
UNIX AND X

by

Frank H. King

An Introduction to Unix

and X Windows using Linux

UNIVERSITY OF CAMBRIDGE JAVA EDITION

COMPUTER LABORATORY JULY 2007

An Introduction to Unix and X — Part I

At first mention, any technical term in this document is written in italics. The term
Public Workstation Facility (PWF) is used in Cambridge to refer loosely to a Personal
Computer (PC) together with its connection to a network. This document explains how
to use a variant of the Unix operating system called Linux which may be implemented on
a PC and which has, in particular, been implemented on the PWFs in Cambridge. These
PWFs also support the Windows XP operating system.

1.1 Assumptions

• It is assumed that you have a PWF account and know your user name and password.
Computing Service Reception can reset forgotten passwords.

1.2 Power

• It is local policy that the computers are kept permanently switched on. This saves time
when you first sit down and also means that the state of the machines can be monitored
remotely. An automatic power-save feature ensures that very little electricity is used
when the computer is left unattended.

1.3 Two Operating Systems

• When you first sit at a free workstation the power-save feature may mean the screen
is completely blank. If this is the case, move the mouse slightly. After 8 to 10 seconds
this should result in one of three possibilities:

1. A PWF Login window dominated by the word Novell.

2. A large message window which refers to the Computer Misuse Act of 1990. If
you see this, click OK and the screen will change to the third possibility. . .

3. A PWF Linux login window dominated by the word Username.

• The PWFs support both the Microsoft Windows operating system (when you see the
first possibility) and the Linux operating system (when you see the second or third).
If you can see a PWF Login window, your PC is running Microsoft Windows and you
will have to work through the next section to install PWF Linux. If you can see the
PWF Linux login window, you should skip to section 1.5 now.

1.4 Installing PWF Linux

• To install PWF Linux it is first necessary to shut the PC down and start it afresh via
the Shutdown facility. The PWF Login window incorporates the invitation to press:

Ctrl+Alt+Delete to Login or Shutdown

• Key in Ctrl+Alt+Delete and the result on the screen should be the Microsoft Windows
variant of the message window which refers to the Computer Misuse Act 1990.

• Click OK and the screen should soon display a new window with the title Novell Client

at the top. You must not login! Instead, click Shutdown, one of three buttons at the
bottom of the window.

– 1 –

• A new window offers various options including Shutdown and Restart. Click Shutdown

and Restart and then click OK.

• Be patient! Shutting down may take the best part of a minute and you must watch
carefully for the request:

Please select the operating system to start:

• Press the ↓ key to highlight the second choice, PWF Linux, and then press RETURN.

• Be even more patient! It can take nearly four minutes to install PWF Linux. During
this time you may see a message which begins ATTENTION NO SIGNAL. Take no
action! Eventually, you are presented with the Linux variant of the message window
which refers to the Computer Misuse Act 1990.

1.5 Logging into PWF Linux

• The Linux variant of the message window which refers to the Computer Misuse Act
1990 and other more recent legislation fills most of the screen.

• This form of the message window is the principal sign that the PC is running Linux.
The information is important and should be read carefully. The window has an OK

button in the bottom right-hand corner. Click the OK button.

• The PWF Linux login window should now appear. In it there is an obvious rectangular
box labelled Username.

• Key in your user name and press RETURN. This should result in another box labelled
Password.

• Key in your password and press RETURN again.

• Various items appear in turn (and some change their appearance) but eventually the
screen settles down to showing a number of icons on the left, a task bar at the bottom
and an obvious rectangular window in the middle. All these features are displayed in
the root window, the Unix equivalent of the desktop (in Microsoft terminology).

• You have successfully logged into PWF Linux and have started an X-session. The
central window has PWF Message of the Day in its title bar and is an example of an
X-window. You normally don’t need to take too much notice of the messages.

• The task bar at the bottom of the root window includes a list of all the windows in the
root window. There is only one at the moment, the PWF Message of the Day window.

• Move the mouse around and watch the appearance of the mouse pointer. . .

• For the most part, the pointer has the form of a roughly upwardly-pointing arrow.
When it is on the very edge of the PWF Message of the Day window it changes its
appearance to one of the many other forms that it can take.

1.6 A Terminal Window

• With the icons, task bar and window, anyone familiar with Microsoft Windows might
be tempted to feel at home. Linux can indeed be used rather like Microsoft Windows
but one purpose of this course is to gain familiarity with low-level features of Unix so
the method of working will generally be rather different.

– 2 –

• Move the pointer anywhere in the root window (the desktop) and press and hold down

the right mouse button.

• This brings up a menu which contains various entries including Open Terminal (which
may be the fourth entry).

• Move the pointer to the entry Open Terminal and release the right button.

• A new window appears. Its title bar contains a string in two parts, one on each side
of an @-sign. [If your identifier is c201 and you are sitting at a workstation whose
identifier is pccl504, the string will be c201@pccl504].

• Notice that the workstation identifier also appears as a new entry in the task bar at
the bottom of the screen. The new window is the first example of a Unix shell.

• The shell is characterised by a Unix prompt ending in a >-sign. This prompt may also
consist of your identifier, an @-sign and then the identifier of your workstation. Shell
windows are used for giving Unix commands.

1.7 Focusing

• The text cursor after the prompt is in the form of a solid black flashing block and the
title bar is highlighted. These are indications that the window is in focus. It is the
active window and can be used for giving commands.

• Click anywhere in the root window. The text cursor now turns into the form of a
hollow rectangle and the title bar loses its highlighting. These are indications that
the Terminal window is out of focus. Try typing a word. Nothing happens.

• Repeatedly click in the Terminal window and in the root window in turn so that the
Terminal window goes in and out of focus. Notice how the entry in the task bar
changes appearance, another indication of whether or not the associated window is in
focus.

1.8 Two Unix commands

• After making sure that the Terminal window is in focus (the text cursor a solid block),
key in the following Unix command and press RETURN:

date

• Unix is case sensitive, so it is important to type date and not DATE or Date.

• Any typing mistake which is noticed immediately can be corrected using BACKSPACE.
It is almost always necessary to press RETURN after keying in a command. In the
present case, the date and time are given.

• Try another command:

who

• The result is a list of people who are using your PC at the moment. You are likely to
be the only user!

– 3 –

1.9 The passwd command

• Should you wish to change your PWF password, you can use the passwd command:

passwd

• The system invites you to take part in three lines of dialogue, quoting your existing
password, your new password and your new password again.

1.10 The Main Menu

• An important feature is the Main menu which is used in much the same way as the
Start menu in Microsoft Windows.

• Open the Main menu by clicking Computer at the left-hand end of the task bar at the
bottom of the screen.

• Notice three buttons Applications, Documents and Places. Click Applications to ensure
that a list of Favorite Applications is presented. This list will include Firefox which is
the recommended Web Browser when using Linux.

• Click somewhere in the root window and the Main window will disappear.

1.11 Finishing

• The approved way of finishing is to use the Logout entry in the Main menu. Click
Computer to open the Main menu again and then click Logout on the right.

• You will be asked Are you sure you want to log out? Click OK. A warning message
will proabably appear, in which case click Close in the message window.

• The screen goes blank for a while and then reverts to showing the message about the
Computer Misuse Act 1990. It is now in order to walk away from the PC if you feel
like taking a break.

