Foundations of functional programming

Matthew Parkinson 12 Lectures (Lent 2008)

Materials

Previous years notes are still relevant. Will get copies printed if sufficient demand.

Caveat: What's in the slides is what's examinable.

Foundations of CS Compilers ----- FofFP

Overview

Motivation

Understanding:

• simple notion of computation

Types

Encoding:

• Representing complex features in terms of simpler features

Functional programming in the wild:

• Visual Basic and C# have functional programming features.

Semantics

Den Sem

(Pure) λ -calculus

$\mathsf{M} ::= \mathsf{x} \mid (\mathsf{M} \mathsf{M}) \mid (\lambda \mathsf{x}.\mathsf{M})$

Syntax:

- x variable
- (M M) (function) application
- $(\lambda x.M)$ (lambda) abstraction

World smallest programming language:

- α,β,η reductions
- when are two programs equal?
- choice of evaluation strategies

Pure λ -calculus is universal

Can encode:

- Booleans
- Integers
- Pairs
- Disjoint sums
- Lists
- Recursion
- within the λ -calculus.

Can simulate a Turing or Register machine (Computation Theory), so is universal.

Applied λ -calculus

 $M ::= x \mid \lambda x.M \mid M M \mid c$

Syntax:

- x variables
- $\lambda x.M$ (lambda) abstraction
- M M (function) application
- c (constants)

Elements of c used to represent integers, and also functions such as addition

• δ reductions are added to deal with constants

Combinators

$M ::= M M \mid c \quad (omit \ x \ and \ \lambda x.M)$

We just have $c \in \{S, K\}$ regains power of λ -calculus.

Translation to/from lambda calculus including almost equivalent reduction rules.

Evaluation mechanisms/facts

Eager evaluation (Call-by-value)

Lazy evaluation (Call-by-need)

Confluence "There's always a meeting place downstream"

Implementation Techniques

Real implementations

- "Functional Languages"
- Don't do substitution, use environments instead.
- Haskell, ML, F# (, Visual Basic, C#)

SECD

Abstract machine for executing the $\lambda\text{-calculus}.$

4 registers Stack, Environment, Control and Dump.

Continuations

- λ-expressions restricted to always return
 "()" [continuations] can implement all λexpressions
- Continuations can also represent many forms of non-standard control flow, including exceptions
- call/cc

State

How can we use state and effects in a purely functional language?

Pure λ -calculus

Types

This course is primarily untyped.

We will mention types only where it aids understanding.

Syntax

Variables: x,y,z,...

Terms:

M,N,L,... ::= $\lambda x.M \mid M N \mid x$

We write M=N to say M and N are syntactically equal.

Free variables and permutation

We define free variables of a $\lambda\text{-term}$ as

- $FV(M N) = FV(M) \cup FV(N)$
- $FV(\lambda x.M) = FV(M) \setminus \{x\}$
- $FV(x) = \{x\}$

We define variable permutation as

- $X < X \cdot Z > = X < Z \cdot X > = Z$
- $x < y \cdot z > = x$ (provided $x \neq y$ and $x \neq z$)
- $(\lambda x.M) < y \cdot z > = \lambda(x < y \cdot z >).(M < y \cdot z >)$
- $(M N) < y \cdot z > = (M < y \cdot z >) (N < y \cdot z >)$

Recap: Equivalence relations

An equivalence relation is a reflexive, symmetric and transitive relation.

R is an equivalence relation if

- Reflexive
- ∀x. x R x
- Transitive
 - $\forall xyz. x R y \wedge y R z \Rightarrow x R z$
- Symmetric

 $\forall xy. x R y \Rightarrow y R x$

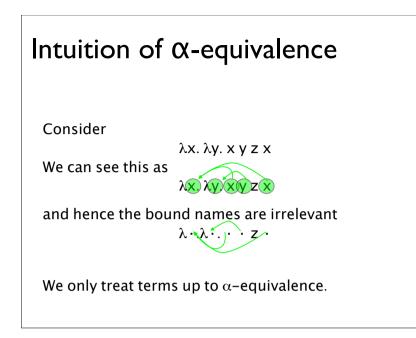
Congruence and Contexts A congruence relation is an equivalence relation, that is preserved by placing terms under contexts. Context (term with a single hole (•)): $C ::= \lambda x. C | C M | M C |$ • Context application C[M] fills hole (•) with M. R is a compatible relation if • $\forall M N C. M R N \Rightarrow C[M] R C[N]$ R is a congruence relation if it is both an equivalence and a compatible relation.

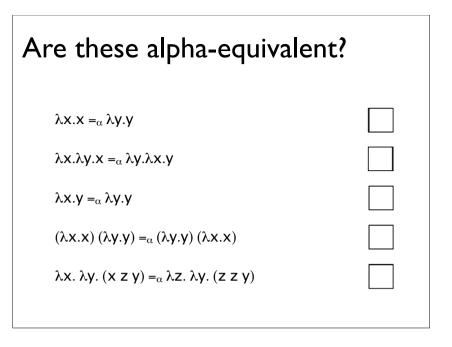
α -equivalence

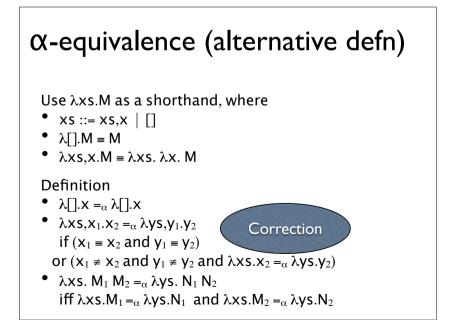
Two terms are α -equivalent if they can be made syntactically equal (=) by renaming bound variables

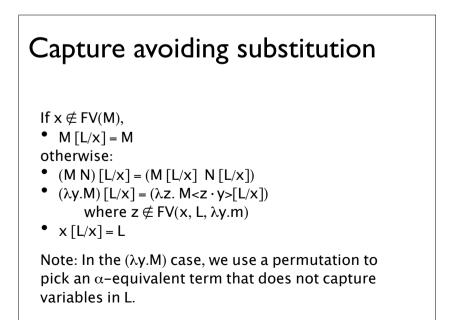
 $\alpha-\text{equivalence}~(\texttt{=}_\alpha)$ is the least congruence relation satisfying

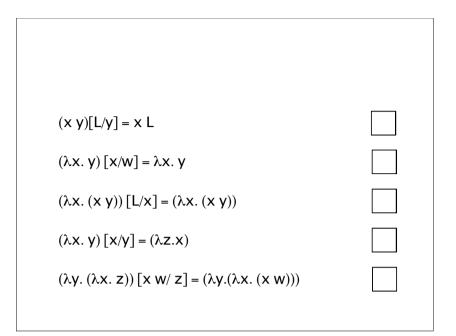
• $\lambda x. M =_{\alpha} \lambda y. M < x \cdot y > \text{ where } y \notin FV(\lambda x. M)$









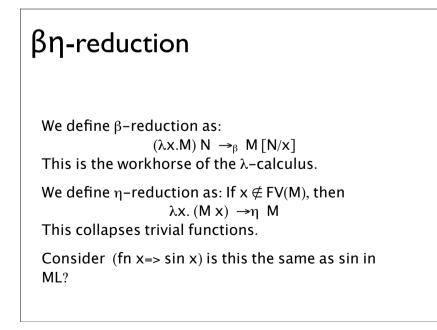


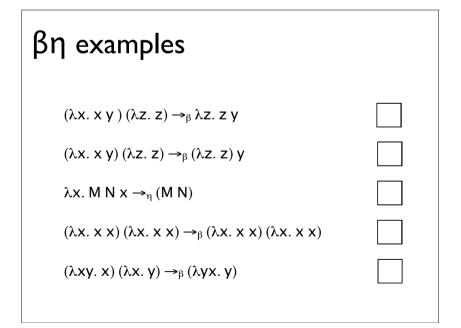
Extra brackets

To simplify terms we will drop some brackets: $\lambda xy. M = \lambda x. (\lambda y. M)$ L M N = (L M) N $\lambda x. M N = \lambda x. (M N)$

