Prolog Assessed Exercise

Andrew Rice <andrew.rice@cl.cam.ac.uk>

November 20, 2007

The purpose of this exercise is to develop an implementafiBijkstra’s Shortest Path algorithm in Prolog.
You should work through and complete all steps of this doauiensure that each implemented predicate
behaves correctly under backtracking. You may make reasase of the cut operator where appropriate.
Details about submission and marking are at the end of thisident. This document consists of five
pages.

1 Basic Operations

The shortest path algorithm maintains lists of pairs. Eadhnepresents a node in the graph and the cost
of reaching it. We will represent them in the foivhn D whereV is the graph node aridis the cost. Begin
your source file with these auxiliary functions for checkthg equality of nodes and for comparing path
lengths:

eq(A-_, A).

ne(A- ,B-) :- A\=B.
lt(_-D1, -D2) :- D1 < D2.
ge(_-D1, -D2) :- D1 >= D2.

Include each of these in your source file with a brief explanatomment.

2 Supporting Predicates

2.1 List Minimum

Write a predicatei n(+L, - M n, - Rest) which takes a list and unifiedM n with the smallest value in

L (accordingtd t / 2) andRest with a list containing all values ih excludingM n. Your implementation
should use an accumulator and be amenable to last-call isption. It is not necessary to preserve the
original order ofL in Rest .

Include some test cases in your source file. Your tests sh@soecuted when the file is loaded and should
show that the predicate can generate the valué4$ nfandRest as well as check they are correct.

2.2 List Difference

The following predicateli f f (+L, +M - N) takes a lisL and a listMand unifiedN with a list containing
all items inL which are not irM The listL is assumed to contain no duplicate elements.

Figure 1: Example graph

diff(LLMR :- diff(L,MMR).
diff([],_ _1[1).

diff([HT],[],M[HRest]) :- diff(T,MM Rest).

diff([H T],[H2|], MRest) :- eq(H H2),!,diff(T, MM Rest).
diff([HT],[H| T2], M Rest) :- ne(H H2),diff([HT], T2, M Rest).

Write a comment describing the operation of this predicatkiaclude it and some test cases in your source
file.

2.3 ListMerge

Write a predicatmodeMer ge(+A, +B, - C) which merge listA andB together and unifies the result in
C. Lists A, B andC contain no duplicate elements: i.e. within the each listélig no pair of node¥1,v2
such thaeq(V1, V2) . You may assume that this is true of ligtandB and must ensure that its true for
list C. For those vertices which feature in both WsandB your algorithm should include the vertex with
the lowest distance i.e. given vertic€s (from A) andV2 (from B) such thateq(V1, V2) you should
includeV1 in Cif I t (V1, V2) or V2 in Cif ge(V1, V2). You should assume that lisésandB are
arbitrarily ordered, it is not necessary to preserve thieoin C.

Include your predicate in your source file along with somedases and comments describing its operation.

3 Representing Graphs

We encode the graph which we wish to analyse as a list of edeh edge consists of a compound term
Src- Dest - Di st whereSr c is the source noddest is the destination node ard st is the edge
cost between the nodes. Write a predigataph(exanpl e, - Li st) which unifiesLi st with the list
which represents the graph in Figure 1. We use the additengalment 'example’ to allow us to run our
program with different graphs later.

You may assume that in any graph there is at most one edgedretmy two particular nodes.

3.1 Start Nodes

Write a rulenode(+Gr aph, - Node) which unifiesNode with a node in the graph. This rule should
iterate through all nodes in the graph when backtrackingbould only return each node once. Remember

that a node can be at the start or the end of an edge in your ggppdsentation. One approach to do this
is to construchode/ 2 from these auxiliary rules:

« unr ol | which builds a list (containing duplicates) of all the nodethe graph;

* uni que which removes duplicates from a list. Hint: use the builtAsber (E, L) function which
is true ifE is an element of, and the not operator.

3.2 Adjacent Nodes

Write a predicatedj acent (+Gr aph, +Node, - Adj) which is true ifAdj is a list of all nodes reach-
able from the nod&lode in one hop inGr aph. Node is of the form of a single graph vertex label (i.e. the
minimum cost is not includedfdj should be a list of node-cost pairs.

For example, given the query adjacent([a-b-1,a-c-2,hbac4l],a,A) Prolog should return A = [b-1,c-2]
and no further results.

Include your predicate in your source file along with somédases.

3.3 Increasing Distance

Write a ruleaddDi st (+Nodes, +D, - NewNodes) which is true ifNewNodes is a list containing all
the nodes iMNodes with their edge cost incremented by

4 Dijsktra’s Shortest Path Algorithm

The operation of Dijsktra’s shortest path algorithm is diesal in detail in the Algorithms Il course. Stu-
dents might also consult Wikipedia (search for “Dijkstralgorithm”), and also view Carla Laffra’'s Java
applet visualiset.