1.12 Booting back into Windows XP

• If you wish to use Windows XP you will have to reboot the workstation. This is not

necessary now and you can skip to the next page. Should you, or another user, wish
to use this PC for a Windows XP session then you should proceed as follows. . .

• Click OK at the bottom right-hand corner of the message window and then click
Restart in the bar at the bottom of the root window.

• This brings up a qusetion Are you sure you want to reboot the computer?. Click Restart.
There is a prolonged shut-down sequence after which the system will automatically
boot up into Windows.

– 4 –

An Introduction to Unix and X — Part II

Only three Unix commands were described in Part I. Here in Part II more of the
numerous facilities available in PWF Linux will be introduced.

2.1 Logging in

• If you are continuing immediately from Part I your PC should still be showing the
Linux variant of the message window which refers to the Computer Misuse Act 1990.
Click OK and then log in as before.

• If you have been away some time, or have decided to use a different PC, you may be
presented with the Ctrl+Alt+Delete invitation. You will have to install PWF Linux
as described in Part I and then log in as before.

2.2 Dragging to Move a Window and Change its Shape

• It is easy to reposition a window and change its shape, at least to the extent of
changing its height or width.

• Move the pointer to the middle of the title bar of the Message of the Day window and
then drag (by holding down the left mouse button) the window to a new position.

• Move the pointer to the right-hand edge of the window. Check that the pointer takes
the form of an arrow pointing at a vertical bar. Careful positioning is essential.

• Drag to the right. The window will get wider. Drag to the left. The window will get
narrower.

• Experiment with other edges of the window and also try dragging a corner when two
sides will move position.

2.3 Two Buttons

• Notice the buttons in the title bar of the Message of the Day window. Point at (but

don’t click) on the left. After a second or so, a tip explains that this is the Window

Menu button. Point at (but don’t click) on the right. This time the tip explains
that this is the Close Window button.

2.4 Closing a window

• The Message of the Day window is not going to be of any further use so it can be

closed. Click to bring up the Window Menu and notice but don’t use the Close

entry. Clicking this would be one way to close the window but there is a quicker
way. . .

• Click the Close Window button and, without using any menu, the window vanishes.
It cannot be brought back again. The associated entry in the task bar disappears too.
Strictly speaking, the only window left now is the root window.

– 5 –

2.5 A shell

• Using the Open Terminal entry in the menu which pops up when you right-click in the
root window, create a new Terminal window or shell. Note the familiar string in the
title bar and the associated entry in the task bar.

• Ensure that the Terminal window is in focus and give the date command:

date

2.6 Iconifying and deiconifying

• The Terminal window has three buttons at the right-hand end of its title bar. By
pointing at each in turn you can see that they are the Minimise Window button, the
Maximise Window button and the already-used Close Window button.

• Click the Minimise Window button and the window, with its title bar, disappears.
It hasn’t been closed though. The associated entry in the task bar does not disappear
but it is in square brackets. This action is sometimes called iconifying a window.

• Click the associated entry in the task bar and the window reappears. The square
brackets disappear. This action is sometimes called deiconifying a window.

• Another way to iconify a window is to click the associated entry in the task bar. Click
this entry now. The window is iconified and the entry in the task bar acquires square
brackets. Click the square-bracketed entry. The window is deiconified.

2.7 A second shell

• You can have several windows open at once. It is easy to create a second shell, a second
Terminal window, via a right mouse click in the root window but it is instructive to
use another approach. . .

• Being very careful to note the & give the following command from the Terminal window:

xterm &

• A new window, called an xterm window, appears and it has the familiar string in the
title bar and an associated entry in the task bar. There is the usual Unix prompt
ending in a >-sign. This is clearly another shell. Ensure that the second window is
clear of the first. Move the new window and resize the first if necessary.

• You should notice in the Terminal window that, following the xterm & command,
there are two numbers. The second (which probably has four or five digits) is a Unix
process number. It is usually unnecessary to take much notice of it but it is important
to check that such a number has been quoted.

• Focus on the two windows in turn and note how the highlighting of the title bars and
edges changes and the highlighting of the associated entries in the task bar change
too. Click in the root window and note that both shell windows go out of focus.

• The xterm window can, of course, be used for giving Unix commands. Ensure that it
is in focus and give the date command again:

date

– 6 –

2.8 Raising and lowering windows

• It doesn’t take long for there to be so many windows that there isn’t enough space for
all of them and they start to overlap. Move the newer xterm window (by dragging its
title bar) so that it overlaps about half the older Terminal window.

• Focus on the two windows in turn. Whichever window is in focus will be on top. It is
said to be raised. The other window is lowered. Only one window can be in focus at
a time and a command can be keyed in only if a shell is in focus.

2.9 Removing the new xterm window

• Two ways of closing a window have already been noted. You can click and choose

the Close entry or you can click instead. It is instructive to see a third approach. . .

• Focus on the xterm window and key in Ctrl-d. The xterm window disappears and its
associated entry in the task bar disappears too.

• Focus on the Terminal window and press RETURN. A somewhat cryptic message which
includes the word Done appears. This is simply to note that you have abandoned the
xterm window.

2.10 More about the & — background and foreground tasks

• It is instructive to see what happens if you forget the & when giving the command
xterm & to create an xterm window. Focus on the Terminal window and, this time,
deliberately omit the & when giving the command:

xterm

• A new xterm window is created but no Unix process number or prompt appears in the
Terminal window. Move the new xterm window clear if necessary.

• Ensure that the xterm window is in focus and give the date command:

date

• There should be no problems. Now focus on the Terminal window and give the date

command again there:

date

• This time nothing happens. When & is used to create a new xterm window, the system
arranges for this new window to be run as a background task. This means one can focus
on the old window and give Unix commands even though the new window continues

in being. Without the &, the new window is a foreground task and no useful work can
be carried out in the old window.

• Now remove the xterm window by focusing on it and keying in Ctrl-d. When the
window goes, the results of the date command at last appear in the old window.

2.11 Bigger writing in xterm windows

• The writing in the xterm window has been the same size as that in the Terminal

window. To make the writing bigger, first focus on the Terminal window and then

– 7 –

incorporate the items -fn 9x15bold between the xterm and the & when giving the
xterm command (there is a space after -fn and don’t forget the &):

xterm -fn 9x15bold &

• Unix keywords are usually introduced with a ‘-’. Here -fn stands for fount (English
spelling!) and 9x15bold is the name of one of many founts which are available. The
writing in the new xterm window is somewhat easier to read.

• Give the date command in the new window:

date

2.12 Getting going — iconifying the original xterm window

• Different users have different ideas about how best to set up windows at the beginning
of a session. After some experience everyone develops an individual style. For the
moment, let’s assume that you prefer the fount in the xterm window and wish to work
from that.

• The Terminal window is unlikely to be used again. You could remove it but it is better
practice to iconify it. Iconify the Terminal window now.

• Move the xterm window to the top left-hand corner of the root window.

2.13 The ls command

• The ls command is used to List and Sort one’s files. After making sure that the
xterm window is in focus, give this command:

ls

• At present, you have probably not set up any Unix files explicitly but any entries
relating to Microsoft Windows will be listed. Leave these entries alone.

