
Artificial Intelligence I

Dr Mateja Jamnik

Computer Laboratory, Room FC18

Telephone extension 63587

Email: mj201@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mj201/

Notes II: problem solving by search, games (adversarial sea rch),
and constraint satisfaction problems.

Copyright c©Sean Holden 2002-2009.

Solving problems by search I: uninformed search

We now look at how an agent might achieve its goals using search .

Aims:

• to show how problem-solving can be modelled as the process of
searching for a sequence of actions that achieves a goal ;

• to introduce some basic algorithms for conducting the necessary
search for a sequence of actions.

Reading: Russell and Norvig, chapter 3.

Problem solving by basic search

As usual: an agent exists within an environment and must act within
this environment to achieve some desirable goal.

It has some means of knowing the state of its environment.

A simple example: the 8-puzzle.

2 58

6

7 3 4

1

1 2 3

4 5 6

7 8

−→

2 5

6

7 3 4

18 −→ · · · −→

Problem solving by basic search

Start state: a randomly-selected configuration of the numbers 1 to 8
arranged on a 3 × 3 square grid, with one square empty.

Goal state: the numbers in ascending order with the bottom right
square empty.

Actions: left, right, up, down. We can move any square ad-
jacent to the empty square into the empty square. (It’s not always
possible to choose from all four actions.)

Path cost: one per move.

The 8-puzzle is very simple. However general sliding block puzzles
are a good test case. The general problem is NP-complete. The 5×5
version has about 1025 states, and a random instance is in fact quite
a challenge!

Problem solving by basic search

Another example:

• the agent is a robotic vacuum cleaner;

• the environment is a rectangular room with no obstacles, contain-
ing the cleaner and some dirt;

• the available actions are movement in four directions, switch on
sucker, and switch off sucker;

• the cleaner can sense the presence or otherwise of dirt and knows
it’s own location;

• the goal is to have no dirt in the room.

Problem solving by basic search

The situation looks something like this:

DIRT DIRT

DIRT

DIRTDIRT

Even this simple description hides a number of ambiguities and sub-
tleties.

Problem solving by basic search

The examples given admit a simple solution strategy that is applica-
ble to many simple problems in AI.

Initial state: the cleaner is at some position within the room and
there is dirt in various locations.

Actions: the cleaner can alter the state of the environment by acting.
In this case either by moving or using its sucker. By performing a
sequence of actions it can move from state to state.

Aim: the cleaner wants to find a sequence of actions that achieves
the goal state of having a dirt-free room.

Problem solving by basic search

Other applications that can be addressed:

• route-finding

• tour-finding

• layout of VLSI systems

• navigation systems for robots

• sequencing for automatic assembly

• searching the internet

• design of proteins

and many others...

Problem solving by basic search

D

D

D

D

D

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D
C

C

C

D

D

D

D

D

C

Move down

Move up

Suck

Move right

Problem solving by basic search

So what’s ambiguous and subtle here?

1. Can the agent know it’s current state in full?

• It may only be able to sense dirt within a given radius.

• It may not have a completely accurate position sensor.

• It may not be able to distinguish between dirt and a stain on
the carpet, and so on...

2. Can the agent know the outcome of its actions in full?

• The sucker may not be completely reliable.

• The sucker may occasionally deposit a little dirt.

• The next door neighbour’s child may sneak in and move it from
one place to another while it thinks it’s only moved a short way
in one direction, and so on...

Problem solving by basic search

Depending on the answers to these questions we can identify four
basic kinds of problem:

Single-state problems: the state is always known precisely, as is
the effect of any action. There is therefore a single outcome state.

Multiple-state problems: The effect of any action is known, but the
current state can not reliably be inferred. Hence we must reason
about the set of states that we could be in. A similar situation arises
if we know the current state but not necessarily the outcomes of the
actions.

Single and multiple state problems can be handled using the search
techniques to be discussed next.

Problem solving by basic search

Contingency problems:

In some situations it is necessary to perform sensing while the ac-
tions are being carried out in order to guarantee reaching a goal.

(It’s good to keep your eyes open while you cross the road!)

This kind of problem requires planning and acting .

Sometimes it is actively beneficial to act and see what happens,
rather than to try to consider all possibilities in advance in order to
obtain a perfect plan.

Problem solving by basic search

Exploration problems:

Sometimes you have no knowledge of the effect that your actions
have on the environment.

Babies in particular have this experience.

This means you need to experiment to find out what happens when
you act.

This kind of problem requires reinforcement learning for a solution.
We will not cover reinforcement learning in this course. (Although it
is in AI II!)

Problem solving by basic search

Question: How much detail should the state description include?

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

10

2

To use a different example: considering your lecturer as an intelligent
agent who wants to get from the Computer Lab to Trinity College
before the bar closes.

Problem solving by basic search

The state of my environment could be said to include:

• the number and temperature of each hair on my head;

• the composition of the roads on all the potential routes;

• the current position of Saturn etc.

However for this problem a much simpler state description seems
appropriate: “at the computer lab”, “in the computer lab bike stands”
and so on.

Similarly for potential actions: although “remove wax from ears” is
a perfectly valid action in state “at the computer lab” it’s clearly not
very helpful.

Problem solving by basic search

Question: Are there conflicting goals or goals of varying impor-
tance?

Apart from getting to the College bar I might want to stop by the book
signing at Waterstones, or drop by the language school to improve
my Italian.

However we need to identify one specific goal.

Always in computer science, we need to do some abstraction to
make a solution feasible—we need to remove all extraneous detail.

Note that in this example, if I have no internal map of Cambridge
town centre I am stuck - I am doomed to try random actions. How-
ever if I have such a map I can try to search for a sequence of actions
that achieves my goal.

Problem solving by basic search

We begin with (arguably) the simplest kind of scenario in which some
form of computationally intelligent behaviour can be achieved. Namely,
the single-state scenario.

To summarise, we have:

• an initial state : what is the agent’s situation to start with;

• a set of actions : and we know what state will result on perform-
ing any available action from any known state;

• a goal test : we can tell whether or not the state we’re in corre-
sponds to the goal.

