Introduction to planning

We now look at how an agent might construct a plan enabling it to achieve a goal.

Aims:

• to examine the difference between, on the one hand, problem-solving by search, which we have already addressed, and on the other hand, specialised planning algorithms;
• to look in detail at the basic partial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.

Problem solving is different to planning

In search problems we:

• Represent states: and a state representation contains everything that's relevant about the environment.
• Represent actions: by describing a new state obtained from a current state.
• Represent goals: all we know is how to test a state either to see if it's a goal, or using a heuristic.
• A sequence of actions is a 'plan': but we only consider sequences of consecutive actions.

Problem solving is different to planning

Representing a problem such as: 'obtain a copy of the course textbook' is hopeless:

• There are far too many possible actions at each step.
• A heuristic can only help you rank states. In particular it does not help you ignore useless actions.
• We are forced to start at the initial state, but you have to work out how to get the book—that is, go to the library, borrow it from a friend etc—before you can start to do it.
Planning algorithms work differently

Difference 1:

- planning algorithms use a language, often First-Order Logic (FOL) (or a subset of FOL) to represent states, goals, and actions;
- states and goals are described by sentences;
- actions are described by stating their **preconditions** and their **effects**.

So if you know the goal includes (maybe among other things)

\[\text{Have(AI_book)} \]

and action \(\text{Borrow(x)} \) has an effect \(\text{Have(x)} \) then you know that a plan including

\[\text{Borrow(AI_book)} \]

might be good.

Difference 2:

- Planners can add actions at *any relevant point at all*, not just at the end of a sequence starting at the start state.
- This makes sense: I may determine that \(\text{Have(Car_keys)} \) is a good state to be in without worrying about what happens before or after finding them.
- By making an important decision, like requiring \(\text{Have(Car_keys)} \), early on we may reduce branching and backtracking.
- State descriptions are not complete—\(\text{Have(Car_keys)} \) describes a *class* of states—and this adds flexibility.

Difference 3:

It is assumed that most elements of the environment are *independent* of most other elements.

- A goal including several requirements can be attacked with a divide-and-conquer approach.
- Each individual requirement can be fulfilled using a subplan...
- ...and the subplans then combined.

This works provided there is not significant interaction between the subplans.

Running example: gorilla-based mischief

We will use the following simple example problem, which as based on a similar one due to Russell and Norvig.

The intrepid little scamps in the *Cambridge University Roof-Climbing Society* wish to attach an inflatable gorilla to the spire of a famous College. To do this they need to leave home and obtain:

- **An inflatable gorilla**: these can be purchased from all good joke shops.
- **Some rope**: available from a hardware store.
- **A first-aid kit**: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?
Logical inference is different to planning

This problem could certainly be attacked using situation calculus:

Start state:
\[
At(\text{Home}, S_0) \land \neg \text{Have(Gorilla, } S_0) \\
\land \neg \text{Have(Rope, } S_0) \\
\land \neg \text{Have(Kit, } S_0)
\]

Goal:
\[
\exists s \, (At(\text{Home}, s) \land \text{Have(Gorilla, } s) \\
\land \text{Have(Rope, } s) \\
\land \text{Have(Kit, } s))
\]

Operators:

\[
\text{Have(Gorilla, Result(a, s))} \iff \\
(\text{Have(Gorilla, s)} \land a \neq \text{Drop(Gorilla)}) \\
\lor (At(\text{JokeShop, s}) \land a = \text{Buy(Gorilla)})
\]

It is possible to use automated logical inference to obtain a sequence of actions.

Unfortunately this is highly inefficient.

We need to restrict the language, and we need to use a special-purpose planning algorithm rather than a general theorem-prover.

The STRIPS language

States: are conjunctions of ground literals with no functions.

\[
At(\text{Home}) \land \neg \text{Have(Gorilla)} \\
\land \neg \text{Have(Rope)} \\
\land \neg \text{Have(Kit)}
\]

Goals: are conjunctions of literals where variables are assumed existentially quantified.

\[
At(x) \land \text{Sells(x, Gorilla)}
\]

A planner finds a sequence of actions that makes the goal true when performed. This is different to a theorem-prover.
The STRIPS language

For example:

\[\text{At}(x), \text{Path}(x, y) \]
\[\text{Go}(y) \]
\[\text{At}(y), \neg\text{At}(x) \]

\[\text{Op} (\text{Action}: \text{Go}(y), \text{Pre}: \text{At}(x) \land \text{Path}(x, y) \land \neg\text{At}(x)) \]

All variables are universally quantified.