2.14 Setting up a text file — Emacs

• The next task is to set up a Unix file whose file name is jobletter798 and whose
contents are to be a rather silly letter!

• A standard way of setting up a file is to use the Emacs text editor. One way to invoke
this editor is to give the command emacs & (don’t forget the &):

emacs &

• A new window appears which has emacs in its title bar and there is an appropriate
new entry in the task bar.

• Move the emacs window to the top right-hand corner of the root window.

2.15 Emacs commands

• The main part of the emacs window incorporates some getting-started information.

• Click anywhere in the main part of the window and some instructions will appear
which explain how to create a new file.

– 8 –

• In all Emacs documentation the abbreviation C- is used for Ctrl- and it is easy to see
that the cryptic C-x C-f stands for Ctrl-x followed by Ctrl-f. When Emacs is under
consideration, the abbreviation C- will be used for Ctrl- from now on.

• Near the bottom of the emacs window is a highlighted mode line which indicates that
the editor is in Lisp Interaction mode. This may one day be of significance but
ignore it for the moment.

• The mode line begins -u:-- *scratch* which implies that you haven’t yet specified
a file name. Temporary arrangements have been made in consequence.

• The word All simply indicates that the entire text fits in the window. The displayed
text isn’t very long.

• Emacs can be menu driven or command driven. Enthusiasts prefer the latter and this
document reflects that enthusiasm!

• The keystrokes C-x C-f refer to the Emacs find-file command. The x refers to an
extended list of Emacs commands and the f stands for find-file. The idea now is
to attempt to find a file called jobletter798 and hope to fail!

• Note that if you succeed in finding the file it would be an old file but you want to create
a new file. You would therefore want to choose a different name. By adopting the
procedure just described you are unlikely to overwrite an important file by mistake.

• With the emacs window still in focus, key in C-x (remember this means Ctrl-x) and
notice that after a couple of seconds C-x- appears in the echo line, the line below the
mode line. This is a reminder of what you have just keyed in.

• It is useful to know what to do if you key in C-x (or any other Emacs command)
accidentally. Simply key in C-g. Try that now. The C-x- disappears. Now key in:

C-x C-f

• A message which begins Find file appears in the echo line. The cursor jumps to
the end of that line where you should key in:

jobletter798

• Press RETURN. The *scratch* in the mode line changes to jobletter798 and Lisp

Interaction changes to Fundamental, indicating that Emacs is expecting plain text
to be keyed in. The echo line confirms that this is a (New file) indicating that
the file name has not already been used. The main part of the window clears and the
cursor jumps to the top left-hand corner.

• Key in the following, including the two spelling mistakes, and press RETURN at the

end of every line:

Dear sir,

I am sorry I did not turn up for the job interview last

week, but there was a good horror film on the television

and I did not want to miss it.

– 9 –

I am willing to come for a new interview on Wednesday

afternoon next week, though I must leave by 4:30 to

go to the football game.

I am an expurt in UNIX, particularly the game playing

programs, so I would be a grate asset to your company.

yours sincerely,

• Immediately you begin typing, the -u:-- at the beginning of the mode line changes
to -u:** where the asterisks indicate that the text has changed.

• One imagines that this is a job application letter written by someone who wants to
work as a Unix programmer. There are two deliberate mistakes and you may have
made some yourself!

• As usual, any typing mistake which is noticed immediately can be corrected by using
BACKSPACE. To correct a typing mistake made on a previous line, use the text cursor

keys (those marked with ↑, ←, ↓ and →) to move the cursor to just after the position
of the error and delete from there before retyping.

• Try some experiments with the cursor keys. See what happens when the ← or →
key is used to move the cursor off the left- or right-hand end of a line. Notice that
if one of these keys (or indeed any key) is held down for more than a fraction of a
second its effect is repeated, a feature known as auto-repeat . Double-check the text
after finishing the experiments. Leave in the two deliberate mistakes.

• The next step is to save this letter as the contents of the file jobletter798 (this
applicant has had numerous previous unsuccessful attempts).

• Saving requires another extended Emacs command, the save-buffer command. The
associated keystrokes are C-x C-s so key in:

C-x C-s

• The echo line displays a message which begins Wrote and which ends with the file
name jobletter798 to indicate that the file has been saved.

• The -u:** in the mode line changes back to -u:-- to signify that the displayed
text is the same as that in the file.

2.16 The ls command again

• Focus on the xterm window. List and Sort your files again:

ls

• This time the file name jobletter798 should be listed.

2.17 Aside — bigger writing in Emacs

• The default fount in the emacs window suits most users but, if you prefer larger
writing, you can always set up an emacs window from an xterm window and supply

– 10 –

the fount information explicitly. From the xterm window, and noting the essential &,
give the command:

emacs -fn 9x15bold &

• A new emacs window appears with the larger fount.

2.18 Leaving Emacs — I

• There are several ways of leaving Emacs. One way is to click but this is not

generally a good idea because the exit from Emacs is precipitate and you are not
given a chance to save any files that have inadvertently been left open.

• The new emacs window has not yet been used so there is no harm in clicking this
time. Do that now. The new emacs window disappears.

2.19 Leaving Emacs — II

• The approved way of leaving Emacs is to use an appropriate Emacs command. First
focus on the (original) emacs window.

• The appropriate Emacs command is save-buffers-kill-emacs and the associated
keystrokes are C-x C-c and it is probably easiest just to think of the c as meaning
cancel Emacs. Key in:

C-x C-c

• A message (No files need saving) appears momentarily in the echo line and the
window disappears.

2.20 The more command

• From the xterm window, give the command:

more jobletter798

• The more command is used for inspecting the contents of a file. Here, the contents of
the jobletter798 file should appear.

2.21 The spell command

• Carefully noting the < character, give the command:

spell <jobletter798

• The spell command gives a list of spelling mistakes in the file heralded by < which
may be pronounced ‘from’. The list should include expurt but not grate.

2.22 Correcting the mistakes

• The obvious way to correct mistakes is to use Emacs. Give the command emacs &

to enter Emacs again.

• Move the emacs window to the top right-hand corner of the root window.

• To open an existing file, use the Emacs find-file command exactly as it was used
previously. The difference is that you are not proposing to set up a new file this time
so you want to find the file.

– 11 –

• Key in C-x C-f again.

• The message which begins Find file appears in the echo line and the cursor jumps
to the end of that line where you should again key in:

jobletter798

• Press RETURN. The letter reappears in the main part of the emacs window and the
scratch again changes to jobletter798 but there is no mention of New file in
the echo line.

• Other things to notice are that the cursor jumps to the beginning of the letter and there
are no asterisks in the mode line. Again Lisp Interaction changes to Fundamental

indicating that the file contains ordinary text.

• Correct the spelling mistakes. The asterisks reappear. You should next save the
revised version in exactly the way you saved the earlier version by using the Emacs
save-buffer command, so key in:

C-x C-s

• The echo line confirms that Emacs duly Wrote the text to the file.

• Leaving Emacs before giving the spell command and then immediately re-entering
Emacs was fairly pointless! The reason for doing so here is to show how to open an
existing file when using Emacs.

• It is much more common to set up an emacs window at the beginning of a session and
keep it until the end. If you think you are unlikely to be doing any editing for a while,
you should follow normal practice and simply iconify the emacs window. It will then
be instantly available should you wish to use it later. Click to iconify Emacs now.