Some examples

 $\begin{aligned} & (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \ y \ z = (((\lambda x. (x \ x)) \ (\lambda x. (x \ x))) \ y) \ z \\ & \lambda x y z. x y z = \lambda x. (\lambda y. (\lambda z. \ ((xy) \ z))) \end{aligned}$





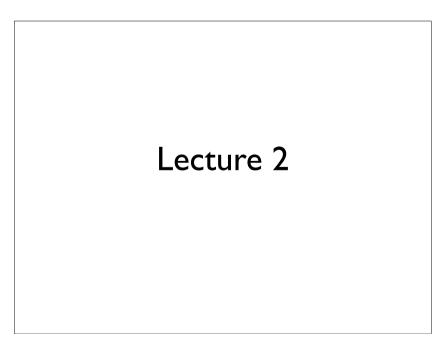
Reduction in a context

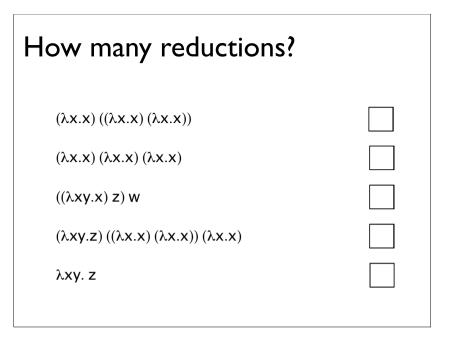
We actually define β -reduction as: C[($\lambda x.M$) N] \rightarrow_{β} C[M [N/x]]

and η -reduction as: C[($\lambda x.(M x)$)] $\rightarrow \eta$ C[M] (where $x \notin FV(M)$)

where C ::= $\lambda x.C | C M | M C | \cdot$ (from "Context and Congruence" slide)

Note: to control evaluation order we can consider different contexts.





Normal-form (NF)

A term is in normal form if it there are no β or η reductions that apply.

Examples in NF:

• x; $\lambda x.y$; and $\lambda xy. x (\lambda x.y)$

and not in NF:

• $(\lambda x.x) y$; $(\lambda x. x x) (\lambda x. x x)$; and $(\lambda x. y x)$

 β -normal-form:

- NF ::= λx . NF | NF₂
- $NF_2 ::= NF_2 NF \mid x$

Normal-forms

A term has a normal form, if it can be reduced to a normal form:

- $(\lambda x.x) y$ has normal form y
- $(\lambda x. y x)$ has a normal form y
- $(\lambda x. x x) (\lambda x. x x)$ does not have a normal form

Note: $(\lambda x.xx) (\lambda x.xx)$ is sometimes denoted Ω .

Note: Some terms have normal forms and infinite reduction sequences, e.g. $(\lambda x. y) \Omega$.

Weak head normal form

A term is in WHNF if it cannot reduce when we restrict the context to $C ::= C M | M C | \cdot$ That is, we don't reduce under a λ . $\lambda x. \Omega$ is a WHNF, but not a NF.

Multi-step reduction

$\mathsf{M} \to^* \mathsf{N} \quad \text{iff} \quad$

- $M \rightarrow_{\beta} N$
- $M \rightarrow_{\eta} N$
- M = N (reflexive)
- 3L. $M \rightarrow^* L$ and $L \rightarrow^* N$ (transitive)

The transitive and reflexive closure of β and η reduction.

Equality

We define equality on terms, =, as the least congruence relation, that additional contains

- α-equivalence (implicitly)
- β -reduction
- η -reduction

Sometimes expressed as M=M' iff there exists a sequence of forwards and backwards reductions from M to M':

• $M \rightarrow N_1 \leftarrow M_1 \rightarrow N_2 \leftarrow \dots \rightarrow N_k \leftarrow M'$

Exercise: Show these are equivalent.

Equality properties

If $(M \rightarrow^* N \text{ or } N \rightarrow^* M)$, then M = N. The converse is not true (Exercise: why?)

If $L \rightarrow^* M$ and $L \rightarrow^* N$, then M = N.

If $M \rightarrow L$ and $N \rightarrow L$, then M = N.

Church-Rosser Theorem

Theorem: If M=N, then there exists L such that $M \rightarrow L$ and $N \rightarrow L$.

Consider $(\lambda x.ax)((\lambda y.by)c)$:

• $(\lambda x.ax)((\lambda y.by)c) \rightarrow_{\beta} a((\lambda y.by)c) \rightarrow_{\beta} a(bc)$

• $(\lambda x.ax)((\lambda y.by)c) \rightarrow_{\beta} (\lambda x.ax) (bc) \rightarrow_{\beta} a(bc)$ Note: Underlined term is reduced.

ConsequencesDianIf M=N and N is in normal form, then $M \rightarrow^* N$.Key to
demote
demote
• If M
that
Conversely, if M and N are in normal forms, then $M=_{\alpha}N$.
Conversely, if M and N are in normal forms and are
distinct, then $M\neq N$. For example, $\lambda xy.x \neq \lambda xy.y$.Exercise
Churce

<text><text>

Proving diamond property

The diamond property does not hold for the single step reduction:

• If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there exists L such that $N_1 \rightarrow_{\beta} L$ and $N_2 \rightarrow_{\beta} L$.

Proving diamond property

Strip lemma:

• If $M \rightarrow_{\beta} N_1$ and $M \rightarrow^* N_2$, then there exists L such that $N_1 \rightarrow^* L$ and $N_2 \rightarrow^* L$

Proof: Tedious case analysis on reductions.

Note: The proof is beyond the scope of this course.

Proving diamond property

Consider $(\lambda x.xx)(Ia)$ where $I = \lambda x.x$. This has two initial reductions:

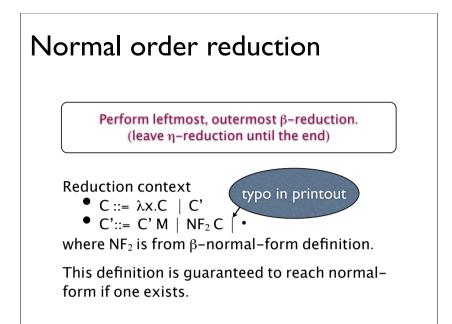
- $(\lambda x.xx) (\underline{I a}) \rightarrow_{\beta} (\lambda x.xx) a \rightarrow_{\beta} a a$
- $(\lambda x.xx)(l a) \rightarrow_{\beta} (l a)(l a)$ Now, the second has two possible reduction sequences:
- $(I a) (I a) \rightarrow_{\beta} a (I a) \rightarrow_{\beta} a a$
- $(\mathbf{I} \mathbf{a}) (\mathbf{I} \mathbf{a}) \rightarrow_{\beta} (\mathbf{I} \mathbf{a}) \mathbf{a} \rightarrow_{\beta} \mathbf{a} \mathbf{a}$

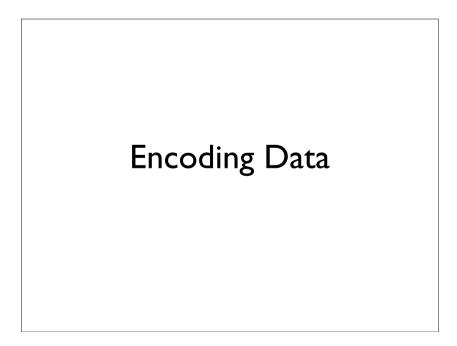
Reduction order

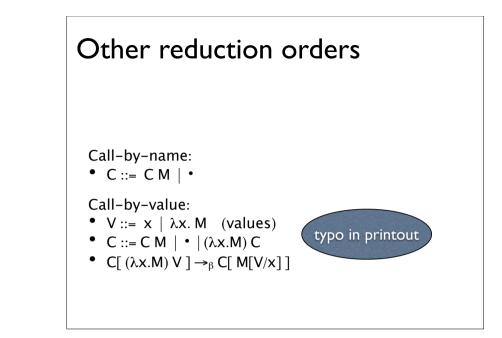
Consider $(\lambda x.a) \Omega$ this has two initial reductions:

- $(\lambda x.a) \Omega \rightarrow_{\beta} a$
- $(\lambda x.a) \underline{\Omega} \rightarrow_{\beta} (\lambda x.a) \Omega$

Following first path, we have reached normal-form, while second is potentially infinite.







