The Halting Problem

Definition: A register machine H decides the Halting Problem if, loading R_1 with e and R_2 with $[a_1, \ldots, a_n]$ (and all other registers with 0), the computation of H halts with R_0 containing either 0 or 1; moreover, R_0 contains 1 when H halts if and only if the computation of the register machine program $Prog_e$ started with registers R_1, \ldots, R_n set to a_1, \ldots, a_n (and all other registers set to 0) does halt.

Theorem: No such register machine H can exist.

Proof: Suppose such an H exists and derive a contradiction ...
Let H' be obtained from H by replacing

\[\text{START} \rightarrow \text{START} \rightarrow \quad \text{copy R1 to Z} \quad \text{push Z to R2} \rightarrow \]

(where Z is a register not mentioned in H's program)

Let C be obtained from H' by replacing each HALT (\& each jump to a label with no instruction)

\[\quad \text{RO}^{-} \rightarrow \text{RO}^{+} \]

\[\downarrow \]

\[\text{HALT} \]

Let $c \in \mathbb{N}$ be the index of C's program.

C started with $R1 = c$ eventually halts

iff

H' started with $R1 = c$ halts with $RO = 0$

iff

H started with $R1 = c$ \& $R2 = [C]$ halts with $RO = 0$

iff

Prog_c started with $R1 = c$ does not halt

iff

C started with $R1 = c$ does not halt

CONTRADICTION!

(to the assumption that such an H exists)
Recall:

Definition:

A function \(f \in \text{Pfn}(\mathbb{N}^n, \mathbb{N}) \) is *(register machine) computable* if and only if there is a register machine \(M \) with at least \(n+1 \) registers, \(R_0, R_1, R_2, \ldots, R_n \) say, (and maybe some other registers as well) with the property that for all \((x_1, \ldots, x_n) \in \mathbb{N}^n \) and all \(y \in \mathbb{N} \)

\[f(x_1, \ldots, x_n) = y \] if and only if the computation of \(M \) starting with \(R_1 = x_1, \ldots, R_n = x_n \), and all other registers \(= 0 \), halts with \(R_0 = y \).

Enumerating computable functions

For each \(e \in \mathbb{N} \) let \(\varphi_e \in \text{Pfn}(\mathbb{N}, \mathbb{N}) \) be the partial function computed by \(\text{Pro} \varphi_e \), i.e.

\[\varphi_e(x) = y \leftrightarrow \text{the computation of } \text{Pro} \varphi_e \text{ started with } R_1 = x \text{ (and all other registers zeroed) halts with } R_0 = y \]

Thus:

The function \(e \mapsto \varphi_e \) maps \(\mathbb{N} \) onto the collection of all computable partial functions from \(\mathbb{N} \) to \(\mathbb{N} \).
Not all partial functions are computable.

Define \(f \in \text{Pfn}(\mathbb{N}, \mathbb{N}) \) by:

\[
f(e) = \begin{cases}
0 & \text{if } \varphi_e(e) \uparrow \\
\text{undefined} & \text{if } \varphi_e(e) \downarrow
\end{cases}
\]

CLAIM: \(f \) is not computable.

PROOF: If \(f \) computable, then \(f = \varphi_e \) for some \(e \).

Then

- \(\varphi_e(e) \uparrow \iff f(e) = 0 \iff \varphi_e(e) = 0 \Rightarrow \varphi_e(e) \downarrow \)
- \(\varphi_e(e) \downarrow \Rightarrow f(e) \uparrow \Rightarrow \varphi_e(e) \uparrow \) \(\text{contradiction!} \)

(\text{Un}) decidable sets of numbers

A subset \(S \subseteq \mathbb{N} \) is \textbf{(register machine) decidable} if and only if there is a register machine \(M \) with the property: for all \(x \in \mathbb{N} \), \(M \) started with \(R1 = x \) (and other registers zeroed) always halts with \(RO \) containing either 0 or 1; moreover \(RO = 1 \) when \(M \) halts if and only if \(x \in S \).

Equivalently: \(S \) is decidable if and only if there is some \(e \) such that for all \(x \in \mathbb{N} \)

either \((\varphi_e(x) = 0 \land x \notin S) \) or \((\varphi_e(x) = 1 \land x \in S) \)

\(S \) is called \textbf{undecidable} if no such \(M \) (or \(e \)) exists.
Some examples of undecidable sets of numbers

\[S_1 \triangleq \{ (e, a) \mid \varphi_e(a) \downarrow \} \]
i.e. one-argument version of Halting Problem

\[S_2 \triangleq \{ e \mid \varphi_e(0) \downarrow \} \]
i.e. \# register machine to decide whether any program halts when supplied with input 0

\[S_3 \triangleq \{ e \mid \varphi_e \text{ is a total function} \} \]
i.e. \# register machine to decide whether any program halts for all input data

Ex. 1. The proof that \(S_1 \) is undecidable is like the proof of the undecidability of the \(n \)-argument Halting Problem given above, except that now the modification of \(H \) to \(H' \) is:

replace \(\text{START} \rightarrow \text{copy R1 to Z} \rightarrow \text{push Z to R1} \rightarrow \text{R1} \rightarrow \) by

\[\{ \text{R1} = e, \text{Z} = 0 \} \rightarrow \{ \text{R1} = e, \text{Z} = e \} \rightarrow \{ \text{R1} = \langle e, e \rangle, \text{Z} = 0 \} \rightarrow \{ \text{R1} = \langle e, e \rangle, \text{Z} = 0 \} \]

(the rest of the argument is the same).
Ex. 2. Undecidability of S_2 can be reduced to the undecidability of S_1:

If M were a register machine for deciding membership of S_2, then the register machine specified by

- **START**
 - decode R_1 as a pair $<e, a>$
 - and put e in R_1 and a in R_2

would decide membership of S_1. So no such M exists.

Remark. We can restate the proof of Ex. 2 in terms of functions: it suffices to show that there is a function $f \in \text{Fun}(\mathbb{N}, \mathbb{N})$ satisfying

- f is computable
- for all $e, a \in \mathbb{N}$ $\varphi_f(<e, a>) (0) \equiv \varphi_e (a)$

and hence $<e, a> \in S_1 \iff f(<e, a>) \in S_2$.

For in general we have for subsets $S_1, S_2 \subseteq \mathbb{N}$

S_2 decidable, f computable $\Rightarrow \forall x \in \mathbb{N}. x \in S_1 \iff f(x) \in S_2$

$\Rightarrow S_1$ decidable

(Why?)
Ex.3. Undecidability of S_3 can be reduced to that of S_2:

If M were a register machine for deciding membership of S_3, then the register machine specified by

\[
\text{START} \xrightarrow{\text{decode } R_1 \text{ as a program } \text{START} \rightarrow \text{Prog}.} \]

and put in R_1 a code for the program

\[
\text{START} \rightarrow R_1 \rightarrow \text{Prog.}
\]

would decide membership of S_2. So no such M exists.