2.23 Some Emacs commands

• The following summary lists the Emacs commands that have been mentioned so far:

C-g keyboard-quit Go away, I didn’t mean it
C-x C-f find-file Find (open) an existing file
C-x C-s save-buffer Save (update) an existing file
C-x C-c save-buffers-kill-emacs Cancel (leave) Emacs

[Remember that in Emacs documentation the abbreviation C- is used for Ctrl-]

• When used in a simple way, Emacs can be menu driven. With the exception of C-g,
the commands listed in the summary can be found as entries in the Files menu.
Against each entry, the associated keystrokes are shown.

• Whether to use menus or keystrokes is largely a matter of taste but note that by no
means all Emacs commands can be found as entries in menus.

2.24 The ls command once more

• Focus on the xterm window and give the ls command again:

ls

– 12 –

• A new file name is listed. In addition to jobletter798 there is jobletter798~.
This new file contains a back-up copy of the previous version of the file. Emacs
automatically backs up files in this way to protect you against possible accidents!

2.25 The ls command — dot files

• You might think that, at the moment, you have two files concerned with the job
application and no other Unix files at all. Actually there are a good many more
configuration files which have been set up automatically. You may eventually learn
how to modify these files but don’t do this until you really understand what you are
doing!

• For the moment it is of interest merely to see where these files are and to discover why
the ls command hasn’t revealed them. These files all begin with a dot and ordinarily
the ls command doesn’t list such files. If ls is followed by -a (a is for all) then the
dot files will be listed. Give this modified command now:

ls -a

• A fair number of dot files are now listed in addition to the jobletter files you already
know about. One dot file which doesn’t exist just yet but which you may find a need
to set up before long is .emacs which is a file for configuring Emacs to your own
requirements.

2.26 The cp command

• It is unnecessary to know much about the dot files but there is just one of them which
is missing at the moment but will eventually be needed if you are following this course.
This is the file .bash_profile which should be copied into your file space now.

• It is safest to copy a definitive version from a special file directory $CLTEACH/fhk1

(in which $CLTEACH is a Unix environment variable which provides a short-cut to the
special directory) and you should use the following cp command (cp is for copy):

cp $CLTEACH/fhk1/.bash_profile .

• It is important to notice the dot and the underscore character in .bash_profile and
that the command ends with a space followed by a lone dot. This lone dot refers to
your file directory (in fact to your home directory) and the command as a whole is
copying the .bash_profile file from the special directory to your home directory.

• If there is any sign of an error message, give the command again.

2.27 Final Check

• It is always a good idea to check your files before finishing. On this occasion you
ought to check that that the file .bash_profile really has been copied, so give the
modified ls command again:

ls -a

– 13 –

2.28 Finishing

• It is essential to finish in the approved manner. . .

• Choose Logout in the Main menu and click OK and, if a warning message appears,
click Close. This will clear away all your windows including any which are iconified.
When the Linux variant of the message window which refers to the Computer Misuse
Act 1990 appears, it is safe to walk away from the PC. Do not switch off the PC or
the monitor.

– 14 –

An Introduction to Unix and X — Part III

Here in Part III, further features of PWF Linux will be presented and a couple of very
simple Java applications will be introduced.

3.1 Getting going

• Assuming a cold start, begin this and subsequent sessions by undertaking the following
steps, which may be freely adapted as you develop your own style of working:

1. Check that PWF Linux is running. If not, Shutdown and Restart, selecting PWF
Linux at the appropriate moment.

2. Log in to PWF Linux.

3. Close the PWF Message of the Day window.

7. Bring up a Terminal window and move it to the top left-hand corner of the root
window if it does not appear there by default.

8. Bring up an emacs window and move it to the top right-hand corner of the root
window.

• If there is no immediate intention to use Emacs, the emacs window should be iconified.
This is the present case, so iconify the emacs window.

• The only open window of consequence should be the Terminal window. Check that
this and the iconified emacs window are noted in the task bar.

3.2 The cat command, standard input, standard output

• The cat command (short for ‘concatenate’) has many uses. In particular, there is a
way of using it to copy the contents of one file to another file. Ensure that the Terminal

window is in focus and then, carefully noting the < character and the > character , give
the command:

cat <jobletter798 >jobletter799

• Like many commands, the cat command requires input which comes from somewhere
and produces output which goes to somewhere else. The characters < and > may be
pronounced ‘from’ and ‘to’ respectively. In the present cat command:

input is taken from the file jobletter798 and

output is sent to the file jobletter799

• Both input and output have been specified explicitly. If no explicit output is specified
for a command which produces output then results are sent to the standard output

which simply means they appear in the shell immediately after the command. Give
the command:

cat <jobletter799

• Here, input is from the file jobletter799 but output is to the standard output. The
contents of the new file jobletter799 appear in the Terminal window and are a direct
copy of the contents of jobletter798.

– 15 –

• If no explicit input is specified for a command which requires input then input is taken
from the standard input , meaning input from the keyboard. Give the command:

cat >jobletter800

• This time the system does not respond with a prompt; it is waiting for you to type
the contents of the file. Key in:

Dear sir,

Blah! Blah! Blah!

• Using the cat command in this way is an alternative to using Emacs for setting up a
text file. It is normally better to use Emacs because mistakes can be corrected more
easily. With the cat command, the cursor keys cannot be used.

• Key in Ctrl-d to terminate standard input. [You are not in Emacs so the abbreviation
C-d is inappropriate but you may sometimes see ^d used for Ctrl-d.] The Ctrl-d must
be at the beginning of a line (just following RETURN). The system should reply with
a prompt.

• It is here that a minor embarrassment could occur. If Ctrl-d is accidentally keyed in
a second time, the window disappears. It can readily be recreated so no real harm is
done but, on some versions of Unix, closing the principal shell precipitately logs you
out. Accordingly, you should learn to take great care when keying in Ctrl-d and make
sure that you key it in just once!

• Having noted that, by default, standard input is used for input and standard output
is used for output, what happens if neither input nor output is specified? Give the
cat command without any arguments (items following the command name):

cat

• The system is again expecting standard input (from the keyboard) so type some text:

The quick brown fox

• When RETURN is pressed, the system sends the line to the standard output (the
window):

The quick brown fox

• The system doesn’t give a prompt; it is waiting for more standard input. Type another
line:

jumps over the lazy dog.

• The system sends the line to the standard output as before:

jumps over the lazy dog.

• Although it illustrates standard input and standard output, this exercise is not very
useful! Key in Ctrl-d to quit from the cat command.

• So far, < has been used to indicate input from a file. This < can often be left out.
Give the command:

cat jobletter799

• This works just as well as cat <jobletter799 did earlier.

– 16 –

3.3 Local line editing

• If after a prompt you press the ↑ key then, instead of the cursor moving up a line, the
result is that the most recent command is reproduced. Try pressing the ↑ key now;
the result is:

cat jobletter799

• The cursor hovers at the end of the line. Use BACKSPACE to delete just the 799 and
then key in 800 as a substitute. Now press RETURN, thereby giving the command:

cat jobletter800

• It is easy to make a more substantial change to the most recent command. First, press
the ↑ key again, resulting in:

cat jobletter800

• Now use the ← key and BACKSPACE (these are two different keys) to delete cat and
then key in spell and < to give the command:

spell <jobletter800

• Using the cursor keys and BACKSPACE to make changes to the line being typed is
sometimes called local line editing .

