1. In the lecture, a proof was sketched showing a $\Omega(n \log n)$ lower bound on the complexity of the sorting problem. It was also stated that a similar analysis could be used to establish the same bound for the Travelling Salesman Problem. Give a detailed sketch of such an argument. Can you think of a way to improve the lower bound?

2. Consider the language Unary-Prime in the one letter alphabet $\{a\}$ defined by $\text{Unary-Prime} = \{a^n \mid n \text{ is prime}\}$. Show that this language is in P.

3. We say that a propositional formula ϕ is in 2CNF if it is a conjunction of clauses, each of which contains exactly 2 literals. The point of this problem is to show that the satisfiability problem for formulas in 2CNF can be solved by a polynomial time algorithm.

First note that any clause with 2 literals can be written as an implication in exactly two ways. For instance $(p \lor \neg q)$ is equivalent to $(q \rightarrow p)$ and $(\neg p \rightarrow \neg q)$, and $(p \lor q)$ is equivalent to $(\neg p \rightarrow q)$ and $(\neg q \rightarrow p)$.

For any formula ϕ, define the directed graph G_ϕ to be the graph whose set of vertices is the set of all literals that occur in ϕ, and in which there is an edge from literal x to literal y if, and only if, the implication $(x \rightarrow y)$ is equivalent to one of the clauses in ϕ.

(a) If ϕ has n variables and m clauses, give an upper bound on the number of vertices and edges in G_ϕ.

(b) Show that ϕ is unsatisfiable if, and only if, there is a literal x such that there is a path in G_ϕ from x to $\neg x$ and a path from $\neg x$ to x.

(c) Give an algorithm for verifying that a graph G_ϕ satisfies the property stated in (b) above. What is the complexity of your algorithm?

(d) From (c) deduce that there is a polynomial time algorithm for testing whether or not a 2CNF propositional formula is satisfiable.

(e) Why does this idea not work if we have 3 literals per clause?

4. A clause (i.e. a disjunction of literals) is called a Horn clause, if it contains at most one positive literal. Such a clause can be written as an implication: $(x \lor (\neg y) \lor (\neg w) \lor (\neg z))$ is equivalent to $((y \land w \land z) \rightarrow x))$. HORNSAT is the problem of deciding whether a given Boolean expression that is a conjunction of Horn clauses is satisfiable.
(a) Show that there is a polynomial time algorithm for solving HORNSAT. (Hint: if a variable is the only literal in a clause, it must be set to true; if all the negative variables in a clause have been set to true, then the positive one must also be set to true. Continue this procedure until a contradiction is reached or a satisfying truth assignment is found).

(b) In the proof of the NP-completeness of SAT it was shown how to construct, for every nondeterministic machine M, integer k and string x a Boolean expression ϕ which is satisfiable if, and only if, M accepts x within n^k steps. Show that, if M is deterministic, than ϕ can be chosen to be a conjunction of Horn clauses.

(c) Conclude from (b) that the problem HORNSAT is P-complete under L-reductions.

5. In general k-colourability is the problem of deciding, given a graph $G = (V, E)$, whether there is a colouring $\chi : V \to \{1, \ldots, k\}$ of the vertices such that if $(u, v) \in E$, then $\chi(u) \neq \chi(v)$. That is, adjacent vertices do not have the same colour.

(a) Show that there is a polynomial time algorithm for solving 2-colourability.

(b) Show that, for each k, k-colourability is reducible to $k + 1$-colourability. What can you conclude from this about the complexity of 4-colourability?