Note that the goal may be described by a property rather than an
explicit state or set of states, for example ”checkmate”.

Problem solving by basic search

In addition, a path is a sequence of actions that lead from state to
state.

We may also be interested in the path cost as some solutions might
be better than others. Path cost will be denoted by p.

A solution is a path beginning with the initial state and ending in a
goal state.

All of the search techniques to be presented can also be applied to
multiple-state problems.

• In this case we have an initial set of states.

• Each action leads to a further set of states.

• The goal is a set of states all of which are valid goals.

Search trees

The basic method is familiar from your algorithms course.

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

B

Trinity bar

Trinity bar

Trinity bar

C D

E

10

2

Search trees versus search graphs

Note: for the time being we assume this is a tree as opposed to a
graph .

as opposed to

In a tree only one path can lead to a given state. In a graph a state
can be reached via possibly multiple paths .

There is a difference between a state and a node .

The preceding route-finding example is not allowed for now. (But
the fix is simple and will be presented in a moment.)

Search trees

We form a search tree with the initial state as the root node.

Basic approach:

• Test the root to see if it is a goal.

• If not then expand it by generating all possible successor states
according to the available actions.

• If there is only one outcome state then move to it. Otherwise
choose one of the outcomes and expand it. The way in which this
choice is made defines a search strategy .

• If a choice turns out to be no good then you can go back and try
a different alternative.

The collection of states generated but not yet expanded is called the
fringe or frontier and is generally stored as a queue.

The basic tree-search algorithm

function tree_search
{

fringe = queue containing only the start state;
while()
{
if (empty(fringe))

return fail;
node = head(fringe);
if (goal(node))

return solution(node);
fringe = insert(expand(node), fringe);

}
}

The basic tree-search algorithm

Not yet investigated

In the fringe, but not expanded

Expanded

The performance of search techniques

We are interested in:

• whether a solution is found;

• whether the solution found is a good one in terms of path cost;

• the cost of the search in terms of time and memory.

the total cost = path cost + search cost

If a problem is highly complex it may be worth settling for a sub-
optimal solution obtained in a short time.

Other characteristics of the problem may also be relevant. For ex-
ample I may not want to spend a huge amount of time working out
how to get to Trinity.

Evaluation of search strategies

We are also interested in:

Completeness: does the strategy guarantee a solution is found?

Time complexity

Space complexity

Optimality: does the strategy guarantee that the best solution is
found?

Search trees

Two types of search:

• Uninformed or blind search is applicable when we only distin-
guish goal states from non-goal states.

Methods are distinguished by the order in which nodes in the
search tree are expanded. These methods include: breadth-first,
depth-first, depth-limited, iterative deepening, bidirectional.

• Informed or heuristic search is applied if we have some knowl-
edge of the path cost or the number of steps between the current
state and a goal.

These methods include: best first, greedy, A*, iterative deepening
A* (IDA*), SMA*.

Breadth-first search

Breadth-first search:

1

2 3 4

5 6 7

This is familiar from your algorithms courses.

Breadth-first search

Note:

• the procedure is complete: it is guaranteed to find a solution if
one exists;

• the procedure is optimal under a simple condition: if the path cost
is a non-decreasing function of node-depth;

• the procedure has exponential complexity for both memory and
time. A branching factor x requires

1 + x + x2 + x3 + · · · + xn

nodes if the shortest path has depth n.

In practice : it is the memory requirement that is problematic.

Uniform-cost search

Breadth-first search finds the shallowest solution, but this is not nec-
essarily the best one.

Uniform-cost search differs in that it always expands the node with
the lowest path-cost p(n) first.

The best solution will always be found if

∀node p(node’s successor) ≥ p(node)

Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A C D

10

2
4 3 1

Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A C D

10

2
4 3 1

E

2

Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

Trinity bar

C

10

2
4 3

E
2

1
D

4

Uniform-cost search

Computer Lab Trinity bar

A B

C

D E

4

3 5

1

1

2

Computer Lab

A

Trinity bar

Trinity bar

C

10

2
4 3 1

E
2

D

8

4

Depth-first search

Computer Lab

A

B

Trinity bar

Trinity bar

Trinity bar

C D

E

• nodes are expanded at the deepest existing part of the tree;

• for a given branching factor and depth the memory requirement
is around branching × depth and the time O(branchingdepth);

• despite the exponential time requirement, if there are many solu-
tions this algorithm stands a chance of finding one quickly, com-
pared with breadth-first search.

Depth-first search

The memory requirement is about branching × depth as we need to
store:

• nodes on the current path, and;

• the other unexpanded nodes.

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

So memory = O(branching × depth).

Backtracking search

We can sometimes however improve on this by using backtracking
search .

• If each node knows how to generate the next possibility then
memory is O(depth).

• Even better, if we can work by making modifications to a state
description then the memory requirement is:

– One full state description, plus...

– ... O(depth) actions (in order to be able to undo actions).

Let’s see a simple example...

Backtracking search

2 5

6

7 3 4

18

2 5

6

7 3 4

18

2 58

6

7 3 4

1

2 58

6

3 4

17

2 58

6

3 4

17

2 58

6

7 3 4

1

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:

No backtracking With backtracking

If we have:

+ [up, up]

we can undo this to obtain

+ [up]

and apply down to get

+ [up, down]

and so on...

up

up

down
left

Depth-first and depth-limited search

Depth-first search is clearly dangerous if the tree is either very deep
or infinite:

• if the tree is very deep we risk finding a suboptimal solution;

• if the tree is infinite we risk an infinite loop.

Depth-limited search simply imposes a limit on depth. For example
if we’re searching for a route on a map with n cities we know that the
maximum depth will be n. However:

• we still risk finding a suboptimal solution;

• the procedure becomes problematic if we impose a depth limit
that is too small.

Iterative deepening search

Usually we do not know a reasonable depth limit in advance.

Iterative deepening search repeatedly runs depth-limited search
for increasing depth limits 0, 1, 2, . . .