3.4 History

• It is not just the most recent command which can be retrieved for editing. Try pressing
the ↑ key six times slowly , pausing after each press to see the result. The six most
recently given commands appear. Any of these could be edited if desired.

• Now press the ↓ key six times slowly . This brings you back to the present in stages.
Using the ↑ and ↓ keys in this way is said to reveal history .

3.5 Geometry

• Give the following variant of the xterm command:

xterm -fn 9x15bold -geometry 80x28-0-0 &

• The -geometry item specifies four aspects of the new window:

80 is the width of the window measured in characters.
28 is the height of the window in lines.
-0 places the window on the right-hand side of the root window.
-0 places the window at the bottom of the root window.

• In summary, the 80x28 specifies the width and height of the window and the -0-0

causes the window to be placed in the bottom right-hand corner of the root window.

• Note that +0+0 would place the window in the top left-hand corner; -0+0 would place
the window in the top right-hand corner and +0-0 would place the window in the
bottom left-hand corner.

• There are other variations on the xterm command which are worth exploring so this
first attempt will be abandoned. Ensure that the latest window is in focus and key in
Ctrl-d to remove it.

– 17 –

3.6 Colours

• From the Terminal window use local line editing to give the command:

xterm -fn 9x15bold -geometry 80x28-0-0 -fg white -bg blue &

• The -fg item specifies a foreground colour and the -bg item specifies a background
colour. The result will soon be clear. Most of the common colours are available. Try
some further experiments. Conclude by removing all xterm windows but keep the
Terminal window in the top left-hand corner.

3.7 Java Programs — Introduction

• Java is an important programming language which is commonly used in Computer
Science projects. Java is designed to be used across the Internet and is also designed
for industrial-scale software projects.

• Java programs come in two forms, applications and applets. The latter are accessed via
Web browsers or the appletviewer command and will not be discussed here. The two
programs introduced in this document are both simple examples of Java applications.

3.8 A Java application — the source code

• The file name for any Java source code must be in two parts separated by a dot. In
the first illustration, the name ComeIn.java will be used. Unix and Java are both
case sensitive so it will be important to key in ComeIn.java and not comein.java

or Comein.Java and so on.

• The part of the file name before the dot can be fairly freely chosen by the programmer
but the remainder must be .java which is known as a file name extension.

• Before going any further, deiconify the emacs window. Ensure that the emacs window
is in focus and embark on a new file by keying in:

C-x C-f

• The cursor jumps to the end of the echo line where (paying attention to the upper
and lower cases of the letters) you should key in:

ComeIn.java

• Press RETURN. Check that the mode line confirms ComeIn.java and, also in the
mode line, note that Lisp Interaction changes to Java Abbrev.

• Now key in the following source code of a frivolous Java application:

public class ComeIn

{ public static void main(String[] args)

{ System.out.printf("Come in number 57 please%n");

}

}

• Be careful to write public and not PUBLIC or Public which won’t work. Again,
write ComeIn and not comein or Comein and, most important, write String and not
string. Notice the semi-colon, the pair of square brackets, the two pairs of round
brackets and the two pairs of vertically aligned curly brackets.

– 18 –

3.9 Java Programs — Outline syntax

• Java programs can be thought of as being arranged in various levels of wrapping. A
big program will be divided into several packages and in each package there will be
several classes and each class will consist of several members.

• To get some idea of the shape or syntax of a big Java program consider a diagrammatic
representation of a program which is divided into two packages, one of which contains
three classes and the other two classes:

package jack;

public class Tom

member

member
...

member

public class Dick

member

member
...

member

public class Harry

member

member
...

member

package jill;

public class Sharon

member

member
...

member

public class Tracy

member

member
...

member

• The diagram follows a Java convention that package names are normally written in
lower-case letters but class names begin with an upper-case letter. The diagram loosely
corresponds to the associated file structure. Every class is in a separate file and the
class files in any particular package are in the same directory.

• A class may contain several different kinds of member and two of particular importance
are data fields and methods. The introductory application is very short and consists
of only a single class, ComeIn, which itself contains just one member, the method main

which will be discussed shortly. The second application will include a data field.

• It is of minor note that the introductory application is not headed by a package

statement. In consequence, the application will be regarded as belonging to some
anonymous package. (In the present context, the anonymous package is, in effect, your
home directory and the collection of class files that will accumulate in this directory.)

– 19 –

3.10 Java Programs — Syntax of a class definition

• A Java class definition consists of a class heading (conventionally written on a line by
itself) followed by a class body which is enclosed in curly brackets.

• In a simple case the outline syntax of a class definition is:

public class class-name

{ member

member
...

}

• The keyword class in the class heading is preceded by the public modifier and this
particular modifier ensures that the class is visible from other packages.

3.11 Java Programs — Syntax of a method definition

• A method in a Java class consists of a method heading (also conventionally written on
a line by itself) followed by a method body which is enclosed in curly brackets:

modifiers method-type method-name(arguments)

{ statement

statement
...

}

• The word method stems from the terminology of object-oriented programming, Java
being an object-oriented programming language. Close parallels of methods are found
in almost all programming languages where equivalent entities may be referred to as
functions, procedures or subroutines.

• There is a requirement that exactly one class in any Java application includes the
method main and, moreover, the main method must always be heralded by the two
modifiers public and static.

• A full understanding of these two modifiers will come with experience but, roughly
speaking, the public modifier makes the method visible from outside the class (in
particular by the run-time system which supervises the running of the program) and
the static modifier ensures that the method is available for immediate execution.

• A typical method concludes execution by delivering some value as a result, perhaps
an integer number. The type of the result determines the type of the method itself.
Some methods do not deliver a result and in such cases the type of the method is
deemed void. This is the case with the main method.

• The arguments of a method are enclosed in round brackets. The method main has a
single argument whose type is a String array (written String[]). The name of the
argument is args. When a Java application is run, the method main is handed any
items such as file names which may appear on the command line. Each such item has
type String (a sequence of characters) and each will be assigned to an element of the
args array.

– 20 –

3.12 Printing a String

• In general, a method body incorporates a sequence of statements enclosed in curly
brackets. In the introductory application, there is only one statement in the body and
this prints out the String constant "Come in number 57 please%n".

• Printing is achieved via the somewhat ponderous syntax:

System.out.printf(string-to-be-printed);

• Once again, a full understanding of this will come with experience and only a brief
explanation is worthwhile now. There are numerous built-in packages in Java which
contain facilities for standard operations like input–output. One such package is
java.lang which includes the System class. This class has a data field out which, in
turn, has access to the method printf.

• The three items System, out and printf are written as a continuous sequence with
dots as separators. A String constant is enclosed between double-quotes and is
handed to the printf method as an argument (which is why it is in round brackets).
The statement as a whole must be terminated with a semi-colon.

• Note the %n at the end of the String constant. When the application is run, this %n
generates an end-of-line character. You can try leaving it out later and you will see
why it is needed.

3.13 Saving the Java application

• The rules for the file name the source code can now be clarified. The first part of
the file name must exactly match the class-name and .java must be used as the file
name extension. Clearly ComeIn.java is the appropriate file name here.