The space of situations

Standard search algorithms could be used with STRIPS to construct sequences of actions working forward from the start state. This is:

- a *situation space* planner;
- a *progression* planner. It searches from initial state to goal.

A *regression planner* exploits the new language by searching backward from the goal.

This can still be too inefficient.

The space of plans

Alternatively we can search in *plan space*:

- start with an empty plan;
- operate on it to obtain new plans;
- continue until we obtain a plan that solves the problem.

Operations on plans can be:

- adding a step;
- instantiating a variable;
- imposing an ordering that places a step in front of another;
- and so on.

Incomplete plans are called *partial plans*. *Refinement operators* add constraints to a partial plan.

All other operators are called *modification operators*.
Representing a plan: partial order planners

When putting on your shoes and socks:

- it does not matter whether you deal with your left or right foot first;
- it does matter that you place a sock on before a shoe, for any given foot.

It makes sense in constructing a plan, not to make any commitment to which side is done first if you don’t have to.

A plan consists of:

1. A set \(\{S_1, S_2, \ldots, S_n\} \) of steps. Each of these is one of the available operators.
2. A set of ordering constraints. An ordering constraint \(S_i < S_j \) denotes the fact that step \(S_i \) must happen before step \(S_j \). \(S_i < S_j < S_k \) and so on has the obvious meaning. \(S_i < S_j \) does not mean that \(S_i \) must immediately precede \(S_j \).
3. A set of variable bindings \(v = x \) where \(v \) is a variable and \(x \) is either a variable or a constant.
4. A set of causal links or protection intervals \(S_i \overset{c}{\rightarrow} S_j \). This denotes the fact that the purpose of \(S_i \) is to achieve the precondition \(c \) for \(S_j \).

Principle of least commitment: do not commit to any specific choices until you have to. This can be applied both to ordering and to instantiation of variables.

A partial order planner allows plans to specify that some steps must come before others but others have no ordering.

A linearization of such a plan imposes a specific sequence on the actions therein.

The initial plan has:

- two steps, called Start and Finish;
- a single ordering constraint Start < Finish;
- no variable bindings;
- no causal links.

In addition to this:

- the step Start has no preconditions, and its effect is the start state for the problem;
- the step Finish has no effect, and its precondition is the goal;
- neither Start or Finish has an associated action.
Solutions to planning problems

A solution to a planning problem is any *complete* and *consistent* partially ordered plan.

Complete: each precondition of each step is *achieved* by another step in the solution.

A precondition c for S is achieved by a step S' if:

1. the precondition is an effect of the step $S' < S$ and $c \in \text{Effects}(S')$ and;
2. there is no other step that can cancel the precondition: no S'' exists where $S' < S'' < S$ and $\neg c \in \text{Effects}(S'')$.

Consistent

no contradictions exist in the binding constraints or in the proposed ordering. That is:

1. for binding constraints, we never have $v = X$ and $v = Y$ for distinct constants X and Y;
2. for the ordering, we never have $S < S'$ and $S' < S$.

An example of partial-order planning

Returning to the roof-climber’s shopping expedition. Here is the basic approach:

- start with only the Start and Finish steps in the plan;
- at each stage add a new step;
- always add a new step such that a currently non-achieved precondition is achieved;
- backtrack when necessary.

Here is the initial plan:

<table>
<thead>
<tr>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>At(Home) ∧ Sells(JS, S) ∧ Sells(HS, R) ∧ Sells(HS, FA)</td>
<td>At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)</td>
</tr>
</tbody>
</table>

Thin arrows denote ordering.
An example of partial-order planning

There are two actions available:

<table>
<thead>
<tr>
<th>At(x)</th>
<th>Go(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At(y), ¬At(x)</td>
<td>Buy(y)</td>
</tr>
<tr>
<td></td>
<td>Have(y)</td>
</tr>
</tbody>
</table>

A planner might begin, for example, by adding a Buy(G) action in order to achieve the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one available to a planner. It has been chosen for illustrative purposes.