Motivation

We want to use different datatypes in the $\lambda-$ calculus.

Two possibilities:

- Add new datatypes to the language
- Encode datatypes into the language

Encoding makes program language simpler, but less efficient.

Encoding booleans

To encode booleans we require IF, TRUE, and FALSE such that:

IF TRUE M N = M IF FALSE M N = N

Here, we are using = as defined earlier.

Encoding booleans

Exercise: Show

- If L=TRUE then IF L M N = M.
- If L=FALSE then IF L M N = N.

Encoding booleans

Definitions:

- TRUE = $\lambda m n. m$
- FALSE = $\lambda m n. n$
- IF = $\lambda b m n$. b m n

TRUE and FALSE are both in normal-form, so by Church-Rosser, we know TRUE≠FALSE.

Note that, IF is not strictly necessary as

• $\forall P$. IF P = P (Exercise: show this).

Logical operators

We can give AND, OR and NOT operators as well:

- AND = λxy . IF x y FALSE
- OR = λxy . IF x TRUE y
- NOT = λx . IF x FALSE TRUE

Encoding pairs

Constructor:

• $PAIR = \lambda xyf. fxy$

Destructors:

- FST = $\lambda p.p$ TRUE
- SND = $\lambda p.p$ FALSE

Properties: ∀pq.

- FST (PAIR p q) = p
- SND (PAIR p q) = q

Encoding sums

Constructors:

- INL = λx . PAIR TRUE x
- INR = λx . PAIR FALSE x

Destructor:

• CASE = $\lambda s f g$. IF (FST s) (f (SND s)) (g (SND s))

Properties:

- CASE (INL x) fg = fx
- CASE (INR x) fg = gx

Encoding sums (alternative defn)

Constructors:

- INL = $\lambda x fg. fx$
- INR = $\lambda x f g. g x$

Destructors:

• CASE = λ s fg. s fg

As with booleans destructor unnecessary.

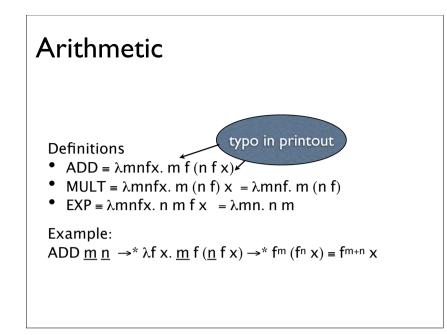
• $\forall p. CASE p = p$

Church Numerals

Define:

- $\underline{0} = \lambda f \mathbf{X} \cdot \mathbf{X}$
- $\underline{1} = \lambda f x. f x$
- $\underline{2} = \lambda f x. f (f x)$
- $\underline{3} = \lambda f x. f (f (f x))$
- ...
- $\underline{\mathbf{n}} = \lambda \mathbf{f} \mathbf{x} \cdot \mathbf{f}(...(\mathbf{f} \mathbf{x})...)$

That is, <u>n</u> takes a function and applies it n times to its argument: <u>n</u> f is f^n .



More arithmetic

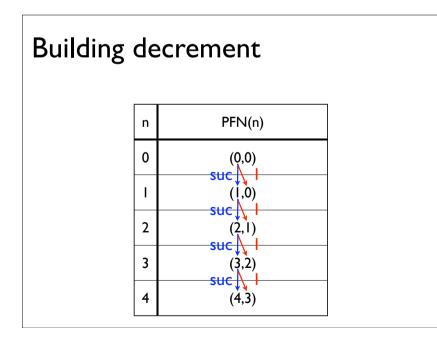
Definitions

- SUC = $\lambda n f x. f(n f x)$
- ISZERO = $\lambda n. n (\lambda x.FALSE) TRUE$

Properties

- SUC <u>n</u> = <u>n+1</u>
- ISZERO $\underline{0} = \mathsf{TRUE}$
- ISZERO (<u>n+1</u>) = FALSE

We also require decrement/predecessor!



Definitions: • PFN = λ n. n (λ p. (SUC(FST P), FST P)) (PAIR <u>0</u> <u>0</u>) • PRE = λ n. SND (PFN n) • SUB = λ mn. n PRE m Exercise: Evaluate • PFN <u>5</u> • PRE <u>0</u> • SUB <u>4 6</u>

Lists

Constructors:

- NIL = PAIR TRUE $(\lambda z.z)$
- CONS = λxy . PAIR FALSE (PAIR x y)

Destructors:

- NULL = FST
- $HD = \lambda I. FST (SND I)$
- $TL = \lambda I. SND (SND I)$

Properties:

- NULL NIL = TRUE
- HD (CONS M N) = M

Recursion

How do we actually iterate over a list?

Fixed point combinator (Y)

We use a fixed point combinator Y to allow recursion.

In ML, we write:

letrec f(x) = M in N

this is really

let $f = Y (\lambda f.\lambda x. M)$ in N

and hence

 $(\lambda f.N) (Y \lambda f. \lambda x. M)$

Defining recursive function

Consider defining a factorial function with the following property:

 $FACT = \lambda n.(ISZERO \ n) \ \underline{1} \ (MULT \ n \ (FACT \ (PRE \ n)))$

We can define

 $\label{eq:prefact} \begin{array}{l} \mathsf{PREFACT} = \lambda fn. \ (\mathsf{ISZERO} \ n) \ 1 \ (\mathsf{MULT} \ n \ (f \ (\mathsf{PRE} \ n)) \\ \mathsf{Properties} \end{array}$

- Base case: $\forall F$. PREFACT F 0 = 1
- Inductive case: ∀F. If F behaves like factorial up to n, then PREFACT F behaves like factorial up to n+1;

Fixed points

Discrete Maths: x is a fixed point of f, iff f x = x

Assume, Y exists (we will define it shortly) such that • Y f = f(Y f)

Hence, by using Y we can satisfy this property: $FACT \equiv Y (PREFACT)$

Exercise: Show FACT satisfies property on previous slide.

General approach If you need a term, M, such that • M = P MThen M = YP suffices Example: • ZEROES = CONS <u>0</u> ZEROES = ($\lambda p.CONS \underline{0} p$) ZEROES • ZEROES = Y ($\lambda p.CONS \underline{0} p$)

Mutual Recursion

Consider trying to find solutions M and N to:

- M = P M N
- N = Q M N

We can do this using pairs: L = Y(λp . PAIR (P (FST p) (SND p)) (Q (FST p) (SND p))) M = FST L N = SND L

Exercise: Show this satisfies equations given above.

Y

Definition (Discovered by Haskell B. Curry): • $Y = \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$

Properties $\begin{array}{l} \mathsf{YF} = \left(\lambda f. \left(\lambda x. f(xx)\right) \left(\lambda x. f(xx)\right)\right) \mathsf{F} \\ \rightarrow \left(\lambda x. F(xx)\right) \left(\lambda x. F(xx)\right) \\ \rightarrow \mathsf{F} \left(\left(\lambda x. F(xx)\right) \left(\lambda x. F(xx)\right)\right) \\ \leftarrow \mathsf{F} \left(\left(\lambda f. \left(\lambda x. f(xx)\right) \left(\lambda x. f(xx)\right)\right) \mathsf{F}\right) = \mathsf{F}(\mathsf{YF}) \end{array}$

There are other terms with this property:

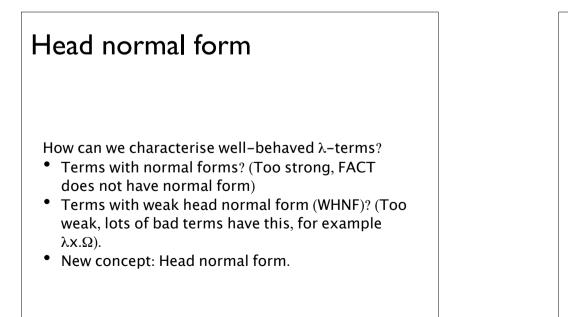
• (λxy.xyx) (λxy.xyx)

(see wikipedia for more)

Y has no normal form

We assume:

- M has no normal form, iff M x has no normal form. (Exercise: prove this)
- Proof of Y has no normal form:
- Y f = f(Y f) (by Y property)
- Assume Y f has a normal form N.
- Hence f (Y f) can reduce to f N, and f N is also a normal form.
- Therefore, by Church Rosser, f N = N, which is a contradiction, so Y f cannot have a normal form.
- Therefore, Y has no normal form.