• The quickest way to give the Emacs save-buffer command is to use the keystrokes
C-x C-s but it is instructive to give an Emacs command the slow way. . .

• In Emacs documentation C-something stands for Ctrl-something. Additionally there
is M-something which stands for Meta-something. Few keyboards have a key which is
actually marked Meta and on a PWF you should use Esc. [On some other workstations
Alt may be the appropriate key.]

• Where Esc is used to key in M-x, you must press and release Esc before pressing x; thus
Esc and x are pressed in turn and not together. [At terminals where Alt is appropriate,
use Alt rather like Ctrl: hold the key down and then tap x.]

• Key in M-x by whichever means is appropriate. Note that M-x appears in the echo line.
Strictly, this is the Emacs execute-extended-command command. It means that you
can now key in the full name of any Emacs command. Key in:

save-buffer

• Emacs is another system which is case sensitive so be careful what you key in.

• From the Terminal window give the command:

ls

• You should see the file ComeIn.java listed alongside the jobletter files.

– 21 –

3.14 Compiling the Java application

• To be useful, a Java application must be compiled and then run.

• From the Terminal window give the command:

javac ComeIn.java

• Notice that the .java file name extension must be quoted.

• The command javac invokes version 1.5 of the Java compiler. If you are confronted
by a complaint about an invalid source release you probably do not have a correct
.bash_profile file. See page 13.

• If you made any mistakes when keying in the application the compiler will complain!
You must correct the source code and try again.

• The compiled code of any Java class goes to a file whose name consists of the class
name followed by a .class extension. Give the command:

ls

• Check that the file ComeIn.class is listed.

3.15 Running the Java application

• The Java compiler does not generate code which is ready for immediate linking, loading
and running. Instead, the compiler generates bytecode for the Java Virtual Machine
(JVM). The JVM can be regarded as an interpreter with a run-time system.

• It is the java command which invokes the Java interpreter. Key in:

java ComeIn

• Notice that the .class file name extension must not be quoted.

• The bytecode is duly interpreted and this will involve, at run-time, the dynamic
loading of input–output facilities (and, in general, other facilities besides). Ordinary
linking does not occur in Java.

• The output should be Come in number 57 please and this should be followed by
a Unix prompt.

3.16 A second application

• The second illustration will be sufficiently like the first that the easiest way to proceed
is to edit the source code of ComeIn.java in Emacs.

• Focus on the emacs window and modify the source code to the following:

public class ComeAgain

{ private static int n;

public static void main(String[] args)

{ n = 57;

System.out.printf("Come in number %d please%n", n);

}

}

– 22 –

• The application again consists of a single class, this time called ComeAgain so the first
line will need changing. The new class incorporates a data field as well as a method.

• The private static int n; declares a data field whose name is n and whose type
is int (a whole number). The private modifier is at the other extreme from public

and restricts the visibility of the data field to within the class only. This is fine given
that the only reference to n is from the method main. The static modifier is essential
and ensures that the data field is accessible. The semi-colon terminator is mandatory.

• The main method includes the assignment statement n = 57; which gives a value to
the data field. An assignment statement must also be terminated with a semi-colon.

• The printf method now has two arguments. The first is a string which incorporates
%d where 57 was before. The string again concludes with %n and is enclosed in double-
quotes but is now followed by a comma and the second argument, the data field n.
Note that %d means that the value is interpreted as base-10 (d stands for decimal).

• The %d code in the String is associated with the n presented as a second argument.
A second %d in the String would refer to a third argument and so on. Each %d is
replaced by the value of the associated argument following the String.

• You should not use the Emacs save-buffer command to save this source code because
that will overwrite the ComeIn.java file. You should use the Emacs write-file

command instead. Its associated keystrokes are C-x C-w so key in:

C-x C-w

• The message in the echo line begins Write file and, at the end of this line, key in:

ComeAgain.java

• Focus on the Terminal window and compile the new application:

javac ComeAgain.java

• Assuming there are no complaints, run the compiled code:

java ComeAgain

• The output should be Come in number 57 please as before.

• This second application is somewhat contrived. Its principal purpose is to present a
class which contains a data field and a method, the two most important kinds of class
member. Typically, classes contain several data fields and several methods.

3.17 Layout

• Readers who have studied Java before, however cursorily, will have noticed that the
layout used in the two examples is somewhat idiosyncratic.

• The layout employed in most text books follows a style adopted in the early days of
C when only primitive editors were available, a poor precedent! Source code is much
easier to understand if matching curly brackets are vertically aligned.

• In the illustrations above, each level of indentation involves shifting the code an extra
three spaces to the right. Every curly bracket is centred with respect to a three-space
gap. Whatever style you choose, note that good layout greatly improves readability.

– 23 –

3.18 Emacs buffers

• Focus again on the emacs window.

• At the moment Emacs is displaying the new source code. The source code of the first
application has not been lost because it was saved in a different file. To retrieve the
earlier code, key in:

C-x C-f

• Then key in the file name ComeIn.java and press RETURN.

• The previous source code should appear.

• Although Emacs is now displaying just the old version, both files are open. The two
lots of source code are in separate Emacs buffers. To see what buffers exist, give the
list-buffers command. Key in:

C-x C-b

• The emacs window splits into two half-size windows. The old source code is in the
upper and a list of buffers is in the lower. The list includes ComeIn.java and
ComeAgain.java amongst other entries.

• Note that the cursor is in the upper of the two windows. To get rid of the lower window,
give the delete-other-windows command. This uses the digit-1 key without Ctrl.
Key in:

C-x 1

• To bring the ComeAgain.java buffer back as the displayed buffer, give the switch-

to-buffer command. This uses the b key, again without Ctrl. Key in:

C-x b

• The message in the echo line should indicate that Emacs will, by default, switch to
the ComeAgain.java buffer. If this isn’t the default, you can key in ComeAgain.java

explicitly. Press RETURN.

• The new source code should reappear in the emacs window and ComeAgain.java

should appear in the mode line.

3.19 The cal command

• No use will be made of Emacs for a while so iconify the emacs window.

• Almost all commands that have appeared so far have produced results which have been
sent to the standard output. The java command is no exception. Here is another
example. From the Terminal window give the command:

cal 1900

• The calendar for all 12 months of 1900 is displayed but there is a snag. The Terminal

window is probably too small to accommodate the whole of the standard output and
the first part of the calendar runs off the top of the window. There are various ways
of dealing with this problem . . .

– 24 –

3.20 The scroll bar

• Along the right-hand edge of the Terminal window, there is a narrow column, the
scroll bar, the lower part of which is highlighted by a vertical stripe called the scroll

box. The height of the scroll box relative to the height of the scroll bar indicates the
proportion of the text which is in the window compared with the amount which has
run off the top but is still accessible.

• Move the mouse pointer to somewhere inside the scroll box and slowly drag the scroll
box upwards. The text in the window moves downwards; this action is called scrolling

the window. All the earlier months of 1900 can be brought back. When the mouse
button is released, the text stays where it was scrolled to.

• Pressing RETURN results in an abrupt jump to the end of the text. Try this. Apart
from a new prompt, the window reverts to the way it was before scrolling.