• this essentially combines the advantages of depth-first and breadth-
first search;

• the procedure is complete and optimal;

• the memory requirement is similar to that of depth-first search;

Importantly, the fact that you’re repeating a search process several
times is less significant than it might seem.

Iterative deepening search

Intuitively, this is because the vast majority of the nodes in a tree are
in the bottom level :

• in a tree with branching factor x and depth n the number of nodes
is

f1(x, n) = 1 + x + x2 + x3 + · · · + xn

• a complete iterative deepening search of this tree generates the
final layer once, the penultimate layer twice, and so on down to
the root, which is generated n + 1 times. The total number of
nodes generated is therefore

f2(x, n) = (n + 1) + nx + (n − 1)x2 + (n − 2)x3 + · · · + 2xn−1 + xn

Iterative deepening search

Example:

• for x = 20 and n = 5 we have

f1(x, n) = 3, 368, 421

f2(x, n) = 3, 545, 706

which represents a 5 percent increase with iterative deepening
search;

• the overhead gets smaller as x increases. However the time com-
plexity is still exponential.

For problems where the search space is large and the solution depth
is not known, this is the preferred method.

Bidirectional search

We can simultaneously search:

forward from the start state

backward from the goal state

until the searches meet.

This is potentially a very good idea:

• if the search methods have complexity O(xn) then...

• ...we are converting this to O(2xn/2) = O(xn/2).

(Here, we are assuming the branching factor is x in both directions.)

Bidirectional search

• It is not always possible to generate efficiently predecessors as
well as successors.

• If we only have the description of a goal, not an explicit goal, then
generating predecessors can be hard. (For example, consider
the concept of checkmate.)

• We need a way of checking whether or not a node appears in the
other search.

• We need to decide what kind of search to use in each half. For
example, would depth-first search be sensible?

• The figure of O(xn/2) hides the assumption that we can do con-
stant time checking for intersection of the frontiers. Often this is
possible using a hash table.

• To guarantee that the searches meet, we need to store all the
nodes of at least one of the searches. Consequently the memory
requirement is O(xn/2).

Repeated states

With many problems it is easy to waste time by expanding nodes that
have appeared elsewhere in the tree. For example:

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

Repeated states

For example, in a problem such as finding a route in a map, where
all of the operators are reversible , this is inevitable.

There are three basic ways to avoid this, depending on how you
trade off effectiveness against overhead.

• never return to the state you came from;

• avoid cycles: never proceed to a state identical to one of your
ancestors;

• do not generate any state that has previously appeared.

Graph search

Graph search is a standard approach to dealing with the situation:

function graph_search
{
closed = {};
fringe = queue containing only start state;
while ()
{

if (empty(fringe))
return fail;

node = head(fringe);
if goal(node)
return solution(node);

if (node not a member of closed)
{
closed = closed + node;
fringe = insert(expand(node), fringe);

}
}

}

Graph search

There are several points to note regarding graph search:

1. The closed list contains all the expanded nodes.

2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional to the size
of the state space.

4. Memory: depth first and iterative deepening search are no longer
linear space as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new
possibility even if it is better than the first one.

• This never happens for uniform-cost or breadth-first search
with constant step costs, so these remain optimal.

• Iterative deepening search needs to check which solution is
better and if necessary modify path costs and depths for de-
scendants of the repeated state.

Solving problems by search II: informed search

We now look at how an agent might achieve its goals using more
sophisticated search techniques.

Aims:

• to introduce the concept of a heuristic in the context of search
problems;

• to introduce some further algorithms for conducting the neces-
sary search for a sequence of actions, which are able to make
use of a heuristic.

Reading: Russell and Norvig, chapter 4.

Problem solving by informed search

Basic search methods make limited use of any problem-specific
knowledge we might have.

• Use of the available knowledge is limited to the formulation of
the problem as a search problem.

• We have already seen the concept of path cost p(n)

p(n) = cost of any path (sequence of actions) in a state space

• We can now introduce an evaluation function . This is a function
that attempts to measure the desirability of each node .

The evaluation function will clearly not be perfect. (If it is, there is no
need to search!)

Best-first search and greedy search

Best-first search simply expands nodes using the ordering given by
the evaluation function.

• We could just use path cost, but this is misguided as path cost is
not in general directed in any sense toward the goal .

• A heuristic function , usually denoted h(n) is one that estimates
the cost of the best path from any node n to a goal.

• If n is a goal then h(n) = 0.

Using a heuristic function along with best-first search gives us the
greedy search algorithm.

Example: route-finding

A reasonable heuristic function here is

h(n) = straight line distance from n to the nearest goal

Example:

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal

n1 n2

Example: route-finding

Greedy search suffers from some problems:

• its time complexity is O(branchingdepth);

• it is not optimal or complete;

• its space-complexity is O(branchingdepth).

BUT: greedy search is often very effective, provided we have a good
h(n).

A⋆ search

A⋆ search combines the good points of:

• greedy search—by making use of h(n);

• uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path cost p(n) and also
the heuristic function h(n) by forming

f(n) = p(n) + h(n)

where
p(n) = cost of path to n

and
h(n) = estimated cost of best path from n

So: f(n) is the estimated cost of a path through n.

A⋆ search

A⋆ search:

• a best-first search using f(n);

• it is both complete and optimal...

• ...provided that h obeys some simple conditions.

Definition: an admissible heuristic h(n) is one that never overes-
timates the cost of the best path from n to a goal.

If h(n) is admissible then tree-search A⋆ is optimal.

A⋆ tree-search is optimal for admissible h(n)

To see that A⋆ search is optimal we reason as follows.

Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt

(because h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with

f(Goal2) = p(Goal2) = f2 > fopt

We need to demonstrate that the search can never select Goal2.

A⋆ tree-search is optimal for admissible h(n)

Let n be a leaf node in the fringe on an optimal path to Goalopt. So

fopt ≥ p(n) + h(n) = f(n)

because h is admissible.

Now say Goal2 is chosen for expansion before n. This means that

f(n) ≥ f2

so we’ve established that

fopt ≥ f2 = p(Goal2).

