
Why decompilation?

This course is ostensibly about Optimising Compilers.

It is really about program analysis and transformation.

Decompilation is achieved through analysis and
transformation of target code; the transformations

just work in the opposite direction.

The decompilation problem

Even simple compilation discards a lot of information:

• Comments

• Function and variable names

• Structured control flow

• Type information

The decompilation problem
Optimising compilation is even worse:

• Dead code and common subexpressions are
eliminated

• Algebraic expressions are rewritten

• Code and data are inlined; loops are unrolled

• Unrelated local variables are allocated to the
same physical register

• Instructions are reordered by code motion
optimisations and instruction scheduling

The decompilation problem

Some of this information is never going to be
automatically recoverable (e.g. comments, variable

names); some of it we may be able to partially
recover if our techniques are sophisticated enough.

Compilation is not injective. Many different source
programs may result in the same compiled code, so

the best we can do is to pick a reasonable
representative source program.

Intermediate code

It is relatively straightforward to extract a
flowgraph from an assembler program.

Basic blocks are located in the same way as during
forward compilation; we must simply deal with the
semantics of the target instructions rather than our

intermediate 3-address code.

Intermediate code

For many purposes (e.g. simplicity, retargetability) it might
be beneficial to convert the target instructions back into

3-address code when storing it into the flowgraph.

This presents its own problems: for example, many
architectures include instructions which test or set

condition flags in a status register, so it may be necessary
to laboriously reconstruct this behaviour with extra

virtual registers and then use dead-code elimination to
remove all unnecessary instructions thus generated.

Control reconstruction

A compiler apparently destroys the high-level control
structure which is evident in a program’s source code.

After building a flowgraph during decompilation, we can
recover some of this structure by attempting to match

intervals of the flowgraph against some fixed set of
familiar syntactic forms from our high-level language.

Finding loops

Any structured loops from the original program will
have been compiled into tests and branches; they
will look like arbitrary (“spaghetti”) control flow.

In order to recover the high-level structure of these
loops, we must use dominance.

Dominance
In a flowgraph, we say a node m dominates

another node n if control must go through m
before it can reach n.

The immediate dominator of a node n is the
unique node that dominates n but doesn’t

dominate any other dominator of n.

We can represent this dominance relation with
a dominance tree in which each edge connects a

node with its immediate dominator.

Dominance

a

b

ENTRY f

d

c

e

EXIT

Dominance

ENTRY f

a

b c

d

e

EXIT

Back edges

We can now define the concept of a back edge.

In a flowgraph, a back edge is one whose head
dominates its tail.

Back edges

a

b

ENTRY f

d

c

e

EXIT

ENTRY f

a

b c

d

e

EXIT

Finding loops

Each back edge has an associated loop.

The head of a back edge points to the loop header,
and the loop body consists of all the nodes from
which the tail of the back edge can be reached

without passing through the loop header.

Finding loops

a

b

ENTRY f

d

c

e

EXIT

Finding loops

Once each loop has been identified, we can examine
its structure to determine what kind of loop it is,

and hence how best to represent it in source code.

Finding loops

b

d

Here, the loop header contains a conditional which
determines whether the loop body is executed, and
the last node of the body unconditionally transfers

control back to the header.

This structure corresponds
to source-level

while (...) {...}
syntax.

Finding loops

a

e

Here, the loop header unconditionally allows the
body to execute, and the last node of the body
tests whether the loop should execute again.

This structure corresponds
to source-level

do {...} while (...)
syntax.

Finding conditionals

A similar principle applies when trying to
reconstruct conditionals: we look for structures
in the flowgraph which may be represented by
particular forms of high-level language syntax.

Finding conditionals

a

b

c

d

The first node in this interval
transfers control to one node if

some condition is true, otherwise it
transfers control to another node

(which control also eventually
reaches along the first branch).

This structure corresponds to
source-level

if (...) then {...}
syntax.

Finding conditionals

a

b c

d

This structure corresponds
to source-level

if (...) then {...}
else {...}

syntax.