Thick arrows denote causal links. Here, the new Buy step achieves the Have(G) precondition of Finish. Thick arrows can be thought of as having a thin arrow underneath.

The planner can now introduce a second causal link from Start to achieve the Sells(x, G) precondition of Buy(G).

The planner’s next obvious move is to introduce a Go step to achieve the At(HS) precondition of Buy(G).
An example of partial-order planning

Initially the planner can continue quite easily in this manner:

- Add a causal link from Start to Go(JS) to achieve the $\text{At}(x)$ precondition.
- Add the step $\text{Buy}(R)$ with an associated causal link to the $\text{Have}(R)$ precondition of Finish.
- Add a causal link from Start to $\text{Buy}(R)$ to achieve the Sells(HS,R) precondition.

At this point it starts to get tricky...

The At(HS) precondition in Buy(R) is not achieved.

The At(HS) precondition is easy to achieve.

*But if we introduce a causal link from Start to Go(HS) then we risk invalidating the precondition for Go(JS).***
An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondition using the existing Go(JS) step.

This involves a threat, but one that can be fixed using promotion.

The algorithm

```
plan partial_order_plan(start, finish, ops)
{
    plan=empty_plan(start, finish);
    while(true)
    {
        if (solution(plan))
            return plan;
        else
        {
            (step, pre)=get_subgoal(plan);
            choose_op(plan, ops, step, pre);
            resolve_threats(plan);
        }
    }
}
```

The algorithm

```
choose_op(plan, ops, step, pre)
{
    choose S from ops or current steps in plan having effect pre;
    if (no S exists)
        fail;
    include a causal link from S to step in the plan;
    include S < step in the plan;
    if(S doesn’t yet appear in the plan)
    {
        add S;
        add Start < S < Finish;
    }
}
```
The algorithm

```c
resolve_threats(plan)
{
    for (all steps S threatening some causal link from S’ to S’’)
    {
        choose
        1. add S < S’ to the plan (promotion)
        2. add S’’ < S’ to the plan (demotion)
        if (the plan is not consistent)
            fail;
    }
}
```

Possible threats

If at any stage an effect \(\neg \text{At}(x) \) appears, is it a threat to \(\text{At}(JS) \)?

Such an occurrence is called a *possible threat* and an algorithm can be made to deal with it in three different ways:

1. use an equality constraint to resolve immediately;
2. use an inequality constraint to resolve immediately;
3. leave the choice of \(x \)'s value until later.

Introduction to knowledge representation and reasoning

We now look briefly at how knowledge about the world might be represented and reasoned with.

Aims:

- To introduce *semantic networks* and *frames* for knowledge representation.
- To see how *inheritance* can be applied as a reasoning method.
- To look at the use of *rules* for knowledge representation, along with *forward chaining* and *backward chaining* for reasoning.

Knowledge representation

The “manipulation of knowledge” seems to be at the heart of what we as intelligent beings do.

To try to model this process in an agent we:

- *represent* knowledge using *symbol structures*, and;
- *perform formalised* versions of reasoning.

This means that we need carefully specified *languages* for the representation of knowledge.
Requirements for a knowledge representation language

First, we need **representational adequacy**.

Can I represent the pieces of knowledge I need to?

Propositional logic might well fail this test, although predicate logic seems better and is indeed a standard tool.

Or more subtly:

Can I represent the pieces of knowledge I need to in such a way that reasoning can be automated?

English is excellent and highly expressive in representing knowledge:

> “Ophelia believes that all sensible people dislike eating pies”

However automating reasoning based on English language representations is just about impossible at present.

How would we write a program that takes this statement and when told “Neddy is really jolly sensible” and “Neddy is a funny sort of person” infers that “Ophelia believes Neddy dislikes eating pies”?