But this means that Goalopt is not optimal! A contradiction.

A⋆ tree-search is optimal for admissible h(n)

Goalopt

n

Goal2

At some point Goal2 is in the fringe.

Can it be selected before n?

A⋆ graph search

Of course, we will generally be dealing with graph search.

Unfortunately the proof breaks in this case.

• Graph search can discard an optimal route if that route is not the
first one generated.

• We could keep only the least expensive path. This means updat-
ing, which is extra work, not to mention messy, but sufficient to
insure optimality.

• Alternatively, we can impose a further condition on h(n) which
forces the best path to a repeated state to be generated first.

Monotonicity

Assume h is admissible. Remember that f(n) = p(n) + h(n) so if n′

follows n
p(n′) ≥ p(n)

and we expect that
h(n′) ≤ h(n)

although this does not have to be the case. The possibility remains
that f(n′) might be less than f(n).

• if it is always the case that f(n′) ≥ f(n) then h(n) is called mono-
tonic ;

• h(n) is monotonic if and only if it obeys the triangle inequality .

If h(n) is not monotonic we can make a simple alteration and use

f(n′) = max{f(n), p(n′) + h(n′)}
This is called the pathmax equation.

The pathmax equation

Why does the pathmax equation make sense?

n

n′

h(n) = 4

p(n′) = 6

h(n′) = 1

p(n) = 5

So here f(n) = 9 and f(n′) = 7.

The fact that f(n) = 9 tells us the cost of a path through n is at least
9 (because h(n) is admissible).

But n′ is on a path through n. So to say that f(n′) = 7 makes no
sense.

Monotonic heuristics

A heuristic will be monotonic if

h(n) ≤ cost(n a−→ n′) + h(n′)

As luck would have it

monotonicity −→ admissibility

A⋆ graph search is optimal for monotonic heuristics.

A⋆ graph search is optimal for monotonic heuristics

The crucial fact from which optimality follows is that if h(n) is mono-
tonic then the values of f(n) along any path are non-decreasing.

Assume we move from n to n′ using action a. Then

∀a, p(n′) = p(n) + cost(n a−→ n′)

and from the last slide

h(n) ≤ cost(n a−→ n′) + h(n′) (1)

Thus

f(n′) = p(n′) + h(n′)

= p(n) + cost(n a−→ n′) + h(n′)

≥ p(n) + h(n)

= f(n)

where the inequality follows from equation 1.

A⋆ graph search is optimal for monotonic heuristics

We therefore have the following situation:

f(n)
You can’t deal with n′ until everything with

f(n′′) < f(n′) has been dealt with.

f(n′)

Consequently everything with f(n′′) < fopt gets explored. Then one
or more things with fopt get found (not necessarily all goals).

A⋆ search is complete

A⋆ search is complete provided:

1. the graph has finite branching factor;

2. there is a finite, positive constant c such that each operator has
cost at least c.

Why is this?

A⋆ search is complete

The search expands nodes according to increasing f(n). So: the
only way it can fail to find a goal is if there are infinitely many nodes
with f(n) < f(Goal).

There are two ways this can happen:

1. there is a node with an infinite number of descendants;

2. there is a path with an infinite number of nodes but a finite path
cost.

Complexity

• A⋆ search has a further desirable property: it is optimally efficient.

• This means that no other optimal algorithm that works by con-
structing paths from the root can guarantee to examine fewer
nodes.

• BUT: despite its good properties we’re not done yet!

• A⋆ search unfortunately still has exponential time complexity in
most cases unless h(n) satisfies a very stringent condition that is
generally unrealistic:

|h(n) − h′(n)| ≤ O(log h′(n))

where h′(n) denotes the real cost from n to the goal.

• As A⋆ search also stores all the nodes it generates, once again it
is generally memory that becomes a problem before time.

IDA⋆ - iterative deepening A⋆ search

Iterative deepening search used depth-first search with a limit on
depth that gradually increased.

• IDA⋆ does the same thing with a limit on f cost .

• It is complete and optimal under the same conditions as A⋆.

• Often good if we have step costs equal to 1.

• Does not require us to maintain a sorted queue of nodes.

• It only requires space proportional to the longest path.

• The time taken depends on the number of values h can take.

If h takes enough values to be problematic we can increase f by a
fixed ǫ at each stage, guaranteeing a solution at most ǫ worse than
the optimum.

IDA⋆ - iterative deepening A⋆ search

Action_sequence ida()
{

float f_limit = f(root);
Node root = root node for problem;

while(true)
{

(sequence,f_limit) = contour(root,f_limit);
if (sequence != empty_sequence)

return sequence;
if (f_limit == infinity)

return empty_sequence;
}

}

IDA⋆ - iterative deepening A⋆ search

(Action_sequence,float) contour(Node node, float f_limit)
{

float next_f = infinity;
if (f(node) > f_limit)

return (empty_sequence,f(node));
if (goaltest(node))

return (node,f_limit);
for (each successor s of node)
{

(sequence,new_f) = contour(s,f_limit);
if (sequence != empty_sequence)

return (sequence,f_limit);
next_f = minimum(next_f,new_f);

}
return (empty_sequence,next_f);

}

IDA⋆ - iterative deepening A⋆ search

This is a little tricky to unravel, so here is an example:

3

7 4 5

Initially, the algorithm looks ahead and finds the smallest f cost that
is greater than its current f cost limit. The new limit is 4.

IDA⋆ - iterative deepening A⋆ search

It now does the same again:

3

7 4 5

5 9 10

Anything with f cost at most equal to the current limit gets explored,
and the algorithm keeps track of the smallest f cost that is greater
than its current limit. The new limit is 5.

IDA⋆ - iterative deepening A⋆ search

And again:

3

7 4 5

5 9 10 19 12

8 12 7

The new limit is 7, so at the next iteration the three arrowed nodes
will be explored.

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory lim-
itations is the Recursive best-first search (RBFS) .

Idea: basically, we try to do a standard best-first search, but in such
a way that the space requirement is only linear.