The first node in this interval transfers control to one
node if some condition is true, and another node if the

condition is false; control always reaches some later node.

Control reconstruction

We can keep doing this for whatever other control-
flow constructs are available in our source language.

Once an interval of the flowgraph has been
matched against a higher-level control structure in
this way, its entire subgraph can be replaced with a
single node which represents that structure and

contains all of the information necessary to
generate the appropriate source code.

Type reconstruction
Many source languages also contain rich information

about the types of variables: integers, booleans,
arrays, pointers, and more elaborate data-structure

types such as unions and structs.

At the target code level there are no variables, only
registers and memory locations.

Types barely exist here: memory contains arbitrary
bytes, and registers contain integers of various bit-

widths (possibly floating-point values too).

Type reconstruction

Reconstruction of the types of source-level
variables is made more difficult by the

combination of SSA and register allocation
performed by an optimising compiler.

SSA splits one user variable into many variables
— one for each static assignment — and any of
these variables with disjoint live ranges may be

allocated to the same physical register.

Type reconstruction
So each user variable may be spread between several
registers — and each register may hold the value of

different variables at different times.

It’s therefore a bit hopeless to try to give a type to
each physical register; the notional type of the value

held by any given register will change during execution.

int x = 42;
…
char *y = “42”;

MOV r3,#42
…
MOV r3,#0xFF34

Type reconstruction

Happily, we can undo the damage by once again
converting to SSA form: this will split a single

register into many registers, each of which can
be assigned a different type if necessary.

MOV r3,#42
…
MOV r3,#0xFF34

MOV r3a,#42
…
MOV r3b,#0xFF34

Type reconstruction

int foo (int *x) {
 return x[1] + 2;
}

C

f: ldr r0,[r0,#4]
 add r0,r0,#2
 mov r15,r14

ARM

compile

f: ldr r0,[r0,#4]
 add r0,r0,#2
 mov r15,r14

ARM

Type reconstruction
int f (int r0) {
 r0 = *(int *)(r0 + 4);
 r0 = r0 + 2;
 return r0;
}

C

decompile

Type reconstruction
int f (int r0) {
 r0 = *(int *)(r0 + 4);
 r0 = r0 + 2;
 return r0;
}

SSA

int f (int r0a) {
 int r0b = *(int *)(r0a + 4);
 int r0c = r0b + 2;
 return r0c;
}

Type reconstruction

reconstruct types

int f (int r0a) {
 int r0b = *(int *)(r0a + 4);
 int r0c = r0b + 2;
 return r0c;
}

int f (int *r0a) {
 int r0b = *(r0a + 1);
 int r0c = r0b + 2;
 return r0c;
}

Type reconstruction

reconstruct syntax

int f (int *r0a) {
 int r0b = r0a[1];
 int r0c = r0b + 2;
 return r0c;
}

int f (int *r0a) {
 int r0b = *(r0a + 1);
 int r0c = r0b + 2;
 return r0c;
}

Type reconstruction

propagate copies

int f (int *r0a) {
 int r0b = r0a[1];
 int r0c = r0b + 2;
 return r0c;
}

int f (int *r0a) {
 return r0a[1] + 2;
}

Type reconstruction

int f (int *r0a) {
 return r0a[1] + 2;
}

T f (T *r0a) {
 return r0a[1] + 2;
}

In fact, the return type could be
anything, so more generally:

Type reconstruction

This is all achieved using constraint-based analysis:
each target instruction generates constraints on the

types of the registers, and we then solve these
constraints in order to assign types at the source level.

Typing information is often incomplete
intraprocedurally (as in the example); constraints

generated at call sites help to fill in the gaps.

We can also infer unions, structs, etc.

Summary

• Decompilation is another application of program
analysis and transformation

• Compilation discards lots of information about
programs, some of which can be recovered

• Loops can be identified by using dominator trees

• Other control structure can also be recovered

• Types can be partially reconstructed with constraint-
based analysis

