem: what if we want to enforce some other kind

of concurrency control?

➤ e.g. if we identify read-only operations which can be executed

safely by multiple threads at once.

➤ e.g. if we want to control which thread gets next access to the

shared data structure.

· perhaps to give preference to threads performing update

operations,

· or to enforce a first-come first-served regime,

· or to choose on the basis of the threads’ scheduling

priorities?

➤ All that mutexes are able to do is to prevent more than one

thread from running the code on a particular object at the

same time.

4

Condition synchronization

➤ What we might like to write:

1 class Cell { /* Not valid Java */

2 private int value;

3 private boolean full;

4

5 public synchronized int removeValue() {

6 wait_until (full);

7 full = false;

8 return value;

9 }

10 }

➤ Line 6 would have the effect of

· if full is false, blocking the caller atomically with doing

the test and releasing the lock on the cell—the method is

synchronized—to allow another thread to put items

into it; and

· unblocking the thread when full becomes true and the

lock can be re-acquired (so the lock prevents multiple

‘removes’ of the same value).

➤ We can’t directly implement wait until in Java...

· call-by-value semantics mean that full would be

evaluated only once!

· we would need some way of releasing the lock on the

Cell.

5

Condition variables

➤ Condition variables provide one solution.

➤ In general, condition variables support two kinds of operation:

· a cv.CVWait(m) operation causing the current thread to

atomically release a lock on mutex m and to block itself on

condition variable cv, re-acquiring the lock on m before it

completes; and

· a cv.CVNotify(m) operation that wakes up (one? all?)

threads blocked on cv.

➤ Such operations would be more cumbersome in this simple

example than a general wait until primitive:

1 class Cell { /* Not valid Java */

2 private int value;

3 private boolean full;

4 private ConditionVariable cv =

5 new ConditionVariable();

6

7 public synchronized int removeValue() {

8 while (!full) cv.CVWait(this);

9 full = false;

10 cv.CVNotify();

11 return value;

12 }

13 }

6

Condition variables in Java (1)

➤ Java doesn’t (currently) provide individual condition

variables in this way.

➤ Instead, each object o has an associated condition variable

which is accessed by:

· o.wait()
· o.notify()
· o.notifyAll()

➤ Calling o.wait() acts as the equivalent of

cv.CVWait(o) on the condition variable associated with

o.

➤ This means that o.wait() always releases the mutual

exclusion lock held on o...

➤ ...and therefore the caller may only use o.wait() when

holding that lock (otherwise an

IllegalMonitorStateException is thrown).

➤ o.notify() unblocks exactly one thread (if any are

waiting), otherwise it does nothing—no wake-up waiting is

left.

➤ o.notifyAll() unblocks all waiting threads.

7

Condition variables in Java (2)

1 class Cell {

2 private int value;

3 private boolean full = false;

4

5 public synchronized int removeValue()

6 throws InterruptedException

7 {

8 while (!full) wait();

9

10 full = false;

11 notifyAll();

12 return value;

13 }

14

15 public synchronized void putValue(int v)

16 throws InterruptedException

17 {

18 while (full) wait();

19

20 full = true;

21 value = v;

22 notifyAll();

23 }

24 }

8

Condition variables in Java (3)

➤ Line 8 causes a thread executing removeValue() to block

on the condition variable until the cell is full.

· Think about whether I really need the while loop

around wait() (answer in 4 slides’ time...).

➤ Line 10 updates the object to mark it empty.

➤ Line 11 notifies all threads currently blocked on the condition

variable.

➤ Similarly, Line 18 causes a thread executing putValue()
to block on the condition variable until the cell is empty.

➤ Lines 20–21 update the fields to mark the cell full and store

the value in it, Line 22 notifies waiting threads.

