
1

Digital Communications II

Flow ControlFlow Control

Michaelmas Term 2007
Based on Prof. Jon Crowcroft’s notes, and thus transitively on 

S. Keshav’s “An Engineering Approach to Computer Networking”

2

DigiComms I

■ Explored the fundamentals
◆ What to ensure receiver can take in information at the rate 

the transmitter is sending it
■ Circuit switching

◆ Easy – agree channel rate
■ Packet switching

◆ Harder
◆ Interactions in intermediate switches

■ Sliding windows for flow control
◆ Receiver opens and closes the window
◆ Still a delay in taking effect

3

Flow control problem

■ Consider file transfer
■ Sender sends a stream of packets representing fragments of a 

file
■ Sender should try to match rate at which receiver and network 

can process data
■ Can’t send too slow or too fast
■ Too slow

◆ Wastes time 
■ Too fast

◆ Can lead to buffer overflow
■ How to find the correct rate?

◆ Particularly given delays on control information

4

Other considerations

■ Simplicity
■ Overhead
■ Scaling
■ Fairness
■ Stability

■ Many interesting tradeoffs

◆ Overhead for stability
◆ Simplicity for unfairness



2

5

Where?

■ Usually at transport layer
■ Also, in some cases, in datalink layer

6

Model

■ Source, sink, server, service rate, bottleneck, round trip time 

(s
er

ve
r

ra
te

)

(s
ou

rc
e

ra
te

)

Source SinkBuffer

B

(b
uf

fe
r 

si
ze

)

Server

D

(d
el

ay
)

0
(no cost)

7

Classification

■ Open loop
◆ Source describes its desired flow rate
◆ Network admits call
◆ Source sends at this rate

■ Closed loop
◆ Source monitors available service rate

✦ Explicit or implicit
◆ Sends at this rate
◆ Due to speed of light delay, errors are bound to occur

■ Hybrid
◆ Source asks for some minimum rate
◆ But can send more, if available

8

Open loop flow control

■ Two phases to the flow being controlled
◆ Call (i.e. connection) setup
◆ Data transmission

■ Call setup
◆ Network prescribes parameters
◆ User chooses parameter values
◆ Network admits or denies call

■ Data transmission
◆ User sends within parameter range
◆ Network polices users
◆ Scheduling policies give user QoS



3

9

Hard problems

■ Choosing a descriptor at a source
■ Choosing a scheduling discipline at intermediate network 

elements
■ Admitting calls so that their performance objectives are met (call 

admission control).

10

Traffic descriptors

■ Usually an envelope
◆ Constrains worst case behaviour

■ Three uses
◆ Basis for traffic contract
◆ Input to regulator
◆ Input to policer

11

Descriptor requirements

■ Representativity
◆ Adequately describes flow, so that network does not reserve 

too little or too much resource
■ Verifiability

◆ Verify that descriptor holds
■ Preservability

◆ Doesn’t change inside the network
■ Usability

◆ Easy to describe and use for admission control

12

Examples

■ Representative, verifiable, but not useable 
◆ Time series of inter-arrival times 

■ Verifiable, preservable, and useable, but not representative
◆ Peak rate



4

13

Some common descriptors

■ Peak rate
■ Average rate
■ Linear bounded arrival process

14

Peak rate

■ Highest ‘rate’ at which a source can send data
■ Two ways to compute it
■ For networks with fixed-size packets

◆ Minimum inter-packet spacing
■ For networks with variable-size packets

◆ Highest rate over all intervals of a particular duration
■ Regulator for fixed-size packets

◆ Timer set on packet transmission
◆ If timer expires, send packet, if any

■ Problem
◆ Sensitive to extremes

15

Average rate

■ Rate over some time period (window)
■ Less susceptible to outliers
■ Parameters: t and a
■ Two types: jumping window and moving window
■ Jumping window

◆ Over consecutive intervals of length t, only a bits sent
◆ Regulator reinitializes every interval