We perform a depth-first search, with a few modifications:

Recursive best-first search (RBFS)

function RBFS(Node node, float f_limit)
{
if (goaltest(node))

return node;
if (node has no successors)

return (fail, infinity);
for (each successor s of node)
{

f(s) = maximum(f(s), f(node))
}
while()
{

best = successor of node that has the smallest f(s);
if (f(best) > f_limit)
return (fail, f(best));

next_best = second smallest f(s) value for successors of node;
(result, f(best)) = RBFS(best, minimum(f_limit, next_best));
if (result is not fail)
return result;

}
}

Recursive best-first search (RBFS)

This function is called using RBFS(start state, infinity) to
begin the process.

1. We remember the f(n) for the best alternative node n we’ve seen
so far on the way to the node n′ we’re currently considering.

2. if n′ has f(n′) > f(n):

• we go back and explore the best alternative...

• ...and as we retrace our steps we replace the f cost of every
node we’re seen in the current path with f(n′).

The replacement of f values as we retrace our steps provides a
means of remembering how good a discarded path might be, so that
we can easily return to it later.

Recursive best-first search (RBFS): an example

Function call number 1:

3

7 4 5best1
next best1 =

f limit1 = ∞

Now perform the recursive function call (result2, f(best1)) = RBFS(best1, 5)

Recursive best-first search (RBFS): an example

Function call number 2:

3

7 4 5best1
next best1 =

f limit2 = 5
f limit1 = ∞

5 9 10
best2

next best2 = 9

Now perform the recursive function call (result3, f(best2)) = RBFS(best2, 5)

Recursive best-first search (RBFS): an example

Function call number 3:

3

7 4 5best1
next best1 =

f limit2 = 5
f limit1 = ∞

5 9 10
best2

11 12 10

best3next best3 = 11

5 replaced by 10
next best2 = 9

f limit3 = 5

Now
f(best3) > f limit3

so the function call returns (fail, 10) into (result3, f(best2)).

Recursive best-first search (RBFS): an example

The while loop for function call 2 now repeats:

3

7 4 5best1
next best1 =

f limit2 = 5
f limit1 = ∞

5 9 10

11 12 10

5 replaced by 10

best2

4 replaced by 9

Now
f(best2) > f limit2

so the function call returns (fail, 9) into (result2, f(best1)).

Recursive best-first search (RBFS): an example

The while loop for function call 1 now repeats:

3

7 4 5

f limit1 = ∞

5 9 10

11 12 10

5 replaced by 10

4 replaced by 9

best1next best1 = 7

We do a further function call to expand the new best node, and so
on...

Recursive best-first search (RBFS)

Some nice properties:

• If h is admissible then RBFS is optimal.

• Memory requirement = O(branching × depth)

• Generally more efficient than IDA⋆.

And some less nice ones:

• Time complexity is hard to analyse, but can be exponential.

• Can spend a lot of time re-generating nodes.

Other methods for getting around the memory problem

To some extent, IDA⋆ and RBFS throw the baby out with the bathwa-
ter.

• They limit memory too harshly, so...

• ...we can try to use all available memory .

MA⋆ and SMA⋆ will not be covered in this course...

Solving problems by search III: playing games

We now look at how an agent might act when the outcomes of its
actions are not known because an adversary is trying to hinder it.
We look specifically at the example of playing games .

Aims:

• to show how game-playing can be modelled as search;

• to introduce the minimax algorithm for game-playing;

• to look at some problems inherent in the use of minimax and to
introduce methods for their solution;

• to introduce the concept of α − β pruning .

Reading: Russell and Norvig, chapter 6.

Playing games: search against an adversary

Something is missing from our existing formulation of problem-solving
by search.

• What if we do not know the exact outcome of an action?

• Game playing is a good example: in chess, drafts, and so on an
opponent responds to our moves.

• We don’t know what their response will be, and so the outcome
of our moves is not clear.

Game playing has traditionally been of interest in AI because it pro-
vides an idealisation of a world in which two agents act to reduce
each other’s well-being.

Playing games: search against an adversary

Nonetheless, game playing can be an excellent source of hard prob-
lems.

For instance with chess:

• the average branching factor is roughly 35;

• games can reach 50 moves per player;

• so a rough calculation gives the search tree 35100 nodes;

• even if only different, legal positions are considered it’s about 1040.

Playing games: search against an adversary

As well as dealing with uncertainty due to an opponent:

• we can’t make a complete search to find the best move...

• ... so we have to act even though we’re not sure about the best
thing to do.

It therefore seems that games are a step closer to the complexities
inherent in the world around us than are the standard search prob-
lems considered so far.

Playing games: search against an adversary

Note:

• “Go” is much harder than chess!

• The branching factor is about 360.

If you want to make yourself:

• rich (there’s a 2, 000, 000 dollar prize if your program can beat a
top-level player), and;

• famous (nobody is anywhere near winning the prize);

then you should get to work.

Perfect decisions in a two-person game

Say we have two players, called Maxwell and Minny - Max and Min
for short.

(Yes, there is a reason for this.)

• We’ll use noughts and crosses as an initial example.

• Max moves first.

• The players alternate until the game ends.

• At the end of the game, prizes are awarded. (Or punishments
administered.)

Perfect decisions in a two-person game

Games like this can be modelled as search problems.

• There is an initial state .

Max to move

• There is a set of operators . Here, Max can place a cross in any
empty square, or Min a nought.

• There is a terminal test . Here, the game ends when three noughts
or three crosses are in a row, or there are no unused spaces.

• There is a utility or payoff function. This tells us, numerically,
what the outcome of the game is.

Perfect decisions in a two-person game

We can construct a tree to represent a game. From the initial state,
Max can make nine possible moves:

. . .

Perfect decisions in a two-person game

In each case, Min has eight replies:

. . .

. . .

And so on.

Perfect decisions in a two-person game

This construction can in principle be continued to represent all pos-
sibilities for the game.

The leaves are situations where a player has won, or there are no
spaces.

Each leaf is labelled using the utility function.