An InterruptedException will be thrown if the

thread is interrupted while waiting. In general it should be

propagated until it can be handled. Be wary of writing:

try {

while (full) wait();

} catch (InterruptedException ie) {

/* nothing */

}

/* did we get here because wait() succeeded

or were we interrupted? */

9

Condition variables in Java (4.1)

Is this code cunning or broken?

class Cell {
private int value;
private boolean full = false;

public synchronized int removeValue()
throws InterruptedException

{
while (!full) {

wait();
/* Should a put’er or a remove’er have

been woken up? */
if (!full) {
// pass on the nofitication,
// hopefully to a put’er.
notify();

}
}

full = false;
notify(); // surely waking one thread

// is better than waking all?
return value;

}

10

Condition variables in Java (4.2)

Is this code cunning or broken (continued)?

public synchronized void putValue(int v)
throws InterruptedException

{
while (full) {

wait();
/* Should a put’er or a remove’er have

been woken up? */
if (full) {
// pass on the nofitication,
// hopefully to a remove’er.
notify();

}
}

full = true;
value = v;
notify(); // surely waking one thread

// is better than waking all?
}

}

11

Condition variables in Java (5)

➤ Note how there are now two different ways that a thread may

be blocked:

lock

unlock
wait

notify
Waiting for

the lock

the lock
Holding

Waiting to
be notified

➤ It might have entered a synchronized region for an

object and found that the associated mutual exclusion lock is

already held.

➤ It might have called wait() on an object and blocked until

the associated condition variable is notified.

➤ When notified, the thread must compete for the lock once

more.

12

Condition variables in Java (5)

➤ When should notify() be used and when should

notifyAll() be used?

➤ With notifyAll() the programmer must ensure that

every thread blocked on the condition variable can continue

safely:

· e.g. Line 8 in the example surrounds the invocation of

wait() with a while loop;

· if a ‘removing’ thread is notified when there is no work for

it, it just waits again.

➤ notify() selects arbitrarily between the waiting threads:

the programmer must therefore be sure that the exact choice

does not matter.

➤ In the Cell example, we can’t use notify() because

although only one thread is to be woken a successful

removeValue() must allow a call blocked in

putValue() to proceed rather than another thread that is

blocked in removeValue—we cannot control which thread

will be notified by the notify() call.

notify() does not guarantee to wake the longest waiting

thread.

13

Suspending threads

➤ The suspend() and resume() methods defined on

java.lang.Thread allow one thread to temporarily stop

and start the execution of another (or to suspend itself).

Thread t = new MyThread();

t.suspend();

t.resume();

➤ As with stop(), the suspend() and resume()
methods are deprecated.

➤ This is because the use of suspend() can lead to deadlocks

if the target thread is holding locks. It also risks missed

wake-up problems:

1 public int removeValue() {

2 if (!full) {

3 Thread.suspend(Thread.currentThread());

4 }

The status might change between executing Lines 2 and 3 →
a lost wake-up problem!

suspend() should never be used: even if the program does

not explicitly take out locks the JVM might use locks in its

implementation.

14

Exercises

1. Describe the facilities in Java for restricting concurrent access

to critical regions. Explain how shared data can be protected

through the use of shared objects.

2. Consider the following class definition:

class Example implements Runnable {
public static Object o = new Object();
int count = 0;
public void run() {
while (true) {synchronized(o) {++count;}}

}
}

(i) Show how to start two threads, each executing this run()
method on separate instances of Example.

(ii) When this program runs, only one of the count fields is

found to increment even though threads are scheduled

preemptively. Why might this be?

(iii) If two threads are run on the same instance of class

Example, would you expect the value of count to increase

more rapidly or less rapidly than a single thread running

while (true) ++count;? Why? Does it make any

difference if the machine being used has several processors

instead of just one?

(iv) Compared to a uni-processor, approximately how rapidly

would you expect count to increase on a dual-processor

machine running the code if the synchronization on o was

removed from the while loop entirely?

15

Worked examples

Previous lecture

➤ Condition synchronization

➤ wait, notify, notifyAll in Java

Overview of this lecture

➤ Further examples of how to use these facilities

➤ Common design features

1

Design (1)

Suppose that we wish to have a shared data structure on

which multiple threads may make read-only access, or a

single thread may make updates ⇒ the multiple-reader,

single-writer problem.

➤ How can this be implemented using the facilities of Java:

· In terms of a well-designed OO structure?

· In terms of the concurrency-control features?

One option is based on delegation and the Adapter pattern:

operation() operation()

operation()

MTImpl BasicImpl

Client Interface

➤ BasicImpl provides the actual data structure

implementation, conforming to Interface. The class

MTImpl wraps each operation with appropriate code for its

use in a multi-threaded application, delegating calls to an

instance of BasicImpl.