HNF

A term is in head normal form, iff it looks like $\lambda x_1...x_m. \ y \ M_1 \ ... \ M_k \quad (m,k \ge 0)$

Examples:

- x, $\lambda xy.x$, $\lambda z.z((\lambda x.a)c)$,
- $\lambda f. f(\lambda x. f(xx))(\lambda x. f(xx))$

Non-examples:

- $\lambda y.(\lambda x.a) y \rightarrow \lambda y.a$
- $\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$

Properties

Head normal form can be reached by performing head reduction (leftmost)

- C' ::= C' M |•
- C ::= λx.C | C'

Therefore, Ω has no HNF (Exercise: prove this.)

If M N has a HNF, then so does M. Therefore, if M has no HNF, then M $N_1 \dots N_k$ does not have a HNF. Hence, M is a "totally undefined function".

ISWIM

 $\lambda \text{-calculus as a programming language} (The next 700 programming languages [Landin 1966])}$

ISWIM: Syntax

From the λ -calculus

- x (variable)
- $\lambda x.M$ (abstraction)
- M N (application)

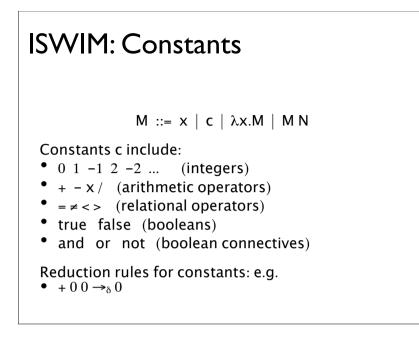
Local declarations

- let x = M in N (simple declaration)
- let $f x_1 \dots x_n = M$ in N (function declaration)
- letrec $f x_1 \dots x_n = M$ in N (recursive declaration) and post-hoc declarations
- N where x = M

• ...

ISWIM: Syntactic sugar

Desugaring explains syntax purely in terms of $\lambda\text{-}$ calculus.



Call-by-value and IF-THEN-ELSE

ISWIM uses the call-by-value λ -calculus.

Consider: IF TRUE 1 Ω

IF E THEN M ELSE N = (IF E $(\lambda x.M) (\lambda x.N)$) $(\lambda z.z)$ where $x \notin FV(M N)$

Pattern matching

Has

- (M,N) (pair constructor)
- $\lambda(p_1,p_2)$. M (pattern matching pairs)

Desugaring

• $\lambda(p_1,p_2)$. M = $\lambda z.(\lambda p_1p_2. M)$ (fst z) (snd z) where $z \notin FV(M)$

Real λ -evaluator

Don't use β and substitution

Do use environment of values, and delayed substitution.

Environments and Closures

Consider β -reduction sequence $(\lambda xy.x + y) \ 3 \ 5 \rightarrow (\lambda y.3 + y) \ 5 \rightarrow 3 + 5 \rightarrow 8.$ Rather than produce $(\lambda y.3+y)$ build a closure: Clo(y, x+y, x=3)The arguments are

- bound variable;
- function body; and
- environment.

SECD Machine • D: The "dump" is either empty (-) or is another machine state of the form (S,E,C,D). A typical state looks like $(S_1,E_1,C_1,(S_2,E_2,C_2,...(S_n,E_n,C_n,-)...))$ It is essentially a list of triples (S_1,E_1,C_1),...,(S_n,E_n,C_n) and serves as the function call stack.

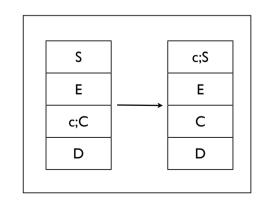
SECD Machine

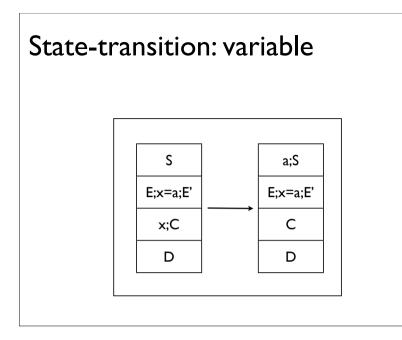
Virtual machine for ISWIM.

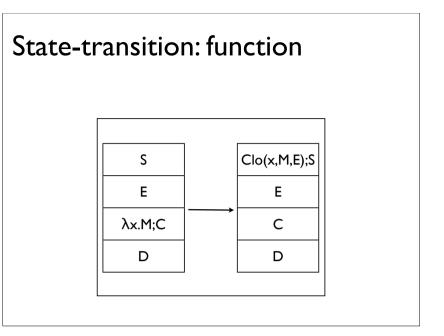
The SECD machine has a state consisting of four components S, E, C and D:

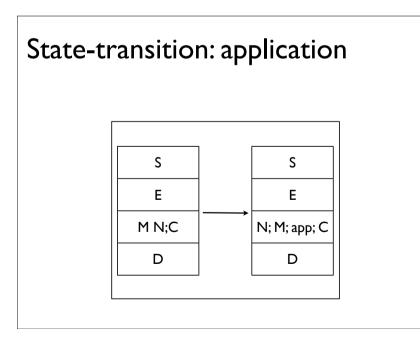
- S: The "stack" is a list of values typically operands or function arguments; it also returns result of a function call;
- E: The "environment" has the form x₁=a₁;...;x_n=a_n, expressing that the variables x₁,...,x_n have values a₁...a_n respectively; and
- C: The "control" is a list of commands, that is λ -terms or special tokens/instructions.

State transitions: constant

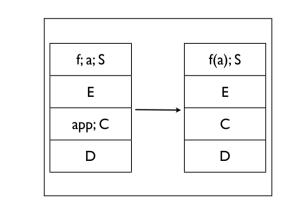


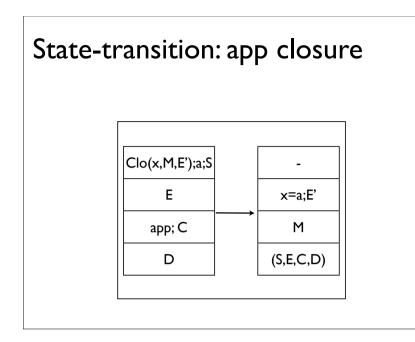


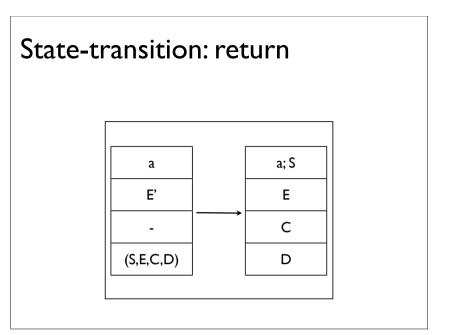


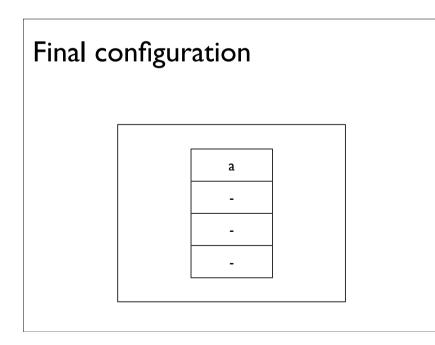


State-transition: app primitive









Compiled SECD machine

Inefficient as requires construction of closures. Perform some conversions in advance:

- [[c]] = const c
- [[x]] = var x
- $\llbracket M N \rrbracket = \llbracket N \rrbracket; \llbracket M \rrbracket; app$
- $[\lambda x.M] = Closure(x, [M])$
- [[M + N]] = [[M]]; [[N]]; add
 ...