Perfect decisions in a two-person game

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

0 +1 −1

Perfect decisions in a two-person game

How can Max use this tree to decide on a move?

• if he is rational he will play to reach a position with the biggest
utility possible;

• bit if Min is rational, she will play to minimise the utility available
to Max.

Consider a much simpler tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

The minimax algorithm

There are only two moves—one for each player. Game theorists
would call this one move, or two ply deep.

• Max’s utility is labelled for each terminal state.

• The minimax algorithm allows us to infer the best move that the
current player can make, given the utility function.

We work backward from the leaves. In the current example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

6 1 42

The minimax algorithm

Min takes the final move:

• If Min is in game position 1, her best choice is move 3. So from
Max’s point of view this node has a utility of 2.

• If Min is in game position 2, her best choice is move 3. So from
Max’s point of view this node has a utility of 6.

• If Min is in game position 3, her best choice is move 1. So from
Max’s point of view this node has a utility of 1.

• If Min is in game position 4, her best choice is move 4. So from
Max’s point of view this node has a utility of 4.

The minimax algorithm

Moving one further step up the tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

6 1 42

6

We can see that Max’s best opening move is move 2, as this leads
to the node with highest utility.

The minimax algorithm

In general:

• generate the complete tree and label the leaves according to the
utility function;

• working from the leaves of the tree upward, label the nodes de-
pending on whether Max or Min is to move;

• if Min is to move label the current node with the minimum utility of
any descendant;

• if Max is to move label the current node with the maximum utility
of any descendant.

If the game is p ply and at each point there are q available moves
then this process has O(qp) time complexity and space complexity
linear in p and q.

Making imperfect decisions

We need to avoid searching all the way to the end of the tree. So:

• we generate only part of the tree: instead of testing whether a
node is a leaf we introduce a cut-off test telling us when to stop;

• instead of a utility function we introduce an evaluation function
for the evaluation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of
the current game position.

Making imperfect decisions

How can this be justified?

• This is a strategy that humans clearly sometimes make use of.

• For example, when using the concept of material value in chess.

• The effectiveness of the evaluation function is critical ...

• ... but it must be computable in a reasonable time.

• (In principle it could just be done using minimax!)

The evaluation function

Designing a good evaluation function can be extremely tricky:

• let’s say we want to design one for chess by giving each piece its
material value: pawn = 1, knight/bishop = 3, rook = 5 and so on;

• define the evaluation of a position to be the difference between
the material value of black’s and white’s pieces

eval(position) =
∑

black’s pieces pi

value of pi −
∑

white’s pieces qi

value of qi

This seems like a reasonable first attempt. Why might it go wrong?

The evaluation function

Consider what happens at the start of a game:

• until the first capture the evaluation function gives 0, so in fact we
have a category containing many different game positions with
equal estimated utility.

• For example, all positions where white is one pawn ahead.

• The evaluation function for such a category should represent the
probability that a position chosen at random from it leads to a win.

The evaluation function

Considering individual positions.

If on the basis of past experience a position has 50% chance of
winning, 10% chance of losing and 40% chance of reaching a draw,
we might give it an evaluation of

eval(position) = (0.5 × 1) + (0.1 ×−1) + (0.4 × 0) = 0.4.

Extending this to the evaluation of categories, we should then weight
the positions in the category according to their likelihood of occur-
ring.

The evaluation function

Using material advantage as suggested gives us a weighted linear
evaluation function

eval(position) =

n
∑

i=1

wifi

where the wi are weights and the fi represent features of the posi-
tion. In this example

fi = value of the ith piece

wi = number of ith pieces on the board

where black and white pieces are regarded as different and the fi

are positive for one and negative for the other.

The evaluation function

Evaluation functions of this type are very common in game playing.

There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself and using
learning techniques to adjust the weights to improve performance.

α − β pruning

Even with a good evaluation function and cut-off test, the time com-
plexity of the minimax algorithm makes it impossible to write a good
chess program without some further improvement.

• Assuming we have 150 seconds to make each move, for chess
we would be limited to a search of about 3 to 4 ply whereas...

• ...even an average human player can manage 6 to 8.

Luckily, it is possible to prune the search tree without affecting the
outcome and without having to examine all of it.

α − β pruning

Returning for a moment to the earlier, simplified example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

The search is depth-first and left to right.

α − β pruning

The search continues as previously for the first 8 leaves.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

We then discover that should Max play move 3 as an opening, Min
has the option of reaching a leaf with utility at most 1!

So: we don’t need to search any further under Max’s opening
move 3.

This is because the search has already established that Max can
do better by making opening move 2.

α − β pruning in general

If...

Tree

n

Opponent

Player

Opponent

Player

m
If m > n here or...

... if m > n here

... then n will never actually be reached.

α − β pruning in general

The search is depth-first, so we’re only ever looking at one path
through the tree.

We need to keep track of the value α where

α = the highest utility seen so far on the path for Max

α − β pruning in general

Similarly, if...

Tree

n

m
If m < n here or...

... if m < n here

Opponent

Player

Opponent

Player

...then again n will never actually be reached. We keep track of β =
the lowest utility seen so far on the path for Min.

α − β pruning in general

Assume Max begins.

Initial values for α and β are

α = −∞
and

β = +∞.

So: we call the function max(−∞, +∞, root).

α − β pruning in general

max(alpha,beta,node)
{

if (node is at cut-off)
return evaluation(node);

else
{

for (each successor s of node)
{
alpha = maximum(alpha,min(alpha,beta,s));
if (alpha >= beta)

return beta; // pruning happens here.
}

return alpha;
}

}

α − β pruning in general

min(alpha,beta,node)
{

if (node is at cut-off)
return evaluation(node);

else
{

for (each successor s of node)
{
beta = minimum(beta,max(alpha,beta,s));
if (beta <= alpha)

return alpha; // pruning happens here.
}

return beta;
}

}

α − β pruning in general

Applying this to the earlier example and keeping track of the values
for α and β you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞

Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6

How effective is α − β pruning?

(Warning! The theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the order in which moves
are arranged in the tree is critical.