3.21 Sending output to a file

• From the Terminal window press RETURN and then give the following version of the
cal command:

cal 1900 >then

• The calendar for 1900 goes to the file then.

• This may not immediately seem to be helpful since if you inspect the contents of the
file then using the cat command the calendar still won’t fit:

cat then

• Resorting to the scroll bar is unnecessary because the more command (this was first
used in section 2.20) can be exploited. Using the more command, a file can be looked
at one windowful at a time. Try:

more then

• Only as many lines appear as will fit and there is a note of what percentage of the text
this is. Press RETURN repeatedly to advance through the text one line at a time. To
advance through the text one windowful at a time, repeatedly press the SPACE-BAR.

3.22 Pipes

• A pipe is a sequence of commands which are strung together so that the output of one
command becomes the input of the next. The commands are separated by vertical
bars (note that the vertical bar key is next to the Z key). An example of a pipe is:

cal 1900 | more

• The output from the command to the left of the | becomes the input of the command
to the right of the |. This example of a pipe is quicker than typing cal 1900 >then

followed by more then which not only involves keying in two lines but introduces
the file then which isn’t needed when a pipe is used.

• The more command again causes the display to pause after a windowful but notice
that no percentage is quoted because more doesn’t know how much more there is to
come. Press the SPACE-BAR to see the rest of the text.

– 25 –

• A second example of a pipe is:

cal 1900 | cat >then

• The output of the cal command is piped to the input of the cat command. The
output of the cat command goes a new file then. Note that this is a silly example
because it would have been better to use cal 1900 >then alone!

3.23 Highlighting and copying text

• Suppose you wish to set up a file containing just the first three months of 1900. Clearly
you could use Emacs to edit the file then but it is quicker to use the highlighting feature
of X.

• Give the more command again:

more then

• Just the first part of the file appears in the window. Now quit from the more command
without inspecting the whole file: simply press q (for quit).

• Next use the cat command to embark on keying in a new file jfm (for January,
February and March):

cat >jfm

• Press RETURN. Notice that the cursor is in position ready for you to key in the first
line of the required text but don’t key in anything. Instead proceed as follows. . .

• Move the mouse pointer to the beginning of the line on which January is written
and slowly drag downwards as far as the blank line which separates the first three
months from the second three. Dragging this way does not cause anything to move;
instead, the region of text dragged across becomes reverse-highlighted (normally white
characters on a black background).

• When the mouse button is released, the reverse-highlighting persists. Regions of text
highlighted in this way can be copied to the place marked by the cursor and, just now,
the cursor is at the bottom of the window immediately below cat >jfm waiting for
standard input.

• To copy the highlighted text, simply press the middle button. The copy appears at
the bottom of the window as standard input for the cat command. Key in Ctrl-d to
terminate the input.

• To turn the highlighting off, click the mouse anywhere in the Terminal window.

• To check the effect of what you have just done, clear the window and inspect the
contents of the new file:

clear

cat jfm

• Note that highlighted regions do not have to be large chunks of text. Single sentences
or even single words can be highlighted and copied. Note, further, that text which is
highlighted in one window can be copied to another window.

– 26 –

3.24 Highlighting rules

• To highlight a region of text:

Drag across the region to be highlighted

• To copy a highlighted region of text to the position marked by the cursor:

Press the Middle mouse button

3.25 Completion in Emacs

• Emacs has many hundreds of features and it is worth trying out just a few more in
this introductory document.

• First, deiconify Emacs. The Java source code is still in the window. Bring back the
jobletter798 file instead. Begin with:

C-x C-f

• This invokes the find-file command. The cursor jumps to the end of the echo line
where you could key in jobletter798 but it is unnecessary to key this in in full.
Without pressing RETURN just key in the first letter:

j

• Now press the SPACE-BAR. The window splits and all files which begin with j are
listed in the bottom half; these are the possible completions. As well as jfm there are
four file names which begin jobletter. Now just key in the single letter o and press
the SPACE-BAR again:

o SPACE-BAR

• Emacs now knows enough to complete as far as jobletter but it still doesn’t know
exactly what you want. You have to key in:

798

• Press RETURN and the file’s contents duly appear.

3.26 Clicking the mouse in Emacs

• Click the first y of yours sincerely. The cursor jumps to the position of the mouse
pointer. This is an alternative to using the cursor keys.

• If you press BACKSPACE you will, of course, delete the character to the left of the y,
probably a space. To delete the y without first moving the cursor, key in:

C-d

• This is the delete-char command and deletes the character the cursor is on rather
than the one to its left. Now key in an upper-case Y instead:

Y

• In a similar way change the s of sir to an upper-case S (or make it lower case if it
already is upper case!).

3.27 The Emacs undo command

• A mistake can be undone using the Emacs undo command. Emacs documentation
gives C- for this but notice that as well as the usual use of Ctrl you will probably

– 27 –

need to use SHIFT for the underscore character. That said, key in C- four times very
slowly to see the effect:

C- C- C- C-

• Not only does this negate the earlier changes but, assuming those were the only

changes, the two asterisks in the mode line disappear to indicate that the text has not
been changed since the file was opened.

3.28 Emacs kill and yank

• Click the D of Dear and key in:

C-k

• This is the kill-line command. The Dear sir, goes blank. To get rid of this blank
line, give another:

C-k

• Killed text goes to the kill-buffer and can be brought back. Try:

C-y

• This is the yank command. Anything in the kill-buffer is yanked back.

• Kill and yank can be used as cut and paste in a word processor. Click the I at the
beginning of the final paragraph and then give the kill-line command five times:

C-k C-k C-k C-k C-k

• The first four kill the two lines of the paragraph and the last kills the blank line before
yours sincerely. Next click the I at the beginning of what has just become the final
paragraph and then yank back the killed text:

C-y

3.29 Filling

• Click the c of company. Then, including the spelling mistakes and without pressing

RETURN, key in:

spendid, manificent and most whizzo

• [After whizzo there should be a space.] When a line gets to the edge of the window
the text simply carries onto the next line down even if it is in mid-word. Clearly this
is all a bit of a mess so, remembering that M means Meta (and on a PWF this means
using Esc), key in:

M-q

• This is the fill-paragraph command. It tidies up the paragraph so that each line
runs up as close to column 70 as possible without going beyond column 70.

• Click somewhere in each of the other two paragraphs in turn and key M-q in each. All
three paragraphs should now be filled to 70 characters.

3.30 Key bindings in Emacs

• Most commonly-used Emacs commands can be given in a slow way and in a quick
way. The slow way involves keying in the command name as was demonstrated for

– 28 –

save-buffer in section 3.13. It is much quicker to key in C-x C-s. This short version
is called a key binding.

3.31 Commands without key bindings

• A good way to check spelling is to give the Emacs ispell-buffer command which
has no key binding. It can of course be given by keying in its full name. As always
when giving a command this way begin by:

M-x

• In principle you now key in ispell-buffer but fortunately the Emacs completion
facility can again save you effort. Key in as far as the p of ispell:

isp SPACE-BAR SPACE-BAR

• The first SPACE-BAR supplies ell and the second supplies a hyphen. You now continue:

b SPACE-BAR

• This time Emacs supplies uffer. Press RETURN to invoke the command and the
Emacs spell-checker sets to work. Very likely the first word to be queried will be
spendid. This word is highlighted and suggested correct versions appear at the top
of the window. A message in the echo line explains how to get further information.

