
Part Ib Java Tick 0

1 Introduction

This exercise is intended to form a bridge between the Part Ia Java course and work that will be done
in Part Ib. Although it is handed out at the end of the Easter Term during Part Ia your submission is
not due in until the noon on Friday 31 October. That date is when you will have had just three weeks
of Michaelmas Term lectures, and so it is expected that during those three weeks supervison work and
other lab-issued practical tasks will not be in too severe conflict with it.

Many people may find it convenient to work on this exercise over the vacation, and the starred parts
of it are intended for those who wish to give themselves a running start with Part Ib and the advanced
programming languages course in particular. Any student who changes into Part Ib of the CST having
taken some Tripos other than Part Ia NST or CST and hence who has missed the Ia Java course can use
this exercise as a way of proving that personal study over the long vacation has brought them sufficiently
up to speed to survive Part Ib. They will be expected to submit their solutions at the normal time. Any
affiliated students who take direct entry into Ib in the Michaelmas Term should consult the department
as necessary, special arrangements will be made for them.

The exercise concerns building a Java application that has windows and menus and that responds to
mouse activity. It is acceptable to work on it either using the command-line Java tools (eg the javac

compiler) or an environment such as Eclipse or BlueJ. The starred extension to this exercise explores the
Microsoft .NET family of languages and the latest XAML features of the .NET Framework version 3.0.

In many cases when programmers build serious windowed applications they will use a development
tool that permits them to design visual aspects of their code graphically, and which then generates
skeletal code that calls suitable parts of the Java libraries to make the indicated windows, menus and
so on appear. Even though you may use such tools later in the Tripos or your career the department
considers it valuable for you to have some exposure to the classes and constructs that are involved. It
takes the view that you will be better prepared to modify and maintain automatically generated user-
interface code if you have had hands-on experience working with at least a small example at a level where
you get to see all the details. For this exercise you are given some prototype code (which has in fact
been created at least partly mechanically) which pops up a window that bears a superficial resemblance
to the one that BlueJ gives you. It has a button marked “Add Class” to the left, a large rectangular
area to the right and a narrower rectangular region at the bottom. It also has a drop-down menu, and
it responds to the mouse as well as menu requests (which include one that makes it print itself). When
you run this code you will see something Figure 1.

2 What has to be done

You are to do three things to it:

1. You will be extending the program so that you can have boxes in the main window that will each
hold a class name and a list of methods that the class would provide. In fact your code is just
going to end up as a diagram-drawing program that might be used to plan the class hierarchy of

1



Figure 1: The framework that you are provided with.

a program you might be developing. Your first task is to arrange to be able to represent and draw
items that look a bit like UML class descriptions.

Devise a class, ClassBox, to represent the important features of an item in the diagram. At least
include the name of the class represented by the item, a list of the class’ methods, the (x, y) co-
ordinates where it appears on the screen, and the width and height of the box. Provide suitable
methods to manipulate the item: to move it, resize it, and to add additional methods to its list.
There is no need to provide methods that draw the item; merely storing the information needed to
draw the item is sufficient.

Devise another new class, Document, to represent a document. A document is permitted to consist
of a variable number of items (as represented by your first class) and a variable number of arrows.
It is NOT acceptable to assume that the number of ClassBoxes to be stored will never exceed any
particular constant: you must use a data structure which expands its capacity on demand.

Produce a third class to store the fields needed to represent an arrow, similar to ClassBox.

The code provided uses just a JPanel for its main_panel. Change the code provided by adding a
method setDocument(Document d) to specify the document to be associated with the graphical
depiction. Override the paintComponent method so it can draw on the window each of the items
and arrows contained within the document. You ought to make sure that you paint the background
of your JPanel as well as drawing the rectangles and text that make up the boxes. Show the class
name in a larger font size than that used for method names, and in bold type (hint: look for
getFontMetrics in the Java API documentation). If the class’ name or that of any of the method
names is too wide to fit the width of the box, replace any letters that would spill outside with an

2



ellipsis (“...”) to indicate that the name has been truncated. Ensure the ellipsis itself does not spill
over the boundary of the box.