So, it seems sensible to try good moves first:

• if you were to have a perfect move-ordering technique the α − β
pruning would be O(qp/2) as opposed to O(qp);

• so the branching factor would effectively be
√

q instead of q;

• and we would expect to be able to search ahead twice as many
moves as before.

However, this is not realistic: if you had such an ordering technique
you’d be able to play perfect games!

How effective is α − β pruning?

If moves are arranged at random then α − β pruning is:

• O((q/ log q)p) asymptotically when q > 1000 or;

• about O(q3p/4) for reasonable values of q.

In practice simple ordering techniques can get close to the best case.
For example, if we try captures, then threats, then moves forward etc.

Alternatively, we can implement an iterative deepening approach and
use the order obtained at one iteration to drive the next.

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine
it from a slightly different perspective.

Aims:

• To introduce the idea of a constraint satisfaction problem (CSP)
as a general means of representing and solving problems by
search.

• To look at the basic backtracking algorithm for solving CSPs.

• To look at some basic heuristics for solving CSPs.

Reading: Russell and Norvig, chapter 5.

Constraint satisfaction problems

The search scenarios examined so far seem in some ways unsatis-
factory.

• States were represented using an arbitrary and problem-specific
data structure.

• Heuristics, similarly, were problem-specific.

Constraint satisfaction problems

CSPs standardise the manner in which states and goal tests are
represented.

• As a result we can devise general purpose algorithms and heuris-
tics.

• The form of the goal test can tell us about the structure of the
problem.

• Consequently it is possible to introduce techniques for decom-
posing problems.

• We can also try to understand the relationship between the struc-
ture of a problem and the difficulty of solving it .

Constraint satisfaction problems

We have:

• A set of n variables V1, V2, . . . , Vn.

• For each Vi, a domain Di specifying the values that Vi can take.

• A set of m constraints C1, C2, . . . , Cm.

Each constraint Ci involves a set of variables and specifies an allow-
able collection of values.

• A state is an assignment of specific values to some or all of the
variables.

• An assignment is consistent if it violates no constraints.

• An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.

Formulation of CSPs as standard search problems

Clearly a CSP can be formulated as a search problem in the familiar
sense:

• Initial state : {}—no variables are assigned.

• Successor function : assigns value(s) to currently unassigned
variable(s) provided constraints are not violated.

• Goal : reached if all variables are assigned.

• Path cost : constant c per step.

In addition:

• The tree is limited to depth n so depth-first search is usable.

• We don’t mind what path is used to get to a solution, so it is
feasible to allow every state to be a complete assignment whether
consistent or not. (Local search is a possibility.)

Varieties of CSP

The simplest possible CSP will be discrete with finite domains and
we will concentrate on these.

1. Discrete CSPs with infinite domains:

• will need a constraint language. For example

V3 ≤ V10 + 5

• Algorithms are available for integer variables and linear con-
straints.

• There is no algorithm for integer variables and nonlinear con-
straints.

2. Continuous domains:

• Using linear constraints defining convex regions we have linear
programming.

• This is solvable in polynomial time in n.

Types of constraint

We will concentrate on binary constraints .

• Unary constraints can be removed by adjusting the domains.

• Higher-order constraints applying to three or more variables
can certainly be considered, but...

• ...when dealing with finite domains they can always be converted
to sets of binary constraints by introducing extra auxiliary vari-
ables .

It is also possible to introduce preference constraints in addition to
absolute constraints .

We may sometimes also introduce an objective function .

Example

We will use the problem of colouring the nodes of a graph as an
example.

1

2

3
4

5
6

7

8

1

2

3
4

5
6

7

8

We have three colours and directly connected nodes should have
different colours.

Example

This translates easily to a CSP formulation:

• The variables are the nodes

Vi = node i

• The domain for each variable contains the values black, white
and green (or grey on the printed handout)

Di = {B,W, G}

• The constraints enforce the idea that directly connected nodes
must have different colours. For example, for 1 and 2 the con-
straints specify

(B,W), (B, G), (W, B), (W, G), (G,B), (G,W)

Backtracking search

Consider what happens if we try to solve a CSP using a simple tech-
nique such as breadth-first search.

The branching factor is nd at the first step, for n variables each with
d possible values.

Step 2: (n − 1)d
Step 3: (n − 2)d

...
Step n: 1

Number of leaves = nd × (n − 1)d × · · · ×
= n!dn

BUT: only dn assignments are possible.

The order of assignment doesn’t matter, and we should assign to
one variable at a time.

Backtracking search

The search now looks something like this...

1=B
2=W

1=B
2=G 1=B

2=B

1=B
2=G
3=B

1=B
2=G
3=G

1=B
2=G
3=W

1=B

1=W 1=G

...and new possibilities appear.

Backtracking search

Backtracking search searches depth-first, assigning a single variable
at a time, and backtracking if no valid assignment is available.

1=B
2=W
3=G
4=B
5=W

Nothing is available for 7, so
either assign 8 or backtrack

6=B

1

2

3
4

5
6

7

8

Rather than using problem-specific heuristics to try to improve search-
ing, we can now explore heuristics applicable to general CSPs.

Backtracking search

result backtrack(problem)
{
return bt ([],problem);

}

result bt(assignment_list, problem)
{
if (assignment_list is complete)

return assignment_list;
next_var = get_next_var(assignment_list, problem);
for (every value in order_variables(next_var, assignment_list, problem))
{

if (value is consistent with assignment_list)
{
add "next_var=value" to assignment_list;
solution = bt(assignment_list, problem);
if (solution is not "fail")

return solution;
remove "next_var=value" from assignment_list;

}
}
return "fail";

}

Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain
general CSP-based heuristics:

• In what order should we try to assign variables?

• In what order should we try to assign possible values to a vari-
able?

Or being a little more subtle:

• What effect might the values assigned so far have on later at-
tempted assignments?

• When forced to backtrack, is it possible to avoid the same failure
later on?

Heuristics I: Choosing the order of variable assignments and values

Say we have 1 = B and 2 = W

1

2

3
4

5
6

7

8

?