2

Design (2)

➤ How does that compare with:

operation()

operation()

operation()

Client Interface

BasicImpl

MTImpl

Advantages

➤ Sub-classes enforce encapsulation and mean that only one

instance is needed.

➤ Delegation may be easier; just use super.operation().

Disadvantages

➤ Separate sub-classes are needed for each implementation of

Interface.

➤ Composition of wrappers is fixed at compile time.

3

Design (3)

In each of these cases the class MTImpl will define methods

that can be split into three sections.

1. An entry protocol responsible for concurrency

control—usually waiting until it is safe for the operation

to continue.

2. Delegation to the underlying data structure

implementation (either by an ordinay method invocation

on an instance of BasicImpl or a call using the super
keyword).

3. An exit protocol—generally selecting the next thread(s) to

perform operations on the structure.

This common structure often motivates further separation of

concurrency control protocols from the data structure.

4

Design (4)

operation() operation()

operation()

enter()
exit()

MTImpl BasicImpl

Client Interface

CCInterface

CCImpl

MTImpl now just deals with delegation, wrapping each

invocation on Interface with appropriate calls to

enter() and exit() on a general concurrency-control

interface (CCInterface).

Sub-classes, e.g. CCImpl, provide specific entry/exit

protocols. A factory class might be used to instantiate and

assemble these objects.

Advantages

➤ Concurrency-control protocols can be shared.

➤ Only a single MTImpl class is needed per data structure

interface.

5

Multiple readers, single writer (1)

➤ As a more concrete example:

interface MRSW {

public void enterReader()

throws InterruptedException;

public void enterWriter()

throws InterruptedException;

public void exitReader();

public void exitWriter();

}

➤ This could be used as:

class MTHashtable implements Dictionary {

...

Object get(Object key) {

Object result;

cc.enterReader();

try {

result = ht.get(key);

} finally {

cc.exitReader();

}

}

}

➤ Why is try...finally used like this? How should

InterruptedException be managed?

6

Multiple readers, single writer (2)

➤ We’ll now look at implementing an example protocol, MRSW.

class MRSWImpl1 implements MRSW {

private int numReaders = 0;

private int numWriters = 0;

...

➤ A reader must wait until numWriters is zero. A writer

must wait until both fields are zero.

synchronized void enterReader()

throws InterruptedException

{

while (numWriters > 0) wait();

numReaders++;

}

synchronized void enterWriter()

throws InterruptedException

{

while ((numWriters > 0) ||

(numReaders > 0)) wait();

numWriters++;

}

7

Multiple readers, single writer (3)

The exit protocols are more straightforward:

synchronized void exitReader() {

numReaders--;

notifyAll();

}

synchronized void exitWriter() {

numWriters--;

notifyAll();

}

}

Advantage

➤ Simple design: (1) create a class containing the necessary

fields; (2) write entry protocols that keep checking these fields

and waiting; (3) write exit protocols that cause any waiting

threads to assess whether they can continue.

Disadvantage

➤ notifyAll() may cause too many threads to be

woken—the code is safe but might be inefficient.

Is that inefficiency likely to be a problem?

Could notify() be used instead?

8

Giving writers priority

➤ ...how else could MRSW be implemented?

1 class PrioritizedWriters implements MRSW {

2 private int numReaders = 0;

3 private int numWriters = 0;

4 private int waitingWriters = 0;

5

6 synchronized void enterReader()

7 throws InterruptedException {

8 while ((numWriters>0)||(waitingWriters>0))

9 wait();

10 numReaders++;

11 }

12

13 synchronized void enterWriter()

14 throws InterruptedException {

15 waitingWriters++;

16 while ((numWriters>0)||(numReaders>0))

17 wait();

18 waitingWriters--;

19 numWriters++;

20 }

21 ...

22 }

➤ What happens to instances of PrioritizedWriter if the

code is interrupted at line 17?

9

First-come first-served ordering (1)

➤ Suppose now we want an ordinary lock that provides FCFS

semantics—the longest waiting thread is given access next.

class FCFSImpl implements CCInterface {

private int currentTurn = 0;

private int nextTicket = 0;

➤ Threads take a ticket and wait until it becomes their turn:

synchronized void enter()

throws InterruptedException

{

int myTicket = nextTicket++;

while (currentTurn < myTicket)

wait();

}

synchronized void exit() {

currentTurn++;

notifyAll();

}

}

10

First-come first-served ordering (2)

Advantages

➤ The implementation is simple!