2. Arrange that when the “Add Class” button is pressed a new ClassBox is created and added to the
panel’s underlying document. For a very minimum tick you can use a simple dialogue box to allow
the user to type in a name to give each new box. Now add another, narrow panel on the right hand
side of the window to show various counters. You will need another class derived from JPanel

and with a setDocument(Document d) method. Arrange for the paintComponent method to print
several lines of text, wrapped to fit the width of the panel. These lines of text should indicate
counts of the numbers of items in the document, the number of arrows, and the total number of
methods. Ensure the counts are refreshed whenever the underlying document is updated.

Now construct a toolbox with a button, “Add Arrow” beneath “Add Class”. To add an arrow, the
user should click within each of two boxes in turn and the resulting arrow should be a line from
the centre of the first box to the middle of the top line of the second box. Draw an arrow head
at the latter terminal. Arrows should “remember” their source and destination boxes such that if
either is repositioned the arrow is altered appropriately.

3. As the final mandatory part of the exercise you should look at the sample code and check the parts
that deliver mouse events to the JComponent. Your task is to add code to the JPanel so that it
detects when the mouse button is pressed within the region occupied by a ClassBox. It should
then handle mouse drag and release events and on their basis arrange to re-position the ClassBox

and then call repaint() so that the screen is brought up to date. The object is to allow the user
to move boxes around freely! Make it possible, by double-clicking within a box, to add another
method to the appropriate object’s list.

3 Getting a star

There are clearly an amazing number of ways that it would be possible to move on from what has been
requested so far. The items indicated here would lead to the award of a star on the tick list. . .

1. Add extra menu items called Open and Save and arrange to be able to preserve and re-load the
state of a diagram. You may find it useful to read up on what Java calls “serialization”, which
may turn out to do almost all the hard work for you, so look up the Serializable interface!

2. Make it possible to remove as well as add ClassBoxes, and to edit the information that they display.
You will need to design and manage extra dialog boxes and perhaps menu items to do this, but
there is no need to go over-board in the levels of complication.

3. Finally, look up “reflection” in the Java API documentation and use Java’s reflection mechanism
to offer a new means to add a box to the diagram: the user should be able to enter the filename
of a .class file and your program should use reflection to determine the class’ name and list of
methods. If the class contains overloaded methods, show the method name just once in the list but
in italicised characters. If the class derives from an another class (other than java.lang.Object),
also show add the base class to the diagram as another box and add an arrow pointing from the
box corresponding to the base class to that of the derived class. Test your code by getting your
program to draw its own .class files. Move the boxes around yourself so the arrows are easier to
follow and include a screenshot in your submission for the starred exercise.

A separate task which, although it will not earn a “star”, will prove to be extremely useful preparation
for the second year of the Computer Science Tripos, is to re-implement the basic and starred exercises
using the Microsoft .NET framework (use version 2 or later). Try using the XAML GUI description

3



language, which is new to .NET version 3 and integrates with the Windows Presentation Foundation.
You can use 3D graphics, lighting effects, animations and pixel shaders with simple XML descriptions
of what you want. If you do not already know about the MSDN Academic Allience, look this up on the
Computer Laboratory website—you will be able to obtain the Microsoft development tools free of charge.
Use the C# language and, as you work, compare the syntax and semantics of the C# keywords with
those of the Java language. List as many ways as you can in which C# has been changed from standard
C/C++ to be more like Java, and in which ways the designers chose to stick with the C/C++ ways of
doing things instead of mirroring features of the Java language. Try to work out why each decision was
taken the way it was.

Anybody who has nothing better to do with their vacation is welcome to see how far they can push
this project towards a re-creation of something like BlueJ. Ensure that what is submitted to the tickers
satisfies all of the core requirements and, if you end up with something spectacular then send it to
jkf21@cam.ac.uk and request that we put it on a website or something.

4 The initial skeleton code

This code and all the rest of the information provided in this briefing is available for download via the
web-site http://www.cl.cam.ac.uk/teaching/0708/IbAsExBrfg/.

5 Other Resources

Full documentaion of all the Java classes can be downloaded from Sun’s website for installation on
your own computer (http://java.sun.com). You will of course have probably been inspecting that
information on-line during the course of the year already and so know where to find it and how to
navigate it.

For general Java programming advice, the book “Thinking in Java” by Bruce Eckel (http://mindview.net/Books)
is available on the web as a free download. Either that electronic version or a copy from a bookshop
provides fairly competent coverage of lots of the grubby details of Java.

Good luck!

Dr John Fawcett and Dr Arthur Norman

4