We implement it in Prolog as follows:

di j kstra(G aph,MnDist,[],MnDist).
di j kstra(G aph, C osed, Open, M nDi st): -
m n(Open, V- D, ReducedOpen),
adj acent (G aph, V, Adj acent Nodes) ,
di f f (Adj acent Nodes, d osed, PrunedNodes),
addDi st (PrunedNodes, D, Updat edPr unedNodes) ,
nodeMer ge(Updat edPr unedNodes, ReducedOpen, Next Open) ,
di j kstra(G aph, [V-D C osed], Next Qpen, M nDi st).

Include the above code in your source file with comments éxiplg the purpose of the various variables.
Add an additional clausdi j kst ra(+Gr aph, +Start, - M nDi st) which calculates the minimum
distances from the nodgt art by querying thedi j kst r a/ 4 predicate. Hint: you need to decide on a
suitable value for the initiaDpen list.

Include a few simple tests for your implementation. You miemonstrate that the algorithm is correct
when there are multiple paths to the same node; there ars indpe graph; and some nodes are unreach-
able from the start node.

Ihttp://ww. dgp. t or ont 0. edu/ peopl e/ JamesSt ewar t / 270/ 9798s/ Laf fra/ Di j kst r aAppl et . ht ni

5 Test Case

Append the following test clauses to your file:

take([H T],HT).
take([HT],R[HS]) :- take(T,R S).

perm([].[]).
permList,[HT]) :- take(List,H R, perm(R T).
test (Name, Start) :-

graph(Nane, G,

node(G, Start),

dijkstra(G Start, L),

m nCost (Nane, Start, L2),

perm(L, L2).
test(Nanme) :- findall (S,test(Name, S),L), graphNodes(Nane, L2), pern(L,L2).
m nCost (exampl e, a,[f-12, e-10, h-9, j-8, i-6, d-4, g-4, b-3, c-1, a-0]).
m nCost (exampl e, b, [c-12, e-7, h-6, j-5, i-3, d-1, b-0]).
m nCost (example,c,[e-9, h-8, j-7, i-5, d-3, b-2, c-0]).
m nCost (exanpl e, d, [b-13, c-11, e-6, h-5, j-4, i-2, d-0]).
m nCost (exanple,e,[j-4, e-0]).
m nCost (exanple, f,[e-13, h-12, j-11, i-9, d-7, b-6, c-4, a-3, g-2, f-0]).
m nCost (exampl e, g,[f-13, e-11, h-10, j-9, i-7, d-5, b-4, ¢c-2, a-1, g-0]).
m nCost (exanmpl e, h,[d- 16, b-15, c-13, j-5, i-4, e-1, h-0])
m nCost (exanmpl e,i,[d-12, b-11, c-9, j-8, e-4, h-3, i-0]).
m nCost (exanple,j,[e-4, j-0]).

gr aphNodes(exanpl e, [a, b,c,d, e, f,g,h,i,j]).

:- test(exanple).

Prolog will reply ‘Yes’ to the test/1 predicate if the solutis returned by your implementation are correct
for the chosen graph.

6 Dedliverablesand Deadlines

You should submit a single Prolog source file named CRSIDsgfy.pl (replace CRSID with your CR-
SID). This file should contain all the clauses above alondy &fipropriate tests. The file should compile
and load in SWI-Prolog without errors, warnings about st variables, or failed clauses. For the avoid-
ance of doubt: your code is expected to work correctly on $dllog 5.6.46 (the current stable release)
running on PWF Linux.

Email your submission to <prolog-tick@cl.cam.ac.uk>.

Examination will take the form of a visual inspection of y@aaurce code, a test using a different graph to
your example above and an oral examination. Your oral viwarération will last for 7 and a half minutes
and you will be expected to explain the functioning of youde@nd resolve any issues turned up by your
examiner. Ensure that you have re-familiarised yourseh wour submission prior to attending your exam.
You will be told at the end of your viva whether you have pasgmat tick.

6.1 Important Dates

Viva sign-up sheets placed outside Student Administratidine
William Gates Building. Write your CRSID in an empty slot.

Fri 18-Apr-2008 12:00 noon

Submission deadline for your tick (by email)

Fri 25-Apr-2008 12:00 noon

Viva sign-up sheets taken down

Fri 25-Apr-2008 12:00 noon

Viva Examinations

Thu 8-May-2008 13:00 to 16:00

Viva Examinations

6.2 Tick Checklist

In order to achieve your tick you must have achieved the folig:

Fri 9-May-2008 13:00 to 16:00

. Implement and test the clauses described above providimgnents where requested;

. Your submitted code must pass visual inspection and hdutést on a different example graph;

. Submit your tick by email before 25-Apr-2008 12:00 noon;

1
2
3. Sign up for a Viva examination before 25-Apr-2008 12:00mo
4
5

. Attend your examination and answer questions about ydamgsion to the examiner’s satisfaction:

be prepared and punctual.

6.3 Alternative C & C++ Assessed Exercise

You need only complete either the Prolog tick or the C & C+k bat you may complete both if you wish.
No further examination credit is available for completirglbticks. The examination procedure for the C
& C++ tick is of the same form as the above and will run concutfgewith the Prolog tick examinations.

END OF TICK

