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Learning Guide
These notes are designed to accompany 12 lectures on computation theory for Parts IB and
II(G) of the Computer Science Tripos and the Diploma in Computer Science. The aim of
this course is to introduce several apparently different formalisations of the informal notion
of algorithm; to show that they are equivalent; and to use them to demonstrate that there are
uncomputable functions and algorithmically undecidable problems. At the end of the course
you should:

• be familiar with the register machine and Turing machine models of computability

• understand the notion of coding programs as data, and of a universal machine

• be able to use diagonalisation to prove the undecidability of the Halting Problem

• understand the mathematical notion of partial recursive function and its relationship
to computability

• be able to develop simple mathematical arguments to show that particular sets are not
recursively enumerable.

The prerequisites for taking this course are the Part IA courses Discrete Mathematics and
Regular Languages and Finite Automata.

This Computation Theory course contains some material that everyone who calls
themselves a computer scientist should know. It is also a prerequisite for the Part IB
course on Complexity Theory.

Exercises and Tripos Questions
A course on Computation Theory has been offered for many years and so there are many past
Tripos questions to try. See 〈www.cl.cam.ac.uk/tripos/t−ComputationTheory.html〉
for a list of them; all the questions from the last five years are relevant to the present course.
Here are suggestions for which of the older ones to try, together with some other exercises.

1. Exercises in register machine programming:

(a) Produce register machine programs for the functions mentioned on page 24.

(b) Try Tripos question 1999.3.9.

2. Undecidability of the halting problem:

(a) Try Tripos question 1995.3.9.

(b) Try Tripos question 2000.3.9.

(c) Learn by heart the poem about the undecidability of the halting problem to be
found at the course web page and recite it to your non-compsci friends.
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3. Let φe denote the unary partial function from numbers to numbers (i.e. an element of
Pfn(N,N)) computed by the register machine with code e (cf. page 52). Show that for
any given register machine computable unary partial function f , there are infinitely
many numbers e such that φe = f . (Equality of partial functions means that they are
equal as sets of ordered pairs; which is equivalent to saying that for all numbers x,
φe(x) is defined if and only if f(x) is, and in that case they are equal numbers.)

4. Suppose S1 and S2 are subsets of the set N = {0, 1, 2, 3, . . .} of natural numbers.
Suppose f ∈ Fun(N,N) is register machine computable and satisfies: for all x in N,
x is an element of S1 if and only if f(x) is an element of S2. Show that S1 is register
machine decidable if S2 is. (Cf. page 58-1.)

5. Show that the set of codes 〈e, e′〉 of pairs of numbers e and e′ satisfying φe = φe′ is
undecidable.

6. For the example Turing machine given on page 68, give the register machine program
implementing

(S, T,D) := δ(S, T )

as described on page 71. [Tedious!—maybe just do a bit.]

7. Try Tripos question 2001.3.9. [This is the Turing machine version of 2000.3.9.]

8. Try Tripos question 1996.3.9.

9. Work out explicit descriptions that demonstrate that the functions defined on pages 97
and 98 (predecessor, truncated subtraction, conditional and bounded summation) are
all primitive recursive.

10. Define

div(x, y) =

{
integer part of x/y if y > 0
0 otherwise

(see page 109). Show that div is primitive recursive. [Hint: use Example 7, page 98);
cf. page 122.]

11. Recall the definition of Ackermann’s function ack from page 112. Sketch how
to build a register machine M that computes ack(x, y) in R0 when started with
x in R1 and y in R2 and all other registers zero. [Hint: here’s one way; the
next question steers you another way to the computability of ack . Call a finite list
L = [(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

(i) if (0, y, z) ∈ L, then z = y + 1

(ii) if (x+ 1, 0, z) ∈ L, then (x, 1, z) ∈ L
(iii) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and

(x, u, z) ∈ L.
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The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all
the triples (x′, y′, ack(x, , y′)) needed to calculate ack(x, y). Show how to code lists
of triples of numbers as numbers in such a way that we can (in principle, no need to
do it explicitly!) build a register machine that recognizes whether or not a number is
the code for a suitable list of triples. Show how to use that machine to build a machine
computing ack(x, y) by searching for the code of a suitable list containing a triple
with x and y in it’s first two components.]

12. If you are not already fed up with Ackermann’s function, try Tripos question 2001.4.8.

13. Try Tripos question 1997.4.8.
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Note
The material in these notes has been drawn (by hand!) from several different sources,
including the books mentioned above, previous versions of this course by the author and
by others, and similar courses at some other universities. Any errors are of course all the
author’s own work. A list of corrections will be available from the course web page (follow
links from 〈www.cl.cam.ac.uk/Teaching/〉). Please take time to fill out a lecture(r) appraisal
form via the URL 〈https : //lecture− feedback.cl.cam.ac.uk/feedback〉.
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