
˜ Lecture X ˜
Keywords:

testing and verification; rigorous and formal proofs;
structural induction on lists; law of extensionality;
multisets; structural induction on trees.

References:

� [MLWP, Chapter 6]

/ 1

Testing and verification

Functional programs are easier to reason about

� We wish to establish that a program is correct, in that it
meets its specification.

� Testing.
Try a selection of inputs and check against expected
results.
There is no guarantee that all bugs will be found.

� Verification.
Prove that the program is correct within a mathematical
model.
Proofs can be long, tedious, complicated, hard, etc.

/ 2

Rigorous vs. formal proof

A rigorous proof is a convincing mathematical argument

� Rigorous proof.
� What mathematicians and some computer scientists

do.
� Done in the mathematical vernacular.
� Needs clear foundations.

� Formal proof.
� What logicians and some computer scientists study.
� Done within a formal proof system.
� Needs machine support.

/ 3

Modelling assumptions

� Proofs treat programs as mathematical objects, subject to
mathematical laws.

� Only purely functional programs will be allowed.

� Types will be interpreted as sets, which restricts the form
of datatype declarations.

� We shall allow only well-defined expressions. They must
be legally typed, and must denote terminating
computations. By insisting upon termination, we can work
within elementary set theory.

/ 4

Structural induction on lists

Let P be a property on lists that we would like to prove.

To establish

P(`) for all ` of type τ list

by structural induction, it suffices to prove.

1. The base case: P([]).

2. The inductive step: For all h of type τ and t of type τ list,
P(t) implies P(h::t)

Example: No list equals its own tail.

For all h of type τ and all t of type τ list, h::t 6= t.

/ 5

Applications

fun nlen [] = 0

| nlen (h::t) = 1 + nlen(t) ;

fun len l

= let

fun addlen(n , []) = n

| addlen(n , h::t) = addlen(n+1 , t)

in

addlen(0 , l)

end ;

/ 6

infix @ ;

fun [] @ l = l

| (h::t) @ l = h :: (t@l) ;

fun nrev [] = []

| nrev (h::t) = (nrev t) @ [h] ;

fun revApp([] , l) = l

| revApp(h::t , l) = revApp(t , h::l) ;

/ 7

� For all lists `, `1, and `2,
1. nlen(`1@`2) = nlen(`1) + nlen(`2).
2. revApp(`1, `2) = nrev(`1) @ `2.
3. nrev(`1 @ `2) = nrev(`2) @ nrev(`1).
4. ` @ [] = `.
5. ` @ (`1 @ `2) = (` @ `1) @ `2.
6. nrev(nrev(`)) = `.
7. nlen(`) = len(`).

/ 8

Equality of functions

The law of extensionality states that functions f, g : α → β are
equal iff f(x) = g(x) for all x ∈ α.
Example:

� Associativity of composition.
infix o;

fun (f o g) x = f(g x) ;

For all f : α → β, g : β → γ, and h : γ → δ,
h o (g o f) = (h o g) o f : α → δ

� fun id x = x ;

For all f : α → β, f o id = f = id o f

/ 9

Applications
fun map f [] = []

| map f (h::t) = (f h) :: map f t ;

1. Functorialitya of map.
map id = id

For all f : α → β and g : β → γ,
map(g o f) = map(g) o map(f) : α list → γ list

2. For all f : α → β, and `1, `2 : α list,
map f (`1 @ `2) = (map f `1) @ (map f `2) : β list

3. For all f : α → β,
(map f) o nrev = nrev o (map f) : β list

a
This is a technical term from Category Theory.

/ 10

Multisets

Multisets are a useful abstraction to specify
properties of functions operating on lists.

� A multiset, also referred to as a bag, is a collection of
elements that takes account of their number but not their
order.
Formally, a multiset m on a set S is represented as a
function m : S → N.

/ 11

� Some ways of forming multisets:
1. the empty multiset contains no elements and corresponds

to the constantly 0 function
∅ : x 7→ 0

2. the singleton s multiset contains one occurrence of s, and
corresponds to the function

〈s〉 : x 7→






1 , if x = s

0 , otherwise
3. the multiset sum m1 and m2 contains all elements in the

multisets m1 and m2 (accumulating repetitions of
elements), and corresponds to the function

m1] m2 : x 7→ m1(x) + m2(x)

/ 12

An application

Consider

fun take([] , _) = []

| take(h::t , i)

= if i > 0

then h :: take(t , i-1)

else [] ;

fun drop([], _) = []

| drop(l as h::t , i)

= if i > 0 then drop(t , i-1)

else l ;

/ 13

and let
mset([]) = ∅

mset(h::t) = 〈h〉] mset(t)

Then, for all ` : α list and n : int,

mset(take(`, n))] mset(drop(`, n)) = mset(`)

/ 14

Structural induction on trees

Let P be a property on binary trees that we would like to prove.
To establish

P(t) for all t of type τ tree

by structural induction, it suffices to prove.
1. The base case: P(empty).

2. The inductive step: For all n of type τ and t1, t2 of type
τ tree,

P(t1) and P(t2) imply P(node(n, t1, t2))

Example: No tree equals its own left subtree.

For all n of type τ and all t1, t2 of type τ list,
node(n, t1, t2) 6= t1.

/ 15

An application

fun treemap f empty = empty

| treemap f (node(n,l,r))

= node(f n , treemap f l , treemap f r) ;

Functoriality of treemap.

treemap id = id

For all f : α → β and g : β → γ,

treemap(g o f) = treemap(g) o treemap(f) : α tree → γ tree

/ 16

Structural induction on
finitely-branching trees

datatype

’a FBtree = node of ’a * ’a FBforest

and

’a FBforest = empty | seq of ’a FBtree * ’a FBforest ;

/ 17

Let P and Q be properties on finitely-branching trees and
forests, respectively, that we would like to prove.

To establish
P(t) for all t of type τ FBtree

and
Q(F) for all F of type τ FBforest

by structural induction, it suffices to prove.

1. The base case: Q(empty).

2. The inductive step: For all n of type τ, t of type τ FBtree,
and F of type τ FBforest,

Q(F) implies P(node(n, F))
and

P(t) and Q(F) imply Q(seq(t, F))

/ 18

An application

fun FBtreemap f (node(n,F))

= node(f n , FBforestmap f F)

and FBforestmap f empty = empty

| FBforestmap f (seq(t,F))

= seq(FBtreemap f t , FBforestmap f F) ;

Functoriality of FBtreemap and FBforestmap.

FBtreemap id = id FBforestmap id = id

For all f : α → β and g : β → γ,

FBtreemap(g o f) = FBtreemap(g) o FBtreemap(f)

FBforestmap(g o f) = FBforestmap(g) o FBforestmap(f)

/ 19