Disadvantages

➤ If a thread is interrupted during wait() then its ticket is

lost.

➤ notifyAll() will wake all threads waiting in enter()
on this object—in this case we know that only one can

continue.

➤ What happens if the program runs for a long time and

nextTicket overflows?

Resolving these issues in an effective way depends on the

context in which the class is being used, e.g.

➤ lots of waiting threads and frequent contention: have an

explicit queue of per-thread objects and use notify() on

the object at the head of the queue;

➤ safe with arbitrary interruption: allow the enter() method

to manage aborted waiters, e.g. using a queue as above with

an abandoned field in each entry;

➤ no undetected failures: would longs ever overflow here?

11

Splitting locks (1)

Our last example shows how instances of

java.lang.Object can be used to create separate locks

to protect different parts of a data structure.

➤ This technique is generally useful to obtain more concurrency:

· e.g. different locks to protect different operations that are

safe concurrently,

· e.g. in a list, ‘push on tail’ is usually safe to run in parallel

with ‘pop from head’.

Last itemFirst item

last
head

LinkedQueue

Header node

We will use one lock to protect the head field, one for the

last field, and then separate locks for each entry in the list

protecting its next field.

➤ Do this after seeing that a lack of concurrency is a problem;

the code is rarely as clear and often is wrong :-)

➤ More of this in the Part II course “Advanced Systems Topics”

12

Splitting locks (2)

// Based on 2.4.2.4 in Doug Lea’s book
class LinkedQueue {
Node headNode = new Node(null);
Node lastNode = headNode;
Object headField = new Object();
Object lastField = new Object();

public void pushTail(Object x) {
Node n = new Node(x);
synchronized (lastField) {

synchronized (lastNode) {
// insert after last
// and update last

}
}

}

public Object popHead() {
synchronized (headField) {

synchronized (headNode) {
// read value from the
// node after head and
// make that node the
// new head

}
}

}
}

13

Exercises

1. In the PrioritizedWriters example the

waitingWriters field is supposed to be a count of the

number of threads executing in the body of the

enterWriter method. How can this invariant be broken?

Correct the code.

2. Update the FCFSImpl class so that it

· (i) allows threads to safely be interrupted during wait();

· (ii) uses notify() instead of notifyAll();

· (iii) will not suffer from the ticket counter overflowing;

How does the performance of your new implementation

compare with that of the basic version?

3. Update the FCFSImpl class so that the lock is re-entrant—a

thread already holding the lock can make subsequent calls to

enter() without blocking. The lock is released only when a

matched number of (properly-nested) calls to exit() have

been made.

4. Complete the implementation of the LinkedQueue class by

giving a suitable definition for Node and filling in the missing

code in pushTail and popHead. Can you write

pushHead? What about popTail?

14

Low-level synchronization

Previous lecture

➤ Integrating concurrency control

➤ Several examples: MRSW, FCFS.

➤ General design methods for other cases

Overview of this lecture

➤ Implementing mutexes and condition variables

➤ Direct scheduler support

➤ Semaphores

➤ Event counts / sequencers

➤ Alternative language features

1

Implementing mutexes and condvars

➤ Nowadays mutexes and condvars are usually implemented

using a combination of:

· operations provided by the scheduler to suspend and

resume threads;

· atomic assembly language instructions, e.g.

compare-and-swap

seen=CAS(addr,old,new)

Read from address addr, if it matches old then store new at

that address. Return the value seen.

➤ Care is needed to avoid the problems seen with Java’s

Thread.suspend() and Thread.resume() methods.

➤ Some implementations provide “lower-level” primitives and

build mutexes and condvars over these:

· semaphores

· event counts and sequencers

This layering is no longer typical, although we will still briefly

look at these other primitives.

2

Implementing mutexes (1)

➤ Using CAS we can build a simple spin-lock:

class Mutex {

int lockField = 0;

void lock() {

while (CAS(&lockfield,0,1) != 0) {

/* someone else has the lock */

}

}

void unlock() {

lockField = 0;

}

}

➤ Many performance problems: most importantly the lock
operation consumes CPU time while waiting.

