1. Show that a language L is in co-NP if, and only if, there is a nondeterministic Turing machine M and a polynomial p such that M halts in time $p(n)$ for all inputs of length n, and L is exactly the set of strings x such that all computations of M on input x end in an accepting state.

2. Define a strong nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L, if for every $x \in L$, every computation path of M on x ends in either accept or maybe, with at least one accept and for $x \notin L$, every computation path of M on x ends in reject or maybe, with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial time, then $L \in \text{NP} \cap \text{co-NP}$.

3. Consider the algorithm presented in the lecture which establishes that Reachability is in $\text{SPACE}((\log n)^2)$. What is the time complexity of this algorithm?

Can you generalise the time bound to the entire complexity class? That is, give a class of functions F, such that

$$\text{SPACE}((\log n)^2) \subseteq \bigcup_{f \in F} \text{TIME}(f)$$

4. Show that, for every nondeterministic machine M which uses $O(\log n)$ work space, there is a machine R with three tapes (input, work and output) which works as follows. On input x, R produces on its output tape a description of the configuration graph for M, x, and R uses $O(\log |x|)$ space on its work tape.

Explain why this means that if Reachability is in L, then $L = \text{NL}$.

5. Consider the language L in the alphabet $\{a, b\}$ given by $L = \{a^n b^n \mid n \in \mathbb{N}\}$. $L \not\in \text{SPACE}(c)$ for any constant c. Why?