• The suggestions at the top are numbered (0), (1), etc. and, assuming one of these
suggestions is acceptable, you key in the appropriate number. Very likely you key in:

2

• The spell-checker then notes the next error, probably manificent, and again there
are numbered suggestions. This time you probably need to key in:

0

• The spell-checker probably queries whizzo next and is again likely to suggest some
alternatives. If you want to change the word but are not happy with any of the
suggestions key in:

r

• Note that r stands for replace. The offending word appears in the echo line. Edit
whizzo in the echo line (use the BACKSPACE-key) so that it is replaced by:

wizard

• Press RETURN and the replacement takes effect. If you are happy with the spelling of a
word that has been queried simply press the SPACE-BAR to leave the word unchanged.

3.32 Automatic filling of paragraphs

• The Emacs auto-fill-mode command saves you from having to key M-q in every
paragraph. There is no key binding for this command so, using completion, go:

M-x au SPACE-BAR SPACE-BAR f SPACE-BAR m SPACE-BAR

• Press RETURN and, from now on, paragraph filling will be automatic. Note that Fill
appears in the mode line. To see what this means, first:

Click the . at the end of football game.

– 29 –

• Move the cursor one place right and continue, on the same line, by keying in a new
sentence:

It ′ s a needle match that day and I simply must watch it.

• The line now splits at a sensible place.

3.33 Emacs conclusion

• This is sufficient Emacs for one session. Follow usual practice: don’t leave Emacs,
simply save the latest version of the file and iconify the window. First save the file:

C-x C-s

• Now iconify Emacs. Note that there is a summary of the Emacs commands used in
this document on page 31.

3.34 Checking the files

• From the Terminal window check the entries in your home directory:

ls

• There should now be about a dozen entries, about half of which relate to your Java
programs. These include the source files (which have the .java extension), possible
back-up files (which end .java~) and also the class files (which have the .class

extension).

• To delete a file, use the rm command (standing for remove). For example, to delete
the back-up file jobletter798~ give the command:

rm jobletter798~

• Give the ls command to check that the file has been removed.

3.35 The xlsfonts and xfd commands

• To see what founts are available, give the xlsfonts command. (The absence of the
letter ‘u’ is a consequence of American spelling!) Since there are several hundred
founts, the output should be piped to the more command:

xlsfonts | more

• There really are hundreds! To see them all keep pressing the SPACE-BAR. If you get
tired, you can quit from the more command by pressing q.

• To gain a quick impression of what a given fount looks like, use the xfd command.
For example, to look at the r24 fount give the command:

xfd -fn r24 &

• A table showing the characters in the r24 fount appears. This is a fixed-pitch fount
(all the characters are the same width) and fairly large. When you have finished
looking, click Quit near the top-left hand corner of the xfd window.

• Two other founts are worth a brief look, 5x8 (very small) and 9x15 (the unbold version
of 9x15bold).

– 30 –

3.36 Driving Test

• On the last page of this document there is a driving test in which you have to exercise
some of the facilities that have been introduced. Complete this test before finishing.
It may be a good idea to read Postscripts A and B before finishing too.

3.37 Finishing

• To end the session, choose Logout in the Main menu and then click OK (and, perhaps,
Close). This will clear away all your windows including any which are iconified. Wait
for the Linux variant of the message window which refers to the Computer Misuse
Act 1990 to appear before leaving the PC. Do not switch off the PC or the monitor.

3.38 Postscript A — Emacs commands

• In the following summary, the Emacs commands which have been mentioned in this
document are shown in what is likely to be, very roughly, decreasing order of frequency
of use. Since you are advised not to leave Emacs, C-x C-c is last in the list.

• The three columns show key bindings (where available), the full formal names of the
commands and an informal description:

C-x C-f find-file Find (open) an existing file
C-x C-s save-buffer Save (update) an existing file
C-x C-w write-file Write a new file
C- undo Undo a command
C-g keyboard-quit Go away, I didn’t mean it
C-d delete-char Delete a character
C-k kill-line Delete from the cursor rightwards
C-y yank Bring back killed text
M-q fill-paragraph Tidy up a paragraph
M-x execute-extended-command For giving a command the long way
C-x C-b list-buffers List the buffers
C-x 1 delete-other-windows Get rid of other Emacs windows
C-x b switch-to-buffer Change to another buffer

ispell-buffer Invoke the spell-checker
auto-fill-mode For automatic tidying of paragraphs

C-x C-c save-buffers-kill-emacs Cancel (leave) Emacs

3.39 Postscript B — Remote use of PWF Linux

• As readers should know, a considerable amount of information relevant to teaching
is available via the Computer Laboratory web site http://www.cl.cam.ac.uk/ and
you might note that the Mozilla Firefox browser is recommended when using PWF
Linux. Use the command firefox & to enter this system.

• From the Computer Laboratory home page, you should select the link Information for

current students and look for the section heading Resource material under which you
will find further links about PWF Linux.

– 31 –

• The link Information about accessing the PWF remotely advises that if you have access
to a PWF Workstation running PWF Linux then use that, but. . .

• It is further explained that if you don’t have access to a PWF Workstation running
Linux then remote access to a shared facility is available. There are various ways of
achieving this access and you should have no trouble understanding the explanation.

3.40 Postscript C — HWM and Motif

• Throughout this document a standard window manager has been assumed. There
are other window managers available, each with numerous facilities for configuring to
suit individual taste. Popular alternative window managers include the Hummingbird
Window Manager (HWM) and Motif.

F.H. King 16 July 2007

– 32 –

Java Tick 1, Part A — Driving Test

To secure the first Java Tick, a two-part submission is required. Part A is the Driving Test
described here. Part B is issued separately. To pass the Unix and X Driving Test, work
through the following steps to produce a printout whose appearance is like the lower half
of this page. Put the submission in your Ticker’s Blue Rack as usual.

• Edit your ComeAgain.java file so as to incorporate two Java comment lines at the
beginning as in the version of ComeAgain.java shown below. Use your name and
suitable times.

• Save the amended source code and check that it compiles by using the javac command.

• Give the three commands shown below after c201@pccl504:~> prompts: these are
the more command, the javac command and the java command.

• Next (and not shown on the lower half of this page) give the cat command to embark
on a new file:

cat >tick

• Highlight and copy the mini-session (as described in section 3.23) so that it forms the
contents of the file tick. Terminate cat with Ctrl-d. Use Emacs to edit the file tick

so that there is one blank line before each line which begins with a prompt.

• Print the file by giving the following command:

lpr tick

• The output should appear on a printer in the room that you are working in. One
might think of lpr standing for local printer. Apart from your name and timings,
the output should appear exactly as below. Pay particular attention to the blank
lines.

c201@pccl504:~> more ComeAgain.java

// JAVA ASSESSED EXERCISES. SUBMISSION 1 FROM F.H. KING.

// Estimated time to complete: 30 mins. Actual time: 1 hour.

public class ComeAgain

{ private static int n;

public static void main(String[] args)

{ n = 57;

System.out.printf("Come in number %d please%n", n);

}

}

c201@pccl504:~> javac ComeAgain.java

c201@pccl504:~> java ComeAgain

Come in number 57 please

– 33 –