➤ Also, if multiple threads are waiting, then the data-cache line

holding lockField will bounce between different CPUs on

a multi-processor machine.

· More about cache implications in the Part II course

“Advanced Systems Topics”.

3

Implementing mutexes (2)

➤ To avoid spinning, each mutex usually has a queue of blocked

threads associated with it.

➤ A thread attempts to acquire the lock directly (e.g. using

CAS), if it succeeds then it is done.

➤ If it doesn’t succeed then it adds itself to the queue and

invokes a suspend operation on the scheduler.

➤ After releasing the lock, a thread checks whether the queue is

empty.

➤ If the queue is non-empty the thread selects an entry and

resumes it. To avoid lost wake-up problems, either

outstanding resume operations must be remembered:

1 Thread A, LOCK(): Thread B, UNLOCK():

2 see that lock is held

3 add A to queue

4 release lock

5 take A from queue

6 resume A

7 suspend A

...or the scheduler should support a “disable thread switches”

operation.

4

Implementing condvars (1)

➤ Condition variables are more intricate but can build on very

similar techniques.

➤ Recall that a condition variable in general supports two

operations:

· a cv.CVWait(m) operation causes the current thread to

atomically release a lock on mutex m and to block itself on

condition variable cv, re-acquiring the lock on m when it

is woken; and

· a cv.CVNotify() operation that causes threads blocked on

cv to continue.

➤ Internally, in a typical implementation, each condvar has

private fields that hold:

· a queue of threads that are waiting on the condition

variable; and

· an additional mutex cvLock that is used to give the

atomicity required by CVWait().

5

Implementing condvars (2)

➤ cv.CVWait(m) proceeds by:

1 Acquire mutex cv.cvLock

2 Add the current thread to cv.queue

3 Release mutex m

4 Release mutex cv.cvLock

5 Suspend current thread

6 Re-acquire mutex m

➤ cv.CVNotify() proceeds by:

1 Acquire mutex cv.cvLock

2 Remove one thread from cv.queue

3 Resume that thread

4 Release mutex cv.cvLock

➤ Again, it is important to avoid lost wake-up

problems—typically by remembering resumptions.

➤ A real implementation is more complex—e.g. in Java it is

necessary to deal with threads being interrupted.

· See linuxthreads/condvar.c for a Linux

implementation.

6

Semaphores

➤ These examples have used the language-level mutexes and

condition variables.

➤ Semaphores provide basic operations on which the

language-level features could be built. In Java-style

pseudo-code:

class CountingSemaphore {

CountingSemaphore (int x) {

...

}

native void P();

native void V();

}

➤ P (sometimes called wait) decrements the value and then

blocks if the result is less than zero.

➤ V (sometimes called signal) increments the value and then, if

the result is zero or less, selects a blocked thread and

unblocks it.

➤ Using semaphores directly is intricate—the programmer must

ensure P() / V() are paired correctly.

7

Programming with semaphores (1)

➤ Typically the integer value of a counting semaphore is used to

represent the number of instances of some resource that are

available, e.g.

class Mutex {

CountingSemaphore sem;

Mutex() {

sem = new CountingSemaphore(1);

}

void acquire() {

sem.P();

}

void release () {

sem.V();

}

}

➤ The mutex is considered unlocked when the value is 1 (it is

initialized unlocked)...

➤ ...and is locked when the value is 0 or less.

➤ How does this mutex differ from a Java-style one?

8

Programming with semaphores (2)

class CondVar {

int numWaiters = 0;

Mutex cv_lock = new Mutex();

CountingSemaphore cv_sleep =

new CountingSemaphore (0);

void CVWait(Mutex m) {

cv_lock.acquire();

numWaiters++;

m.release();

cv_lock.release();

cv_sleep.P();

m.acquire();

}

void CVNotify() {

cv_lock.acquire();

if (numWaiters > 0) {

cv_sleep.V();

numWaiters--;

}

cv_lock.release();

}

}

9

Event counts and sequencers

A further style of concurrency control is presented by event

count and sequencer primitives.

➤ An event count is represented by a positive integer, initialized

to zero, supporting the following atomic operations:

· advance()—increment the value by one, returning the

new value;

· read()—return the current value; and

· await(i)—wait until the value is greater than or equal

to i.