More intelligent compilations for "let" and tail recursive functions can also be constructed.

Example

We can see (($\lambda xy.x + y$) 3) 5 compiles to

- const 5; const 3; Closure(x,C₀); app; app where
- $C_0 = Closure(y, C_1)$
- $C_1 = var x; var y; add$

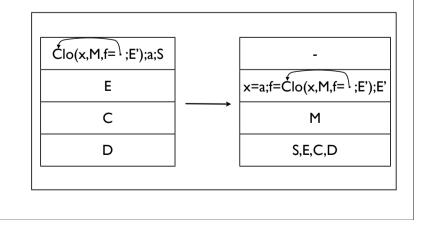
Recursion

The usual fixpoint combinator fails under the SECD machine: it loops forever.

A modified one can be used: • $\lambda fx. f(\lambda y. x x y) (\lambda y. x x y)$ This is very inefficient.

Better approach to have closure with pointer to itself.

Recursive functions (Y($\lambda fx.M$))



Implementation in ML

SECD machine is a small-step machine.

Next we will see a big-step evaluator written in ML.

Implementation in ML

datatype Expr = Name of string | Numb of int | Plus of Expr * Expr | Fn of string * Expr | Apply of Expr * Expr

datatype Val = IntVal of val | FnVal of string * Expr * Env

and Env = Empty | Defn of string * Val * Env

Implementation in ML

fun lookup (n, Defn (s,v,r)) =
 if s=n then v else lookup(n,r)
 lookup(n, Empty) = raise oddity()

Implementation in ML

```
fun eval (Name(s), r) = lookup(s,r)
| eval(Fn(bv,body),r) = FnVal(bv,body,r)
| eval(Apply(e,e'), r) =
    case eval(e,r)
    of IntVal(i) => raise oddity()
        | FnVal(bv,body,env) =>
        let val arg = eval(e',r) in
        eval(body, Defn(bv,arg,env)
        ...
```

Exercises How could we make it lazy?

Combinators

Combinator logic

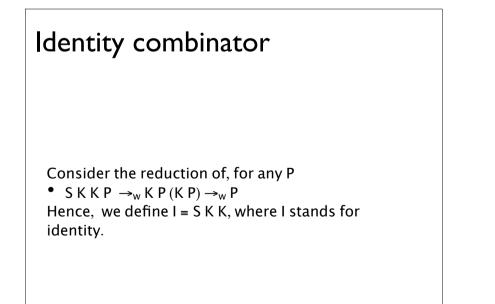
Syntax:

$$P,Q,R := S | K | PQ$$

Reductions:

$$\begin{array}{c} \mathsf{K} \; \mathsf{P} \; \mathsf{Q} \twoheadrightarrow_{\mathsf{W}} \mathsf{P} \\ \mathsf{S} \; \mathsf{P} \; \mathsf{Q} \; \mathsf{R} \xrightarrow{}_{\mathsf{W}} (\mathsf{P} \; \mathsf{R}) \; (\mathsf{Q} \; \mathsf{R}) \end{array}$$

Note that the term S K does not reduce: it requires three arguments. Combinator reductions are call "weak reductions".



Combinators also satisfy Church-Rosser: • if P = Q, then exists R such that $P \rightarrow_w R$ and $Q \rightarrow_w R$

Encoding the λ -calculus

Use extended syntax with variables:

• P ::= S | K | P P | x

Define meta-operator on combinators λ^{\ast} by

- $\lambda^* X.X = I$
- $\lambda^* x.P = K P$ (where $x \notin FV(P)$)
- $\lambda^* x.P Q = S (\lambda^* x.P) (\lambda^* x.Q)$

Example translation

 $\begin{aligned} & (\lambda^* x. \lambda^* y. y x) \\ &= \lambda^* x. \ S \ (\lambda^* y. y) \ (\lambda^* y. x) \\ &= \lambda^* x. \ (S \ I) \ (K \ x) \\ &= S \ (\lambda^* x. (S \ I)) \ (\lambda^* x. K \ x) \\ &= S \ (K \ (S \ I)) \ (S \ (\lambda^* x. K) \ (\lambda^* x. x)) \\ &= S \ (K \ (S \ I)) \ (S \ (K \ K) \ I) \end{aligned}$

There and back again

λ -calculus to SK:

- $(\lambda x.M)_{CL} = (\lambda^* x. (M)_{CL})$
- (X)_{CL} = X
- $(M N)_{CL} = (M)_{CL} (N)_{CL}$

SK to λ -calculus:

- $(\mathbf{X})_{\lambda} = \mathbf{X}$
- $(K)_{\lambda} = \lambda x y. x$
- $(S)_{\lambda} = \lambda x y z. x z (y z)$
- $(P \ Q)_{\lambda} = (P)_{\lambda} \ (Q)_{\lambda}$

Properties Free variables are preserved by translation • $FV(M) = FV((M)_{CL})$ • $FV(P) = FV((P)_{\lambda})$ Supports α and β reduction: • $(\lambda^* x.P) Q \rightarrow_W^* P[Q/x]$ • $(\lambda^* x.P) = \lambda^* y. P < y \cdot x > (where y \notin FV(P))$

Equality on combinators

Combinators don't have an analogue of the $\eta\text{-}$ reduction rule.

• $(SK)_{\lambda} = (KI)_{\lambda}$, but SK and KI are both normal forms

To define equality on combinators, we take the least congruence relation satisfying:

- weak reductions, and
- functional extensionality: If P x = Q x, then P = Q(where $x \notin FV(P Q)$).

 $\mathsf{S} \mathsf{K} \mathsf{x} \mathsf{y} \to (\mathsf{K} \mathsf{y}) (\mathsf{K} \mathsf{x}) \to \mathsf{y} \leftarrow \mathsf{I} \mathsf{y} \leftarrow \mathsf{K} \mathsf{I} \mathsf{x} \mathsf{y}$

Therefore, SK = KI.

Properties

We get the following properties of the translation:

- $((M)_{CL})_{\lambda} = M$
- $((P)_{\lambda})_{CL}) = P$
- M=N \Leftrightarrow (M)_{CL} = (N)_{CL}
- $P=Q \iff (P)_{\lambda} = (Q)_{\lambda}$

Aside: Hilbert style proof

In Logic and Proof you covered Hilbert style proof:

- Axiom K: $\forall AB. A \rightarrow (B \rightarrow A)$
- Axiom S: $\forall ABC. (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- Modus Ponens : If $A \rightarrow B$ and A, then B

Hilbert style proofs correspond to "Typed" combinator terms:

- S K : $\forall AB. ((A \rightarrow B) \rightarrow (A \rightarrow A))$
- S K K : $\forall A. (A \rightarrow A)$

Logic, Combinators and the λ -calculus are carefully intertwined. See Types course for more details.

Compiling with combinators

The translation given so far is exponential in the number of lambda abstractions.

Add two new combinators

- $B P Q R \rightarrow_w P (Q R)$
- $C P Q R \rightarrow_{W} P R Q$

Exercise: Encode B and C into just S and K.

Advanced translation

- $\lambda^T X.X = I$
- $\lambda^T x.P = KP$ $(x \notin FV(P))$
- $\lambda^T x.Px = P$ $(x \notin FV(P))$
- $\lambda^T x.PQ = B P(\lambda^T x.Q)$ $(x \notin FV(P) \text{ and } x \in FV(Q))$
- $\lambda^T x.PQ = C(\lambda^T x.P)Q$ $(x \in FV(P) \text{ and } x \notin FV(Q))$
- $\lambda^{\mathsf{T}} x.PQ = S(\lambda^{\mathsf{T}} x.P)(\lambda^{\mathsf{T}} x.Q)$ $(x \in \mathsf{FV}(\mathsf{P}), x \in \mathsf{FV}(\mathsf{Q}))$

(Invented by David Turner)

Example

- $(\lambda^T x.\lambda^T y. y x)$
- $= (\lambda^{\mathsf{T}} x. C (\lambda^{\mathsf{T}} y. y) x)$
- $= (\lambda^T x.C | x)$
- = CI

Compared to $(\lambda^* x . \lambda^* y . y x) = S(K(S I))(S(K K) I)$

Translation with λ^* is exponential, while λ^\intercal is only quadratic.

