Flow Control

Digital Communications Il

Michaelmas Term 2007
Based on Prof. Jon Crowcroft's notes, and thus transitively on
S. Keshav's “An Engineering Approach to Computer Networking”

DigiComms |

= Explored the fundamentals
What to ensure receiver can take in information at the rate
the transmitter is sending it

= Circuit switching
Easy — agree channel rate
= Packet switching
Harder
Interactions in intermediate switches
= Sliding windows for flow control
Receiver opens and closes the window
Still a delay in taking effect

Flow control problem

= Consider file transfer
" fS_Iender sends a stream of packets representing fragments of a
ile
= Sender should try to match rate at which receiver and network
can process data
= Can't send too slow or too fast
= Too slow
Wastes time
= Too fast
Can lead to buffer overflow
= How to find the correct rate?
Particularly given delays on control information

Other considerations

= Simplicity
= Overhead
= Scaling

= Fairness
= Stability

= Many interesting tradeoffs

Overhead for stability
Simplicity for unfairness

Where?

= Usually at transport layer
= Also, in some cases, in datalink layer

Model

= Source, sink, server, service rate, bottleneck, round trip time

Source Buffer Server Sink
AM—0—0L1
_ I) u
— B D —
2 2
o ™ > I
s 8 g
n ()

S 5 g ¢

[}
2 5)
= =

0
(no cost)

Classification

= Open loop
Source describes its desired flow rate
Network admits call
Source sends at this rate
= Closed loop
Source monitors available service rate
o Explicit or implicit
Sends at this rate
Due to speed of light delay, errors are bound to occur
= Hybrid
Source asks for some minimum rate
But can send more, if available

Open loop flow control

= Two phases to the flow being controlled
Call (i.e. connection) setup
Data transmission

= Call setup
Network prescribes parameters
User chooses parameter values
Network admits or denies call

= Data transmission
User sends within parameter range
Network polices users
Scheduling policies give user QoS

Hard problems

= Choosing a descriptor at a source

= Choosing a scheduling discipline at intermediate network
elements

= Admitting calls so that their performance objectives are met (call
admission control).

Traffic descriptors

= Usually an envelope

Constrains worst case behaviour
= Three uses

Basis for traffic contract

Input to regulator

Input to policer

10

Descriptor requirements

= Representativity
Adequately describes flow, so that network does not reserve
too little or too much resource
= Verifiability
Verify that descriptor holds
= Preservability
Doesn’t change inside the network
= Usability
Easy to describe and use for admission control

1

Examples

= Representative, verifiable, but not useable
Time series of inter-arrival times

= Verifiable, preservable, and useable, but not representative
Peak rate

12

Some common descriptors

= Peakrate
= Average rate
= Linear bounded arrival process

13

Peak rate

= Highest ‘rate’ at which a source can send data
= Two ways to compute it
= For networks with fixed-size packets
Minimum inter-packet spacing
= For networks with variable-size packets
Highest rate over all intervals of a particular duration
= Regulator for fixed-size packets
Timer set on packet transmission
If timer expires, send packet, if any
= Problem
Sensitive to extremes

14

Average rate

= Rate over some time period (window)
= Less susceptible to outliers
= Parameters:tand a
= Two types: jumping window and moving window
= Jumping window
Over consecutive intervals of length t, only a bits sent
Regulator reinitializes every interval
= Moving window
Over all intervals of length t, only a bits sent
Regulator forgets packet sent more than t seconds ago

15

Linear Bounded Arrival Process

= Source bounds # bits sent in any time interval by a linear
function of time

= The number of bits transmitted in any active interval of length t
islessthanrt+s

= r isthe long term rate
= S isthe burst limit
= Insensitive to outliers

16

Leaky bucket

Tokens arrive

= A regulator for an LBAP periodiF(’:aIIy

= Token bucket fills up at rate r /

= Largest# tokens <s Token (15
Bucket i

Input Output

Test
Data T
Buffer

17

Variants

= Token and data buckets
Sum is what matters
= Peak rate regulator
Previously s limits the size of the burst, not its rate

18

Choosing LBAP parameters

= Trade-off betweenr and s
= Minimal descriptor
Doesn’t simultaneously have smaller r and s
Presumably costs less
= How to choose minimal descriptor?
= Three way trade-off
Choice of s (data bucket size)
Loss rate
Choice of r

19

Choosing minimal parameters

= Keeping loss rate the same
If s is more, r is less (smoothing)
for each r we have least s

= Choose knee of curve

20

Linear Based Arrival Process conclusion

= Popular in practice and in academia
Sort of representative
Verifiable
Sort of preservable
Sort of usable

= Problems with multiple time scale traffic
Large burst messes up things

21

Open loop vs. closed loop

= Open loop
Describe traffic
Network admits/reserves resources
Regulation/policing
= Closed loop
Can't describe traffic or network doesn’t support reservation
Monitor available bandwidth
o Perhaps allocated using GPS-emulation
Adapt to it
If not done properly either
o Too much loss
o Unnecessary delay