➤ A sequencer is again represented by a positive integer,

initialized to zero, supporting a single atomic operation:

· ticket()—increment the value by one, returning the

old value;

➤ Mutual exclusion is easy: a thread takes a ticket entering a

critical region and invokes await() to receive its turn (c.f.

FCFSImpl).

➤ The values returned by await() can be used directly in

implementing a single-producer single-consumer N-slot buffer:

they give the modulo-N indices to read/write.

10

Mutexes without hardware support

➤ What can we do if there isn’t a CAS or TAS instruction, just

atomic read and write? (e.g. the ARM7 only has a swap
operation)

➤ The ‘Bakery’ algorithm due to Lamport (1974)—this

algorithm is now an example: not for practical use!

for (j=0; j<i; j++) {
 while (taking[j]) { }
 while ((ticket[j] != 0) &&
 (ticket[j] <= ticket[i])) { }
}

exit() ticket[i] = 0;

taking[i] = true;

taking[i] = false;

enter()
ticket[i]=max(ticket[0],..., ticket[n−1])+1

 while (taking[j]) { }
 while ((ticket[j] != 0) &&

}

for (j=i; j<n; j++) {

 (ticket[j] < ticket[i])) { }

2

1

➤ Threads enter the critical region in ticket order, using their

IDs (i) as a tie-break.

11

Recap

Direct scheduler support,
semaphores or event−
counts & sequencers

Primitive atomic
operations

condvars

General−purpose
abstractions, eg mutexes

Application−specific
concurrency control
(eg MRSW)

The details of exactly what is implemented where vary

greatly between systems, e.g.

➤ whether the thread scheduler is implemented in user-space or

in the kernel,

➤ which synchronization primitives can be used between

address spaces.

Similarly, unless the application builds it, FCFS semantics

and fairness are rarely guaranteed.

12

Alternative language features (1)

A monitor is an abstract data type in which mutual exclusion

is enforced between invocations of its operations. Often

depicted graphically showing the internal state and external

interfaces, e.g. in pseudo-code

if busy wait(free);
busy=true;

allocator: monitor

busy: boolean

free: condition variable

busy = false;
notify(free);

When looking at a definition such as this, independent of a

specific programming language, it is important to be clear on

what semantics are required of wait() and notify():

· Does notify wake at most one, exactly one, or more

than one waiting thread?

· Does notify cause the resumed thread to continue

immediately (if so, must the notifier exit the monitor)?

13

Alternative language features (2)

An active object achieves mutual exclusion between

operations by (at least conceptually) having a dedicated

thread that performs them on behalf of external callers, e.g.

loop

SELECT

when count < buffer-size

ACCEPT insert(param) do

[insert item into buffer]

end;

increment count;

[manage ref to next slot for insertion]

or when count > 0

ACCEPT remove(param) do

[remove item from buffer]

end;

decrement count;

[manage ref to next slot for removal]

end SELECT

end LOOP

➤ Guarded ACCEPT statements provide operations and

pre-conditions that must hold for their execution.

➤ Management code occurs outside the ACCEPT statements.

14

Exercises (1)

1. Using the CountingSemaphore class (and not the

synchronized keyword) implement a sequencer. The

sequencer should hold a single positive number, initialized to

zero, and support an atomic operation ticket() which

increments the value by one and returns the old value.

2. Using the example EventCount and Sequencer classes,

implement a single-cell buffer supporting an arbitrary number

of producers and consumers, but holding only a single value

at once.

3. A binary semaphore is a simplified version of the counting

semaphore from the slides. Rather than an integer count

value it has a binary flag. Pb blocks (if necessary) until the

flag is set and then atomically clears it. Vb sets the flag

(atomically unblocking one thread, if any blocked in Pb on

that semaphore).

· (i) In pseudo-code, show how a binary semaphore can be

built using atomic compare-and-swap (CAS) or

test-and-set (TAS) machine instructions.

· (ii) In pseudo-code, show how a counting semaphore can

be built using binary semaphores. Your solution might

need more than one binary semaphore and another field to

hold the count value.

15

Exercises (2)

4. Some data structures can be implemented directly using the

CAS primitive without needing mutual exclusion locks.

Suppose that a Java-like language supports a CAS operation

on fields. Show how a single-ended queue could be defined

(implemented using a singly-linked list) supporting push and

pop operations at the head of the queue.

16