On the other hand:

\[
\begin{align*}
\text{person(} \text{neddy} \text{)} \\
\text{sensible(} \text{neddy} \text{)} \\
\forall x \text{ sensible}(x) \land \text{person}(x) \rightarrow (\forall y \text{ pie}(y) \rightarrow \text{dislikes}(x, y))
\end{align*}
\]

is something for which reasoning can be automated.

Syntax and semantics

In addition to needing an expressive language, the language needs to be clearly defined:

- **Syntax**: defining when a statement in the language is well-formed.
- **Semantics**: specifying what a statement in the language means.

English is again not good here from the point of view of automation. Logic is again preferable.

If possible, we also want the representation to be **natural** in the sense that it is reasonably easy to understand and deal with.
Translate
To translate confidently we need well-defined syntax and semantics.

Does pie?

he's just taken a dislike to an individual

mean Neddy dislikes all pies, or that

dislikes (neddy, pie)

Inferential adequacy and inferential efficiency

We also need to know that we can infer the things of interest:

- It is not always possible, and it's certainly not desirable, to store all knowledge as explicit facts.

Knowing that “all dogs smell bad” should allow us to infer that “fido smells bad” etc. We don’t want to store a piece of knowledge for every possible dog.

- However, more complex inferences are likely to take longer.

So as usual, there is a trade-off.

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of classes of objects and relationships between them:

- the subclass and instance relationships are emphasised;
- we form class hierarchies in which inheritance is supported and provides the main inference mechanism;
- as a result inference is quite limited;
- we need to be extremely careful about semantics.

The only major difference between the two ideas is notational.
Frames

Frames once again support inheritance through the subclass relationship.

<table>
<thead>
<tr>
<th>Rock musician</th>
<th>Musician</th>
</tr>
</thead>
<tbody>
<tr>
<td>subclass: Musician</td>
<td>subclass: Person</td>
</tr>
<tr>
<td>has: ear problems</td>
<td>has: instrument</td>
</tr>
<tr>
<td>hairlength: long</td>
<td></td>
</tr>
<tr>
<td>volume: loud</td>
<td></td>
</tr>
</tbody>
</table>

has, hairlength, volume etc are "slots".

long, loud, instrument etc are "slot values".

These are a direct predecessor of object-oriented programming languages.

Defaults

Both approaches to knowledge representation are able to incorporate defaults:

<table>
<thead>
<tr>
<th>Rock musician</th>
<th>Dementia Evilperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>subclass: Musician</td>
<td>subclass: Rock musician</td>
</tr>
<tr>
<td>has: ear problems</td>
<td>hairlength: short</td>
</tr>
<tr>
<td>*hairlength: long</td>
<td>*volume: loud</td>
</tr>
<tr>
<td>image: gothic</td>
<td></td>
</tr>
</tbody>
</table>

Starred slots are typical values associated with subclasses and instances, but can be overridden.

Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

- what is hairlength for Cornelius if we're trying to use inheritance to establish it?
- this can be overcome initially by specifying which class is inherited from in preference when there's a conflict;
- but the problem is still not entirely solved—what if we want to prefer inheritance of some things from one class, but inheritance of others from a different one?

Other issues

- Slots and slot values can themselves be frames. For example Dementia may have an instrument slot with the value Electric which itself may have properties described in a frame.
- Slots can have specified attributes. For example, we might specify that instrument can have multiple values, that each value can only be an instance of Instrument that each value has a slot called owned_by and so on.
- Slots may contain arbitrary pieces of program. This is known as procedural attachment. The fragment might be executed to return the slot's value, or update the values in other slots etc.
Rule-based systems

A rule-based system requires three things:

1. A set of if-then rules. These denote specific pieces of knowledge about the world. They should be interpreted similarly to logical implication, rather than the programming construct. In particular a collection of such rules doesn’t necessarily imply a sequence. Such rules denote what to do or what can be inferred under given circumstances.
2. A collection of facts denoting what the system regards as currently true about the world.
3. An interpreter able to apply the current rules in the light of the current facts.

Forward chaining

The first of two basic kinds of interpreter begins with established facts and then applies rules to them.

This is a data-driven process. It is appropriate if we know the initial facts but not the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

- we maintain a working memory, typically of what has been inferred so far;
- rules are often condition-action rules, where the right-hand side specifies an action such as adding or removing something from working memory, printing a message etc;
- in some cases actions might be entire program fragments.