Example

$$\begin{split} \lambda^{\mathsf{T}} f. \lambda^{\mathsf{T}} x. \ f(x \ x) \\ &= \lambda^{\mathsf{T}} f. \ B(f(\lambda^{\mathsf{T}} x. x \ x)) \\ &= \lambda^{\mathsf{T}} f. \ B(f(S(\lambda^{\mathsf{T}} x. x)(\lambda^{\mathsf{T}} x. x))) \\ &= \lambda^{\mathsf{T}} f. \ B(f(S \ I \ I)) \\ &= B \ B(\lambda^{\mathsf{T}} f. \ f(S \ I \ I)) \end{split}$$

- $= B B (C (\lambda^{\mathsf{T}} f. f) (S | I))$
- $\equiv B B (C I (S I I))$

Combinators as graphs

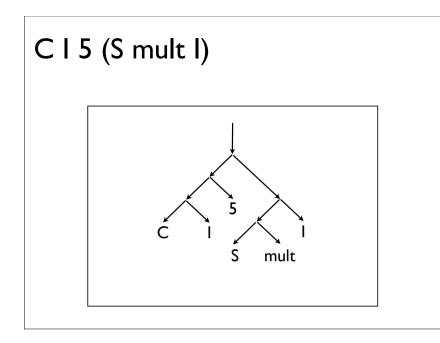
To enable lazy reduction, consider combinator terms as graphs.

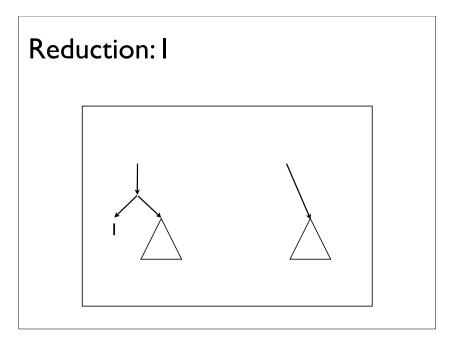
S reduction creates two pointers to the same subterm.

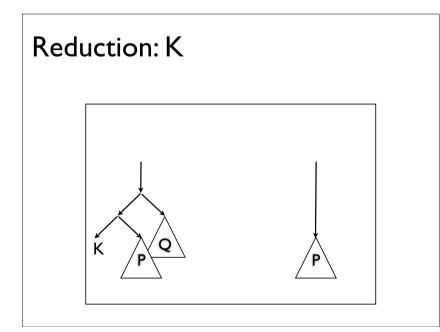
Let's consider

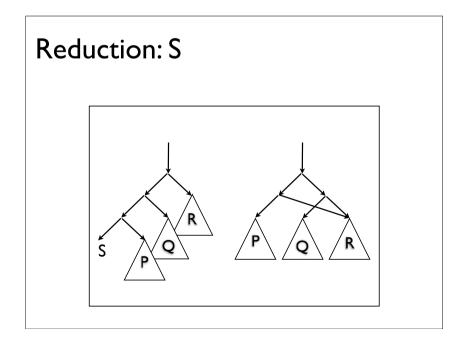
- let sqr x=mult x x in sqr 5 = $(\lambda f. f. f. f. f. f. \lambda m. mult m. m)$ this translates to
- CI5(SmultI)

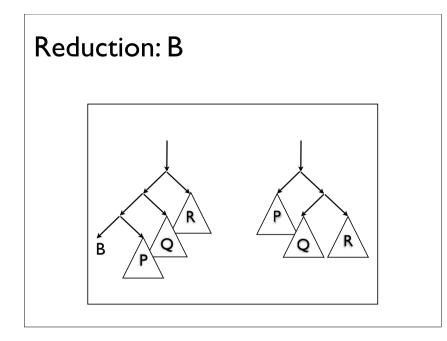
Exercise: Show this translation.

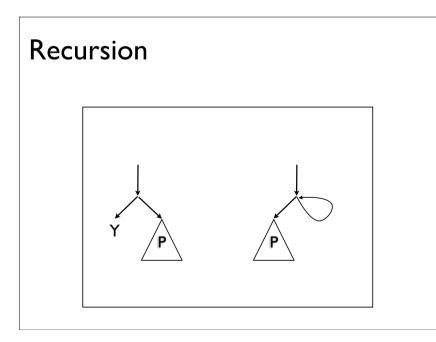


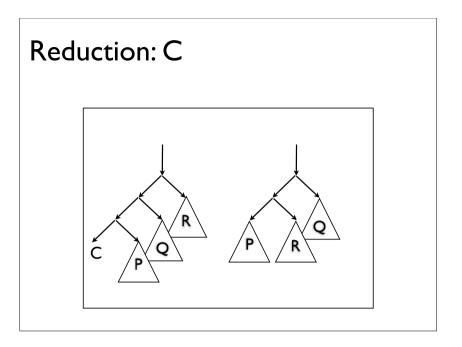












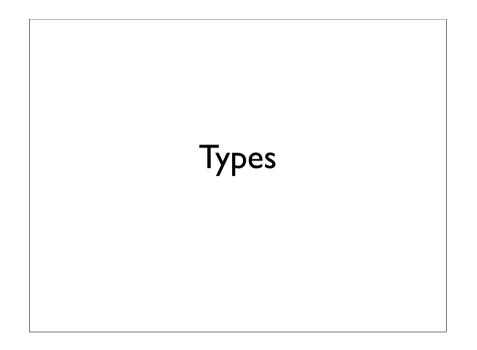
Comments

If 5 was actually a more complex calculation, would only have to perform it once.

Lazy languages such as Haskell, don't use this method.

Could we have done graphs of λ -terms? No. Substitution messes up sharing.

Example using recursion in Paulson's notes.



Simply typed λ -calculus

Types

 $\tau ::= int \mid \tau \to \tau$

Syntactic convention $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \equiv \tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$ Simplifies types of curried functions.

Type checking

We check

- $M N : \tau$ iff $\exists \tau'. M : \tau' \rightarrow \tau$ and $N : \tau'$
- $\lambda x. M : \tau \rightarrow \tau'$ iff $\exists \tau$. if $x:\tau$ then $M : \tau'$
- n : int

Semantics course covers this more formally, and types course next year in considerably more detail.

Type checking $\lambda x. x : int \rightarrow int$ $\lambda x f. f x : int \rightarrow (int \rightarrow int) \rightarrow int$ $\lambda x f. f x : int \rightarrow (int \rightarrow int) \rightarrow int$ $\lambda fgx. fgx : (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_2 \rightarrow \tau_3) \rightarrow \tau_1 \rightarrow \tau_3$ $\lambda fgx. f(gx) : (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_2 \rightarrow \tau_3) \rightarrow \tau_1 \rightarrow \tau_3$ $\lambda f x. f(f x) : (\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau$

Types help find terms

Consider type $(\tau_1 \rightarrow \tau_2 \rightarrow \tau_3) \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Term $\lambda f.M$ where $f: (\tau_1 \rightarrow \tau_2 \rightarrow \tau_3)$ and $M: \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Therefore $M = \lambda xy \cdot N$ where $x:\tau_2, y:\tau_1$ and $N:\tau_3$.

Therefore N = f y x

Therefore λfxy . $fy x : (\tau_1 \rightarrow \tau_2 \rightarrow \tau_3) \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Continuations

Polymorphism and inference

ML type system supports polymorphism: $\tau ::= \alpha \mid \forall \alpha. \tau \mid ...$ Types can be inferred using unification.

Overview

Encode evaluation order.

Encode control flow commands: for example Exit, exceptions, and goto.

Enables backtracking algorithms easily.

Key concept:

• don't return, pass result to continuation. (This is what you did with the MIPS JAL (Jump And Link.) instruction.)

