Testing and verification
Functional programs are easier to reason about

¢ We wish to establish that a program is correct, in that it

— L ecture X — meets its specification.
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¢ [MLWP, Chapter 6] Prove that the program is correct within a mathematical
model.

Proofs can be long, tedious, complicated, hard, etc.

Rigorous vs. formal proof

A rigorous proof is a convincing mathematical argument Modelling assumptions
¢ Rigorous proof. ¢ Proofs treat programs as mathematical objects, subject to
+ What mathematicians and some computer scientists mathematical laws.
do. ¢ Only purely functional programs will be allowed.

+ Done in the mathematical vernacular. _ _ _ _
! ¢ Types will be interpreted as sets, which restricts the form

+ Needs clear foundations. of datatype declarations.

¢ Formal proof. ¢ We shall allow only well-defined expressions. They must

+ What logicians and some computer scientists study. be legally typed, and must denote terminating
+ Done within a formal proof system. computations. By insisting upon termination, we can work

+ Needs machine support. within elementary set theory.



Structural induction on lists
Applications

Let P be a property on lists that we would like to prove.

To establish fun nlen [] =0

| nlen (h::t) =1 + nlen(t) ;
P(¢) for all £ of type T 1ist

by structural induction, it suffices to prove. fun len 1
= let
1. The base case: P([1). ©
fun addlen( n , [ ) =n
2. The inductive step: For all h of type T and t of type T list, | addlen( n , h::t ) = addlen( n+1 , t )
P(t) implies P(h::t) in

addlen( 0 , 1 )

Example: No list equals its own tail.
end ;

For all h of type T and all t of type T 1ist, h::t # t.

¢ Foralllists ¢, £, and {,,
. nlen({,@{;) = nlen({;) + nlen({,).

infix @ ;
fun [] @1 =1

—h

| (h::t) @1 =h :: ( t@l ) ; revApp({q,{2) = nrev({;)@L,.
nrev({;@{;) = nrev({,)@nrev({;).
fun nrev [] = []
tel] = L

| nrev (h::t) = (nrev t) @ [h] ;
({104l = (Laly)el,.

fun revApp( [] , 1) =1 nrev(nrev({)) = (.
1

| revApp( h::t , 1 ) = revApp( t , h::1 ) ;

N o 0o kw0 D

nlen({) = len({).



Equality of functions
The law of extensionality states that functions f,g: o« — 3 are
equal iff f(x) = g(x) for all x € «.
Example:
¢ Associativity of composition.
infix o;
fun (f o g) x = f( g x ) ;
Forallf:x—fB,g:p —>v,andh:y — 9,
ho(gof) = (hog)of :a—bd

¢ fun id x = x ;

Forall f:x — B,|foid = f = idof|

Multisets

Multisets are a useful abstraction to specify
properties of functions operating on lists.

¢ A multiset, also referred to as a bag, is a collection of
elements that takes account of their number but not their
order.

Formally, a multiset m on a set S is represented as a
function m:S — N.

Applications
fun map £ [] = []
‘ | map £ (h::t) = (f h) :: map f t ;
1. Functoriality* of map.

Forallf:x— pandg:p — v,

map(gof) = map(g)omap(f) :olist — 7y list

2. Forall f:x— B,and {;,{,: « list,
map f ({1 @¢{;) = (map f ;)@ (map f{;) :[plist

3. Forall f: o — f3,

(map f) onrev = nrevo (map f) :f list

#This is a technical term from Category Theory.

¢ Some ways of forming multisets:
1. the empty multiset contains no elements and corresponds
to the constantly 0 function
D:x—0

2. the singleton s multiset contains one occurrence of s, and
corresponds to the function

1 ,ifx=s
(s) i1 x+—
0 , otherwise
3. the multiset sum m; and m, contains all elements in the
multisets m; and m, (accumulating repetitions of
elements), and corresponds to the function

myEms:x — my(x) + mo(x)



An application

Consider
fun take( [ , _ ) = []
| take( h::t , i )
=1if 1 > 0
then h :: take( t , i-1 )
else [] ;

fun drop( [1, _ ) =[]
| drop( 1 as h::t , i)
= if i > 0 then drop( t , i-1 )

else 1 ;

Structural induction on trees

Let P be a property on binary trees that we would like to prove.

To establish
P(t) for all t of type T tree
by structural induction, it suffices to prove.
1. The base case: P(empty).

2. The inductive step: For all n of type T and t;, t; of type
T tree,

P(t1) and P(tz) Imply P(node(n,h,tz))
Example: No tree equals its own left subtree.

For all n of type T and all t;, t, of type T 1ist,
node(n,t1,t2) 7é t.

and let
mset([]1) = 0

mset(h::t) = (h)Wmset(t)

Then, forall {: « 1ist and n : int,

mset(take({,n)) W mset(drop({,n)) =

mset (£)

An application

fun treemap f empty = empty
| treemap f ( node(n,l,r) )

= node( f n , treemap f 1 , treemap f r ) ;

Functoriality of treemap.

‘treemap id = id‘

Forallf:x— pandg:p — v,

treemap(gof) = treemap(g)otreemap(f)

I X tree — Y tree




Structural induction on
finitely-branching trees

datatype

’a FBtree = node of

and

’a FBforest = empty | seq of ’a FBtree * ’a FBforest ;

’a x ’a FBforest

An application

fun FBtreemap f ( node(n,F) )
= node( f n , FBforestmap f F )
and FBforestmap f empty = empty
| FBforestmap f ( seq(t,F) )
= seq( FBtreemap f t , FBforestmap f F ) ;

Functoriality of FBtreemap and FBforestmap.

‘FBtreemap id = id

FBforestmap id = id‘

Forallf:x— pandg:p — v,

FBtreemap(g o f)

FBforestmap(go f)

FBtreemap(g) o FBtreemap(f)
FBforestmap(g) o FBforestmap(f)

Let P and Q be properties on finitely-branching trees and
forests, respectively, that we would like to prove.

To establish

P(t) for all t of type T FBtree
and
Q(F) for all F of type T FBforest

by structural induction, it suffices to prove.
1. The base case: Q(empty).

2. The inductive step: For all n of type T, t of type T FBtree,
and F of type T FBforest,
Q(F) implies P(node(n, F))

P(t) and Q(F) imply Q(seq(t, F))

and