At this point there is only one possible assignment for 3, whereas the
others have more flexibility. Assigning such variables first is called
the minimum remaining values (MRV) heuristic. (Alternatively, the
most constrained variable or fail first heuristic.

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The degree heuristic chooses the variable involved in the most con-
straints on as yet unassigned variables.

1

2

3
4

5
6

7

8

Start with 3, 5 or 7.

MRV is usually better but the degree heuristic is a good tie breaker.

Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in what order should values be assigned?

The least constraining value heuristic chooses first the value that
leaves the maximum possible freedom in choosing assignments for
the variable’s neighbours.

1

2

3
4

5
6

7

8

?
The heuristic prefers 1=B

Choosing 1 = G is bad as it removes the final possibility for 3.

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add 1 = G.

1

2

3
4

5
6

7

8

G is ruled out as an assignment to
2 and 3.

Each time we assign a value to a variable, it makes sense to delete
that value from the collection of possible assignments to its neigh-
bours . This is called forward checking . It works nicely in conjunc-
tion with MRV.

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start BWG BWG BWG BWG BWG BWG BWG BWG
2 = B WG = B WG WG BWG BWG BWG BWG
3 = W G = B = W WG BG BWG BG BWG
6 = B G = B = W WG G = B G BWG
5 = G G = B = W W = G = B ! BWG

At the fourth step, 7 has no possible assignments left.

However, we could have detected a problem a little earlier...

Heuristics II: forward checking and constraint propagation

...by looking at step three.

• At step three, 5 can be G only and 7 can be G only.

• But 5 and 7 are connected.

• So we can’t progress, and this hasn’t been detected.

• Ideally we want to do constraint propagation .

Trade-off: time to do the search, against time to explore constraints.

Constraint propagation

Arc consistency:

Consider a constraint as being directed . For example 4 → 5.

In general, say we have a constraint i → j and currently the domain
of i is Di and the domain of j is Dj.

i → j is consistent if

∀d ∈ Di, ∃d′ ∈ Dj such that i → j is valid

Constraint propagation

Example:

In step three of the table, D4 = {W, G} and D5 = {G}.

• 5 → 4 in step three of the table is consistent.

• 4 → 5 in step three of the table is not consistent.

4 → 5 can be made consistent by deleting G from D4.

Enforcing arc consistency

We can enforce arc consistency each time a variable i is assigned.

• We need to maintain a collection of arcs to be checked.

• Each time we alter a domain, we may have to include further arcs
in the collection.

This is because if i → j is inconsistent, resulting in a deletion from
Di, we may as a consequence make some arc k → i inconsistent.

Enforcing arc consistency

Why is this?

• i → j inconsistent means removing a value from Di.

• ∃d ∈ Di such that there is no valid d′ ∈ Dj.

• So delete d ∈ Di.

However some d′′ ∈ Dk may only previously have been pairable with
d.

k1

k2

kK

...
i j

We need to continue until all consequences are taken care of.

Enforcing arc consistency

Complexity:

• A binary CSP with n variables can have O(n2) directional con-
straints i → j.

• Any i → j can be considered at most d times where d = maxk |Dk|
because only d things can be removed from Di.

• Checking any single arc for consistency can be done in O(d2).

So the complexity is O(n2d3).

Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time.
Which suggests this doesn’t guarantee to find all inconsistencies.

The AC-3 algorithm

new_domains AC-3 (problem)
{

queue to_check = all arcs i->j;
while (to_check is not empty)
{
i->j = next(to_check);
if (remove_inconsistencies(Di,Dj))
{

for (each k that is a neighbour of i)
add k->i to to_check;

}
}

}

The AC-3 algorithm

bool remove_inconsistencies (domain1, domain2)
{

bool result = false;
for (each d in domain1)
{
if (no d’ in domain2 valid with d)
{

remove d from domain1;
result = true;

}
}
return result;

}

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

Given:

• Any k − 1 variables and,

• any consistent assignment to these.

Then:

• We can find a consistent assignment to any kth variable.

This is known as k-consistency.

A more powerful form of consistency

Strong k-consistency requires the we be k-consistent, k−1-consistent
etc as far down as 1-consistent.

If we can demonstrate strong n-consistency (where as usual n is the
number of variables) then an assignment can be found in O(nd).

Unfortunately, demonstrating strong n-consistency will be worst-case
exponential.

Backjumping I

The basic backtracking algorithm backtracks to the most recent as-
signment. This is known as chronological backtracking . It is not
always the best policy:

1

2

3
4

5
6

7

8

Say we’ve done 1 = B, 3 = W , 5 = G and 8 = B and now we want
to do 7. This isn’t possible so we backtrack, however re-assigning 8
clearly doesn’t help.

Backjumping I

Backjumping backtracks to the conflict set , which in this case is
{1, 3, 5}:

conflict(x) = set of currently assigned variables connected to x

This can be done by accumulating the sets conflict(x) as we make
assignments.

Backjumping I

If forward checking is in operation it can be used to find conflict sets.

Say we’re assigning to x, say x = v:

• Forward checking removes v from the Di of all xi connected to x.

• Then x needs to be added to conflict(xi).

• If the last member of Di is ever removed then we need to add all
of conflict(xi) to conflict(x).

In fact, use of forward checking turns out to make backjumping re-
dundant.

Backjumping II

In the current example, only two assignments are needed to doom
the process:

1

2

3
4

5
6

7

8

Next we can assign 8, 3, 7 and 4, but then 5 fails.

This can never work because 1 and 6 prevent us from getting an
assignment for 3, 7, 4 and 5.

Backjumping II

In this example {3, 7, 4, 5} as a collection are prevented by 1 and 6
from having an assignment.

We can redefine conflict(x) to be the collection of preceding variables
causing x and any subsequent variables not to have a valid set of
assignments.

Using the new concept for conflict(x) gives us conflict-directed back-
jumping :

When backtracking from x′ to x:

conflict(x) = conflict(x) ∪ (conflict(x′) − x)

so that the causes of failure after x are maintained.

151