Call-by-value

Definition:

- 1. $\llbracket x \rrbracket_v(k) = k x$
- 2. $[[c]]_v(k) = k c$
- 3. $\llbracket \lambda x.M \rrbracket_{v}(k) = k (\lambda(x,k'). \llbracket M \rrbracket(k'))$
- $4. \ \llbracket \ M \ N \ \rrbracket_v(k) \ = \ \llbracket \ M \ \rrbracket \ (\lambda m. \ \llbracket \ N \ \rrbracket \ (\lambda n. \ m \ (n,k)))$

Intuition:

- [[M]](k) means evaluate M and then pass the result to k.
- k is what to do next. Pairs not essential, but make the translation

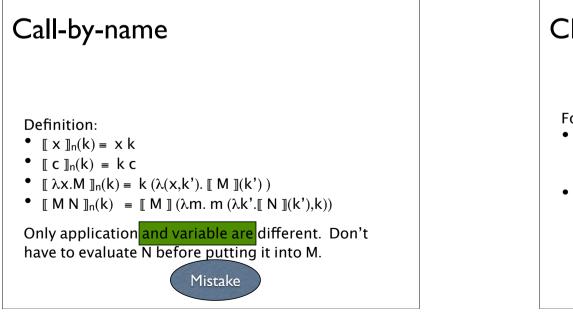
simpler.

Example: CBV

- [[λx.y]]_v (k)
- $= k \left(\lambda(x,k') . \llbracket y \rrbracket (k') \right)$
- = $k (\lambda(x,k'). k' y)$

$[\![(\lambda x.y) \ z \]\!]_v(k)$

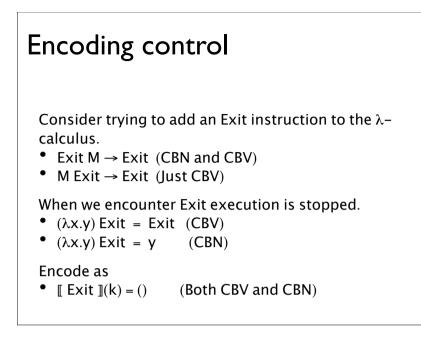
- $= \ [\![\ \lambda x.y \]\!] (\ \lambda m. [\![\ z \]\!] (\lambda n. \ m \ (n,k)))$
- $= \ [\![\lambda x.y \]\!](\lambda m. (\lambda n. m(n,k)) \ z)$
- = $(\lambda m. (\lambda n. m(n,k)) z) (\lambda(x,k'). k' y)$
- $\rightarrow (\lambda n. \ (\lambda(x,k'). \ k' \ y)) \ (n,k)) \ z$
- $\rightarrow (\lambda(x,k').\;k'\;y))\,(z,k)$
- → k y



CBN and CBV

For any closed term M $(FV(M) = \{\})$

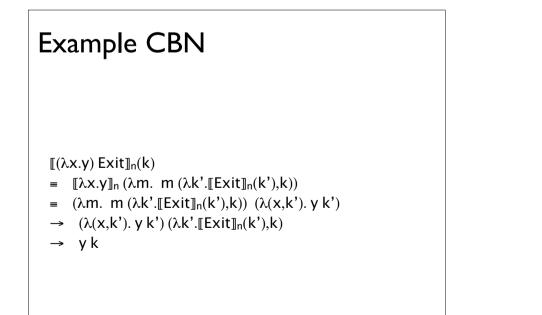
- M terminates with value v in the CBV λ -calculus, iff $[M]_v(\lambda x.x)$ terminates in both the CBV and CBN λ -calculus with value v.
- M terminates with value v in the CBN λ -calculus, iff $[M]_n(\lambda x.x)$ terminates in both the CBV and CBN λ -calculus with value v.



Example CBV

 $[\![(\lambda x.y) \: Exit]\!]_v\!(k)$

- $= [[\lambda x.y]]_v (\lambda m. [[Exit]]_v (\lambda n. m (n,k)))$
- $= \ \llbracket \lambda x.y \rrbracket_v \left(\lambda m. \left(\right) \right)$
- = $(\lambda m. ()) (\lambda(x,k'). k' y)$
- → `()



Order of evaluation With CBV we can consider two orders of evaluation: Function first: $[MN]_{v2}(k) = [M](\lambda m. [N](\lambda n. m (n,k)))$ Argument first: $[MN]_{v1}(k) = [N](\lambda n. [M](\lambda m. m (n,k)))$

Example

Consider having two Exit expressions

- $[[Exit_1]](k) = 1$
- $[[Exit_2]](k) = 2$

Now, we can observe the two different translations by considering Exit₁ Exit₂:

- $\llbracket Exit_1 Exit_2 \rrbracket_{v1}(k) = \llbracket Exit_1 \rrbracket_{v2}(k)$ (Function first)
- $\llbracket Exit_1 Exit_2 \rrbracket_{v_2}(k) = \llbracket Exit_2 \rrbracket_{v_2}(k)$ (Argument first)

Example (continued)

 $\llbracket \texttt{Exit}_1 \ \texttt{Exit}_2 \rrbracket_{v1}(k)$

- $= [[Exit_1]] (\lambda m. [[Exit_2]] (\lambda n. m (n,k))$
- = 1 = $[[Exit_1]](k)$

 $[\![\texttt{Exit}_1 \ \texttt{Exit}_2]\!]_{v2}\!(k)$

- = 2 = $[[Exit_2]](k)$

Typed translation: CBV

Consider types:

 $\tau ::= b \mid \tau \to \tau \mid \bot$ Here b is for base types of constants, \bot for continuation return type.

We translate:

•
$$\llbracket \tau_1 \rightarrow \tau_2 \rrbracket_v \equiv (\llbracket \tau_1 \rrbracket_v * (\llbracket \tau_2 \rrbracket_v \rightarrow \bot)) \rightarrow \bot$$

• $\llbracket b \rrbracket_v \equiv b$
If M : τ then λk . $\llbracket M \rrbracket_v(k)$: $(\llbracket \tau \rrbracket_v \rightarrow \bot) \rightarrow \bot$
Sometimes, we write T τ for $(\tau \rightarrow \bot) \rightarrow \bot$

Tor function translation: Assume • $k: (\llbracket \tau_1 \rightarrow \tau_2 \rrbracket_V \rightarrow \bot)$ • $\lambda x.M: \tau_1 \rightarrow \tau_2$, hence $\llbracket M \rrbracket_V : (\llbracket \tau_2 \rrbracket_V \rightarrow \bot) \rightarrow \bot$ if $x: \llbracket \tau_1 \rrbracket_V$ Find N such that $k N : \bot$ therefore $N: \llbracket \tau_1 \rightarrow \tau_2 \rrbracket_V$ So, $N = \lambda(x,k'). L$, where $L: \bot$ if • $x: \llbracket \tau_1 \rrbracket_V$ and • $k': \llbracket \tau_2 \rrbracket_V \rightarrow \bot$ Therefore $L = \llbracket M \rrbracket_V(k')$ $\llbracket \lambda x.M \rrbracket_V(k) = k (\lambda(x,k'). \llbracket M \rrbracket(k'))$

Types guide translation

Find an example that evaluates differently for each of the three encodings, and demonstrate this. How would you perform a type call-by-name translation? [[τ₁→τ₂]]_n = ((T [[τ₁]]_n)* ([[τ₂]]_n → ⊥)) → ⊥

Other encodings

We can encode other control structures:

- Exceptions (2 continuations: normal and exception)
- Breaks and continues in loops (3 continuations: normal, break, and continue)
- Goto, jumps and labels
- call/cc (passing continuations into programs)
- backtracking

Aside: backtracking

Continuations can be a powerful way to implement backtracking algorithms. (The following is due to Olivier Danvy.)