22

Taxonomy

= First generation
Ignores network state
Only match receiver
= Second generation
Responsive to state
Three choices
o State measurement
« Explicit or implicit
o Control
« Flow control window size or rate
o Point of control
« Endpoint or within network

23

Explicit vs. Implicit

= Explicit
Network tells source its current rate
Better control
More overhead
= Implicit
Endpoint figures out rate by looking at network
Less overhead
= Ideally, want overhead of implicit with effectiveness of explicit

24

Flow control window

= Recall error control window
= Largest number of packet outstanding (sent but not ACKed)

= If endpoint has sent all packets in window, it must wait => slows
down its rate

= Thus, window provides both error control and flow control
= This is called transmission window
= Coupling can be a problem

Few buffers are receiver — slow rate!

25

Window vs. rate

= In adaptive rate, we directly control rate
= Needs a timer per connection
= Plusses for window
No need for fine-grained timer
Self-limiting
= Plusses for rate
Better control (finer grain)
No coupling of flow control and error control

= Rate control must be careful to avoid overhead and sending too
much

26

Hop-by-hop vs. end-to-end

= Hop-by-hop
First generation flow control at each link
o Next server = sink
Easy to implement
= End-to-end
Sender matches all the servers on its path
= Plusses for hop-by-hop
Simpler
Distributes overflow
Better control
= Plusses for end-to-end
Cheaper

27

On-off

= Receiver gives ON and OFF signals
= If ON, send at full speed

= If OFF, stop

= OKwhen RTT is small

= Whatif OFF is lost?

= Bursty

= Used in serial lines or LANs

28

Stop and Wait

= Send a packet
= Wait for ACK before sending next packet

O O O

Source Router Destination

§ Data

Data T=——_ | Time
Wait | —

ACK

29

Static window

= Stop and wait can send at most one packet per RTT

= Here, we allow multiple packets per RTT (= transmission
window)

Source Router Destination

_L%

=

f
A

Time
A3

30

What should window size be?

= Let bottleneck service rate along path = b packets/sec

= Letround trip time = R sec

= Let flow control window = w packets

= Sending rate is w packets in R seconds = w/R

= To use bottleneck w/R >b — w > bR

= This is the bandwidth delay product or optimal window size

31

Static window

= Works well if b and R are fixed
= But, bottleneck rate changes with time!
= Static choice of w can lead to problems
Too small — wasted potential
Too large — congestion
= So, need to adapt window
= Always try to get to the current optimal value

32

DEChbit flow control

= Intuition
Every packet has a bit in header
Intermediate routers set bit if queue has built up => source
window is too large
Sink copies bit to ACK
If bits set, source reduces window size
In steady state, oscillate around optimal size

Source Router A Router B Destination

O—_MMo—_Mo—0
[o] Data] —[1] Data] —— [1] Data|>

[1[AcK] [1] AcK]

33

DECDbit

= When do bits get set?
= How does a source interpret them?

34

DECDbit details: router actions

= Measure demand and mean queue length of each source
= Computed over queue regeneration cycles
= Balance between sensitivity and stability

Queue
Length

|/\/h

« Previous | Current _____
Cycle Cycle

Time

|<— Averaging —>|
Interval

35

Router actions

= If mean queue length > 1.0

Set bits on sources whose demand exceeds fair share
= Ifit exceeds 2.0

Set bits on everyone

Panic!

36

Source actions

= Keep track of bits

= Can't take control actions too fast!

= Wait for past change to take effect

= Measure bits over past + present window size

= If more than 50% set, then decrease window, else increase
= Additive increase, multiplicative decrease

37

Evaluation

= Works with FIFO

but requires per-connection state (demand)
= Simple implementation
= But:

Assumes cooperation!

Has conservative window increase policy

38

Sample trace

X

-

I T T 1
1] 0,000 200m L0 A0,000 0,000
Time

Creelils

39

TCP Flow Control

= Implicit
= Dynamic window
= End-to-end

= Very similar to DECbit, but

No support from routers

Increase if no loss (usually detected using timeout)
Window decrease on a timeout

Additive increase, multiplicative decrease

40

1C

TCP details

= Window starts at 1

= Increases exponentially for a while, then linearly
= Exponentially — doubles every RTT

= Linearly — increases by 1 every RTT

= During exponential phase, every ACK results in window
increase by 1

= During linear phase, window increases by 1 when # ACKs =
window size

= Exponential phase is called slow start
= Linear phase is called congestion avoidance

41

More TCP details

On a loss, current window size is stored in a variable called slow
start threshold or ssthresh

Switch from exponential to linear (slow start to congestion
avoidance) when window size reaches threshold