Forward chaining

The basic algorithm is:

1. find all the rules that can fire, based on the current working memory;
2. select a rule to fire. This requires a conflict resolution strategy;
3. carry out the action specified, possibly updating the working memory.

Repeat this process until either no rules can be used or a “halt” appears in the working memory.

Example

Condition–action rules

<table>
<thead>
<tr>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry_mouth -> ADD thirsty</td>
</tr>
<tr>
<td>thirsty -> ADD get_drink</td>
</tr>
<tr>
<td>get_drink AND no_work -> ADD go_bar</td>
</tr>
<tr>
<td>working -> ADD no_work</td>
</tr>
<tr>
<td>no_work -> DELETE working</td>
</tr>
</tbody>
</table>

Working memory

- dry_mouth
- working

Interpreter
Progress is as follows:

1. The rule $\text{dry.mouth} \rightarrow \text{ADD thirsty}$
 fires adding thirsty to working memory.
2. The rule $\text{thirsty} \rightarrow \text{ADD get_drink}$
 fires adding get_drink to working memory.
3. The rule $\text{working} \rightarrow \text{ADD no_work}$
 fires adding no_work to working memory.
4. The rule $\text{get_drink} \text{AND no_work} \rightarrow \text{ADD go_bar}$
 fires, and we establish that it’s time to go to the bar.

Conflict resolution

Common conflict resolution strategies are:

- prefer rules involving more recently added facts;
- prefer rules that are more specific. For example
 $\text{patient_coughing} \rightarrow \text{ADD lung_problem}$
 is more general than
 $\text{patient_coughing AND patient_smoker} \rightarrow \text{ADD lung_cancer}$.
 This allows us to define exceptions to general rules;
- allow the designer of the rules to specify priorities;
- fire all rules simultaneously—this essentially involves following all
 chains of inference at once.

Reason maintenance

Some systems will allow information to be removed from the working
memory if it is no longer justified.

For example, we might find that
patient_coughing
and
patient_smoker
are in working memory, and hence fire
$\text{patient_coughing AND patient_smoker} \rightarrow \text{ADD lung_cancer}$
but later infer something that causes patient_coughing to be with-
drawn from working memory.

The justification for lung_cancer has been removed, and so it should
perhaps be removed also.
Pattern matching

In general rules may be expressed in a slightly more flexible form involving variables which can work in conjunction with pattern matching.

For example the rule

\[\text{coughs}(X) \text{ AND smoker}(X) \rightarrow \text{ADD lung}_\text{cancer}(X) \]

contains the variable \(X \).

If the working memory contains \(\text{coughs}(\text{neddy}) \) and \(\text{smoker}(\text{neddy}) \) then

\[X = \text{neddy} \]

provides a match and

\(\text{lung}_\text{cancer}(\text{neddy}) \)

is added to the working memory.

Backward chaining

The second basic kind of interpreter begins with a goal and finds a rule that would achieve it.

It then works backwards, trying to achieve the resulting earlier goals in the succession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

This is a goal-driven process. If you want to test a hypothesis or you have some idea of a likely conclusion it can be more efficient than forward chaining.

Example with backtracking

If at some point more than one rule has the required conclusion then we can backtrack.

Example: Prolog backtracks, and incorporates pattern matching. It orders attempts according to the order in which rules appear in the program.

Example: having added

\[\text{up}_\text{early} \rightarrow \text{ADD} \text{tired} \]

and

\[\text{tired} \text{ AND lazy} \rightarrow \text{ADD} \text{go,bar} \]

to the rules, and \(\text{up}_\text{early} \) to the working memory.
Example with backtracking

Working memory
- dry_mouth
- working
- up_early

Goal
- go_bar

- tired
- lazy

- attempt to establish go_bar by establishing tired and lazy.

- get_drink
- no_work

- thirsty
- no_work

- up_early
- lazy

- this can be done by establishing up_early and lazy. up_early is in the working memory so we're done.

- lazy

- we can not establish lazy and so we backtrack and try a different approach.

- dry_mouth
- no_work

- working

Process proceeds as before.