
MODULE 7p - Reading Data

CHARACTER INPUT

The following program reads characters from Standard Input and simply copies

them to the Standard Output. It makes use of the class InputStreamReader

whose parent class is Reader. There are comments about the merits of

using a Reader overleaf.

Note that the read() method of an InputStreamReader object returns an

int whose value is the coded version of the character read in. A (char) cast

is required if the associated character is to be used. If there is nothing

to read, the value -1 is returned. Key the program in and try it out.

import java.io.InputStreamReader;

import java.io.IOException;

public class ReaderIntro

{ private static final InputStreamReader ISR = new InputStreamReader(System.in);

public static void main(String[] args)

{ int c;

try

{ while ((c = ISR.read()) != -1)

System.out.printf("%c", (char)c);

}

catch(IOException e)

{ System.out.printf("IOException Encountered");

}

System.out.printf("Data Exhausted");

}

}

EXTRACTING NUMBERS FROM SURROUNDING JUNK

The following program reads characters from Standard Input and extracts

sequences of digits delimited by non-digits and converts these sequences

into int values which are then written out. Key it in and try it out.

import java.io.*;

public class ExtractNumbers

{ private static final InputStreamReader ISR = new InputStreamReader(System.in);

public static void main(String[] args)

{ int i;

try

{ while ((i = readNum()) != -1)

System.out.printf("%9d%n", i);

}

1

catch(IOException e)

{ System.out.printf("IOException Encountered");

}

System.out.printf("Data Exhausted");

}

private static int readNum() throws IOException

{ int c, n=0;

do

{ c = ISR.read();

if (c == -1) return -1;

} while (c<’0’ || ’9’<c);

do

{ n = 10*n + c - ’0’;

c = ISR.read();

} while (’0’<=c && c<=’9’);

return n;

}

}

2