Loss detected either with timeout or fast retransmit (duplicate
cumulative ACKs)

Many versions of TCP

Tahoe: in both cases, drop window to 1

Reno: on timeout, drop window to 1, and on fast retransmit
drop window to half previous size (also, increase window on
subsequent ACKs)

Vegas, New Reno
(CU)BIC: Used in Linux 2.6.8 (2.6.19)

42

TCP vs. DECbit

= Both use dynamic window flow control and additive-increase
multiplicative decrease

= TCP uses implicit measurement of congestion
Probe a black box

= Operates at the cliff

= Source does not filter information

43

Evaluation

Effective over a wide range of bandwidths
A lot of operational experience
Weaknesses

Loss — overload? (not always: e.g. wireless)
Overload — self-blame, problem with FCFS
Overload detected only on a loss

o In steady state, source induces loss
Needs at least bR/3 buffers per connection

Sample trace

worgestion aviedano:

45

TCP Vegas

= Expected throughput =
transmission_window_size/propagation_delay

= Numerator: known

= Denominator: measure smallest RTT

= Also know actual throughput

= Difference = how much to reduce/increase rate

= Algorithm
Send a special packet
On ACK, compute expected and actual throughput
(expected - actual)* RTT packets in bottleneck buffer
Adjust sending rate if this is too large

= Works better than TCP Reno

46

NETwork Block Transfer (NETBLT)

= First rate-based flow control scheme

= Separates error control (window) and flow control (no coupling)
= S0, losses and retransmissions do not affect the flow rate

= Application data sent as a series of buffers, each at a given rate
= Rate = (burst size at burst rate) so granularity of control = burst
= Initially, no adjustment of rates

= Later, if received rate < sending rate, multiplicatively decrease
rate

= Change rate only once per buffer — slow

47

Packet pair

= Improves basic ideas in NETBLT
Better measurement of bottleneck
Control based on prediction
Finer granularity
= Assume all bottlenecks serve packets in round robin order

= Then, spacing between packets at receiver (= ACK spacing) =
1/(rate of slowest server)

= If all data sent as paired packets, no distinction between data
and probes

= Implicitly determine service rates if servers are round-robin-like

48

12

Packet pair
Bottleneck
Non-bottleneck Router
Source Router (rate =) Sink
I Packet 1
[packet 2
RTT
T
i
A
Y
fl .
N Time

49

Packet-pair details

ACKs give time series of service rates in the past
We can use this to predict the next rate

Exponential averager, with fuzzy rules to change the averaging
factor

Predicted rate feeds into flow control equation

50

Packet-pair flow control

Let X = # packets in bottleneck buffer
S = # outstanding packets

R=RTT

b = bottleneck rate

Then, X = S - Rb (assuming no losses)
Let | = source rate

I(k+1) = b(k+1) + (setpoint -X)/R

51

Sample trace

Packiets

120 Time

52

13

ATM Forum End-to-End Rate-based Flow
Control (EERC)

= Similar to DECbit, but send a whole cell’s worth of info instead
of one bit

= Sources periodically send a Resource Management (RM) cell
with a rate request

Typically once every 32 cells
= Each server fills in RM cell with current share, if less
= Source sends at this rate

53

ATM Forum EERC details

= Source sends Explicit Rate (ER) in RM cell

= Switches compute source share in an unspecified manner
(allows competition)

= Current rate = Allowed Cell Rate = ACR

= IfER >ACR then ACR = ACR + RIF x PCR else ACR = ER
(PCR is Peak Cell Rate, RIF is Rate Increase Factor)

= If switch does not change ER, then use DECbit idea
If CI bit set, ACR = ACR (1 - RDF)

= IfER<AR,AR=ER

= Allows interoperability of a sort

= Ifidle 500 ms, reset rate to Initial cell rate

= Ifno RM cells return for a while, ACR = ACR x (1-RDF)

54

Comparison with DECDbit

= Sources know exact rate

= Non-zero initial cell-rate — conservative increase can be
avoided

= Interoperation between ER/CI switches

55

Problems

= RM cells sitting in the data path is a mess
= Updating sending rate based on RM cell can be hard

= Interoperability comes at the cost of reduced efficiency (as bad
as DEChit)

= Computing ER is difficult

56

14

Comparison among closed-loop schemes

= On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,
Packet-pair, ATM Forum EERC

= Which is best? No simple answer
= Some rules of thumb
Flow control easier with RR scheduling
o Otherwise, assume cooperation, or police rates
Explicit schemes are more robust
Hop-by-hop schemes are more responsive, but more
complex
Try to separate error control and flow control
Rate based schemes are inherently unstable unless well-
engineered

57

Hybrid flow control

= Source gets a minimum rate, but can use more
= All problems of both open loop and closed loop flow control
= Resource partitioning problem

What fraction can be reserved?

How?

58

15