Consider implementing regular expression pattern matcher in ML:

datatype re =

 Char of char
 (* "c" *)

 Seq of re * re
 (* re1; re2 *)

 Alt of re * re
 (* re1 | re2 *)

 Star of re * re
 (* re1 * *)

Implementation

Plan: use continuations to enable backtracking:

fun

f ("c") (a::xs) k = if a=c then (k xs) else false f ("c") [] k = false f (re1; re2) xs k = f re1 xs (λ ys. f re2 ys k) f (re1 | re2) xs k = (f re1 xs k) orelse (f re2 xs k) f (re1 *) xs k = (k xs) orelse (f (re1 : re1*) xs k)

Exercise: execute f(("a" | "a"; "b"; "c"); "b") ["a", "b", "c"] (λxs. xs=[])

Example execution

```
\begin{array}{l} f((``a"; ``a" | ``a"); ``a") [``a", ``a"] (\lambda xs. xs=[]) \\ \rightarrow f(``a"; ``a" | ``a") [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow f(``a"; ``a") [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ orelse f``a" [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow (\lambda xs. f``a" xs (\lambda xs.xs=[])) [] \\ orelse f``a" [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow false \\ orelse f``a" [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow f``a" [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow f``a" [``a", ``a"] (\lambda xs. f``a" xs (\lambda xs.xs=[])) \\ \rightarrow (\lambda xs. f``a" xs (\lambda xs.xs=[])) [``a"] \\ \rightarrow (\lambda xs.xs=[]) [] \rightarrow true \end{array}
```

Exercise

How could you extend this to

- count the number of matches; and
- allow matches that don't consume the whole string?

Remove use of orelse by building a list of continuations for backtracking.

Comments

Not the most efficient regular expression pattern matching, but very concise code.

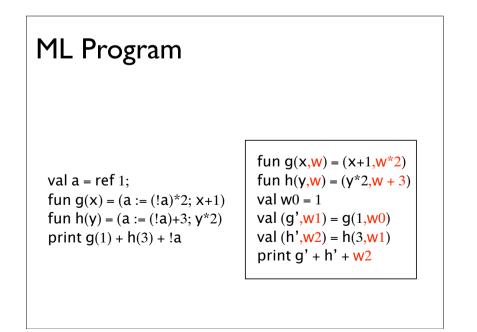
This style can implement efficient lazy pattern matchers or unification algorithms.

Encoding state

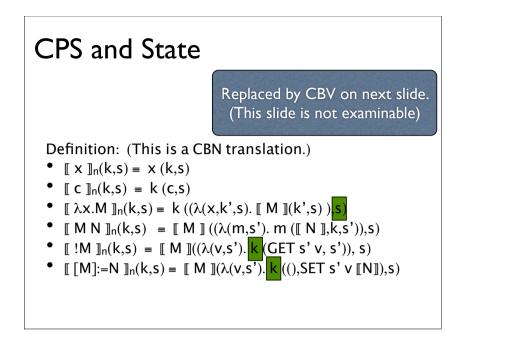
Now, we can consider extending the λ -calculus with

- Assignment M := N
- Read !M

How can we do this by encoding?



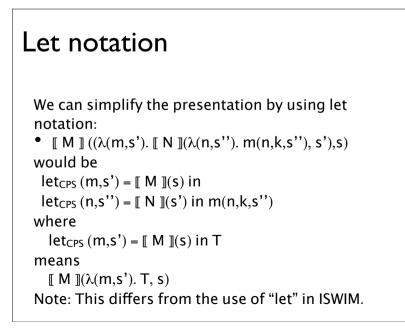
Comments Evaluation order made explicit (CPS transform). Parameter used to carry state around. We use the following encoding of state functions, • SET s x y = λz . IF z=x THEN y ELSE s x • GET s x = s x Note that, we ignore allocation in this encoding.

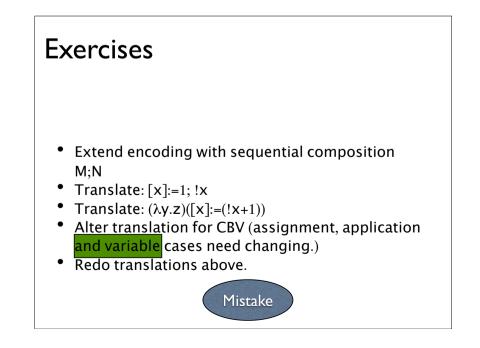


CPS and State

Definition: (This is a CBV translation.)

- $[x]_n(k,s) = k(x,s)$
- $[[c]]_n(k,s) = k(c,s)$
- $[\lambda x.M]_n(k,s) = k ((\lambda(x,k',s'), [M](k',s')), s)$
- $\llbracket M N \rrbracket_n(k,s) =$ $\llbracket M \rrbracket ((\lambda(m,s'). \llbracket N \rrbracket(\lambda(n,s''). m(n,k,s''), s'),s)$
- $\llbracket !M \rrbracket_n(k,s) = \llbracket M \rrbracket(\lambda(v,s'). (k (GET s' v, s'), s)$
- $\llbracket [M] := N]_n(k,s) =$ $\llbracket M](\lambda(v,s'). (\llbracket N](\lambda(v',s'').k((),SET s'' v v'),s'),s)$





It's getting complicated

Common theme, we are threading "stuff" through the evaluation:

- continuations
- state

If we add new things, for example IO and exceptions, we will need even more parameters.

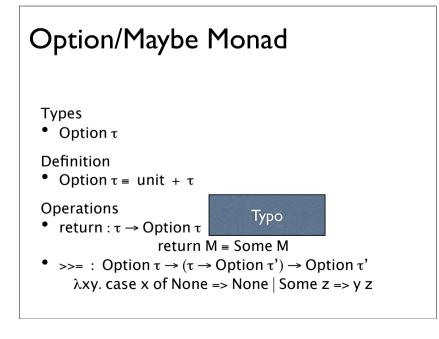
Can we abstract the idea of threading "stuff" through evaluation?

Monad (Haskell)

Haskell provides a syntax and type system for threading "effects" through code.

Two required operations

- return : $\tau \rightarrow T \tau$
- >>= : T $\tau \rightarrow (\tau \rightarrow T \tau') \rightarrow T \tau'$ [bind]



Example

Imagine findx and findy are of type unit \rightarrow Option τ

$$\label{eq:linear_state} \begin{split} & \text{find} x() >>= \lambda x. \\ & \text{find} y() >>= \lambda y. \\ & \text{return} (x, y) \end{split}$$

This code is of type Option (τ * $\tau).$

ML code: case findx() of None => None | Some x => case findy() of None => None | Some y => Some (x,y)

Do notation

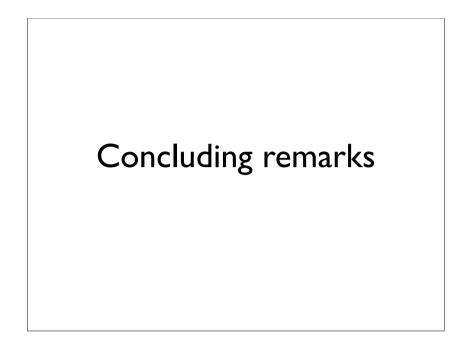
findx() >>= λx . findy() >>= λy . return (x,y)

Haskell has syntax to make this even cleaner:

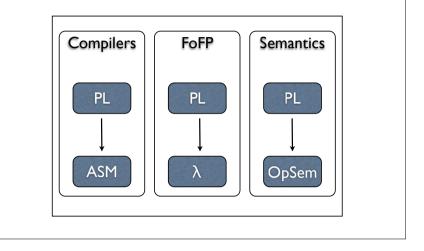
 $do \{ x \leftarrow findx(); y \leftarrow findy(); return (x,y) \}$

Example: swap Assume x and y are two locations. do { z ← get x; w ← get y; set y z; set x w }

State monad Types • State τ Definition • State $\tau \equiv s \rightarrow s * \tau$ (s is some type for representing state, i.e. partial functions) Operations • return : $\tau \rightarrow$ State τ • >>= : State $\tau \rightarrow (\tau \rightarrow$ State $\tau') \rightarrow$ State τ' (infix) • set : Loc \rightarrow Int \rightarrow State () • get : Loc \rightarrow State Int • new : () \rightarrow State Loc



Where this course sits



Summary

"Everything" can be encoded into the $\lambda\text{-calculus.}$

• Caveat: not concurrency!

Should we encode everything into λ -calculus?

