
Prolog Assessed Exercise

Andrew Rice <andrew.rice@cl.cam.ac.uk>

November 20, 2007

The purpose of this exercise is to develop an implementationof Dijkstra’s Shortest Path algorithm in Prolog.
You should work through and complete all steps of this document. Ensure that each implemented predicate
behaves correctly under backtracking. You may make reasoned use of the cut operator where appropriate.
Details about submission and marking are at the end of this document. This document consists of five
pages.

1 Basic Operations

The shortest path algorithm maintains lists of pairs. Each pair represents a node in the graph and the cost
of reaching it. We will represent them in the formV-D whereV is the graph node andD is the cost. Begin
your source file with these auxiliary functions for checkingthe equality of nodes and for comparing path
lengths:

eq(A-_,A-_).
ne(A-_,B-_) :- A \= B.
lt(_-D1,_-D2) :- D1 < D2.
ge(_-D1,_-D2) :- D1 >= D2.

Include each of these in your source file with a brief explanatory comment.

2 Supporting Predicates

2.1 List Minimum

Write a predicatemin(+L,-Min,-Rest)which takes a listL and unifiesMinwith the smallest value in
L (according tolt/2) andRestwith a list containing all values inL excludingMin. Your implementation
should use an accumulator and be amenable to last-call optimisation. It is not necessary to preserve the
original order ofL in Rest.

Include some test cases in your source file. Your tests shouldbe executed when the file is loaded and should
show that the predicate can generate the values ofMin andRest as well as check they are correct.

2.2 List Difference

The following predicatediff(+L,+M,-N) takes a listL and a listM and unifiesN with a list containing
all items inL which are not inM. The listL is assumed to contain no duplicate elements.

1

Figure 1: Example graph

diff(L,M,R) :- diff(L,M,M,R).
diff([],_,_,[]).
diff([H|T],[],M,[H|Rest]) :- diff(T,M,M,Rest).
diff([H|T],[H2|_],M,Rest) :- eq(H,H2),!,diff(T,M,M,Rest).
diff([H|T],[H2|T2],M,Rest) :- ne(H,H2),diff([H|T],T2,M,Rest).

Write a comment describing the operation of this predicate and include it and some test cases in your source
file.

2.3 List Merge

Write a predicatenodeMerge(+A,+B,-C) which merge listsA andB together and unifies the result in
C. ListsA, B andC contain no duplicate elements: i.e. within the each list there is no pair of nodesV1,V2
such thateq(V1,V2). You may assume that this is true of listsA andB and must ensure that its true for
list C. For those vertices which feature in both listA andB your algorithm should include the vertex with
the lowest distance i.e. given verticesV1 (from A) andV2 (from B) such thateq(V1,V2) you should
includeV1 in C if lt(V1,V2) or V2 in C if ge(V1,V2). You should assume that listsA andB are
arbitrarily ordered, it is not necessary to preserve this order inC.

Include your predicate in your source file along with some test cases and comments describing its operation.

3 Representing Graphs

We encode the graph which we wish to analyse as a list of edges.Each edge consists of a compound term
Src-Dest-Dist whereSrc is the source node,Dest is the destination node andDist is the edge
cost between the nodes. Write a predicategraph(example,-List) which unifiesList with the list
which represents the graph in Figure 1. We use the additionalargument ’example’ to allow us to run our
program with different graphs later.

You may assume that in any graph there is at most one edge between any two particular nodes.

3.1 Start Nodes

Write a rulenode(+Graph,-Node) which unifiesNode with a node in the graph. This rule should
iterate through all nodes in the graph when backtracking butshould only return each node once. Remember

2

that a node can be at the start or the end of an edge in your graphrepresentation. One approach to do this
is to constructnode/2 from these auxiliary rules:

• unroll which builds a list (containing duplicates) of all the nodesin the graph;

• uniquewhich removes duplicates from a list. Hint: use the built-inmember(E,L) function which
is true ifE is an element ofL, and the not operator.

3.2 Adjacent Nodes

Write a predicateadjacent(+Graph,+Node,-Adj)which is true ifAdj is a list of all nodes reach-
able from the nodeNode in one hop inGraph. Node is of the form of a single graph vertex label (i.e. the
minimum cost is not included),Adj should be a list of node-cost pairs.

For example, given the query adjacent([a-b-1,a-c-2,b-a-4,b-c-1],a,A) Prolog should return A = [b-1,c-2]
and no further results.

Include your predicate in your source file along with some test cases.

3.3 Increasing Distance

Write a ruleaddDist(+Nodes,+D,-NewNodes) which is true ifNewNodes is a list containing all
the nodes inNodes with their edge cost incremented byD.

4 Dijsktra’s Shortest Path Algorithm

The operation of Dijsktra’s shortest path algorithm is described in detail in the Algorithms II course. Stu-
dents might also consult Wikipedia (search for “Dijkstra’salgorithm”), and also view Carla Laffra’s Java
applet visualiser.1

We implement it in Prolog as follows:

dijkstra(Graph,MinDist,[],MinDist).
dijkstra(Graph,Closed,Open,MinDist):-

min(Open,V-D,ReducedOpen),
adjacent(Graph,V,AdjacentNodes),
diff(AdjacentNodes,Closed,PrunedNodes),
addDist(PrunedNodes,D,UpdatedPrunedNodes),
nodeMerge(UpdatedPrunedNodes,ReducedOpen,NextOpen),
dijkstra(Graph,[V-D|Closed],NextOpen,MinDist).

Include the above code in your source file with comments explaining the purpose of the various variables.
Add an additional clausedijkstra(+Graph,+Start,-MinDist) which calculates the minimum
distances from the nodeStart by querying thedijkstra/4 predicate. Hint: you need to decide on a
suitable value for the initialOpen list.

Include a few simple tests for your implementation. You mustdemonstrate that the algorithm is correct
when there are multiple paths to the same node; there are loops in the graph; and some nodes are unreach-
able from the start node.

1http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html

3

5 Test Case

Append the following test clauses to your file:

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).

test(Name,Start) :-
graph(Name,G),
node(G,Start),
dijkstra(G,Start,L),
minCost(Name,Start,L2),
perm(L,L2).

test(Name) :- findall(S,test(Name,S),L), graphNodes(Name,L2), perm(L,L2).

minCost(example,a,[f-12, e-10, h-9, j-8, i-6, d-4, g-4, b-3, c-1, a-0]).
minCost(example,b,[c-12, e-7, h-6, j-5, i-3, d-1, b-0]).
minCost(example,c,[e-9, h-8, j-7, i-5, d-3, b-2, c-0]).
minCost(example,d,[b-13, c-11, e-6, h-5, j-4, i-2, d-0]).
minCost(example,e,[j-4, e-0]).
minCost(example,f,[e-13, h-12, j-11, i-9, d-7, b-6, c-4, a-3, g-2, f-0]).
minCost(example,g,[f-13, e-11, h-10, j-9, i-7, d-5, b-4, c-2, a-1, g-0]).
minCost(example,h,[d-16, b-15, c-13, j-5, i-4, e-1, h-0]).
minCost(example,i,[d-12, b-11, c-9, j-8, e-4, h-3, i-0]).
minCost(example,j,[e-4, j-0]).
graphNodes(example,[a,b,c,d,e,f,g,h,i,j]).

:- test(example).

Prolog will reply ‘Yes’ to the test/1 predicate if the solutions returned by your implementation are correct
for the chosen graph.

6 Deliverables and Deadlines

You should submit a single Prolog source file named CRSID-prolog07.pl (replace CRSID with your CR-
SID). This file should contain all the clauses above along with appropriate tests. The file should compile
and load in SWI-Prolog without errors, warnings about singleton variables, or failed clauses. For the avoid-
ance of doubt: your code is expected to work correctly on SWI-Prolog 5.6.46 (the current stable release)
running on PWF Linux.

Email your submission to <prolog-tick@cl.cam.ac.uk>.

Examination will take the form of a visual inspection of yoursource code, a test using a different graph to
your example above and an oral examination. Your oral viva examination will last for 7 and a half minutes
and you will be expected to explain the functioning of your code and resolve any issues turned up by your
examiner. Ensure that you have re-familiarised yourself with your submission prior to attending your exam.
You will be told at the end of your viva whether you have passedyour tick.

4

6.1 Important Dates

Viva sign-up sheets placed outside Student Administrationin the
William Gates Building. Write your CRSID in an empty slot.

Fri 18-Apr-2008 12:00 noon

Submission deadline for your tick (by email) Fri 25-Apr-2008 12:00 noon
Viva sign-up sheets taken down Fri 25-Apr-2008 12:00 noon
Viva Examinations Thu 8-May-2008 13:00 to 16:00
Viva Examinations Fri 9-May-2008 13:00 to 16:00

6.2 Tick Checklist

In order to achieve your tick you must have achieved the following:

1. Implement and test the clauses described above providingcomments where requested;

2. Your submitted code must pass visual inspection and a further test on a different example graph;

3. Sign up for a Viva examination before 25-Apr-2008 12:00 noon;

4. Submit your tick by email before 25-Apr-2008 12:00 noon;

5. Attend your examination and answer questions about your submission to the examiner’s satisfaction:
be prepared and punctual.

6.3 Alternative: C & C++ Assessed Exercise

You need only complete either the Prolog tick or the C & C++ tick but you may complete both if you wish.
No further examination credit is available for completing both ticks. The examination procedure for the C
& C++ tick is of the same form as the above and will run concurrently with the Prolog tick examinations.

END OF TICK

5