■ Moving window
◆ Over all intervals of length t, only a bits sent
◆ Regulator forgets packet sent more than t seconds ago

16

Linear Bounded Arrival Process

■ Source bounds # bits sent in any time interval by a linear 
function of time

■ The number of bits transmitted in any active interval of length t
is less than rt + s

■ r is the long term rate
■ s is the burst limit
■ Insensitive to outliers



5

17

Leaky bucket

■ A regulator for an LBAP 
■ Token bucket fills up at rate r
■ Largest # tokens < s Token

Bucket

Tokens arrive
periodically

Test
OutputInput

Data
Buffer

18

Variants

■ Token and data buckets
◆ Sum is what matters

■ Peak rate regulator
◆ Previously s limits the size of the burst, not its rate

19

Choosing LBAP parameters

■ Trade-off between r and s
■ Minimal descriptor

◆ Doesn’t simultaneously have smaller r and s
◆ Presumably costs less

■ How to choose minimal descriptor?
■ Three way trade-off

◆ Choice of s (data bucket size)
◆ Loss rate
◆ Choice of r

20

Choosing minimal parameters

■ Keeping loss rate the same
◆ If s is more, r is less (smoothing)
◆ for each r we have least s

■ Choose knee of curve

Knee point

1 2 PKA

K



6

21

Linear Based Arrival Process conclusion

■ Popular in practice and in academia
◆ Sort of representative
◆ Verifiable
◆ Sort of preservable
◆ Sort of usable

■ Problems with multiple time scale traffic
◆ Large burst messes up things

22

Open loop vs. closed loop

■ Open loop
◆ Describe traffic
◆ Network admits/reserves resources
◆ Regulation/policing

■ Closed loop
◆ Can’t describe traffic or network doesn’t support reservation
◆ Monitor available bandwidth

✦ Perhaps allocated using GPS-emulation
◆ Adapt to it
◆ If not done properly either

✦ Too much loss
✦ Unnecessary delay

23

Taxonomy

■ First generation
◆ Ignores network state
◆ Only match receiver

■ Second generation
◆ Responsive to state
◆ Three choices

✦ State measurement
• Explicit or implicit

✦ Control
• Flow control window size or rate

✦ Point of control
• Endpoint or within network

24

Explicit vs. Implicit

■ Explicit
◆ Network tells source its current rate
◆ Better control
◆ More overhead

■ Implicit
◆ Endpoint figures out rate by looking at network
◆ Less overhead

■ Ideally, want overhead of implicit with effectiveness of explicit



7

25

Flow control window

■ Recall error control window
■ Largest number of packet outstanding (sent but not ACKed)
■ If endpoint has sent all packets in window, it must wait => slows 

down its rate
■ Thus, window provides both error control and flow control
■ This is called transmission window
■ Coupling can be a problem

◆ Few buffers are receiver → slow rate!

26

Window vs. rate

■ In adaptive rate, we directly control rate
■ Needs a timer per connection
■ Plusses for window

◆ No need for fine-grained timer
◆ Self-limiting

■ Plusses for rate
◆ Better control (finer grain)
◆ No coupling of flow control and error control

■ Rate control must be careful to avoid overhead and sending too 
much

27

Hop-by-hop vs. end-to-end

■ Hop-by-hop
◆ First generation flow control at each link

✦ Next server = sink
◆ Easy to implement

■ End-to-end
◆ Sender matches all the servers on its path

■ Plusses for hop-by-hop 
◆ Simpler
◆ Distributes overflow
◆ Better control

■ Plusses for end-to-end
◆ Cheaper

28

On-off

■ Receiver gives ON and OFF signals
■ If ON, send at full speed
■ If OFF, stop
■ OK when RTT is small
■ What if OFF is lost?
■ Bursty
■ Used in serial lines or LANs



8

29

Stop and Wait

■ Send a packet
■ Wait for ACK before sending next packet

Router

Data

Wait

ACK

Data

ACK

DestinationSource

Time

30

Static window

■ Stop and wait can send at most one packet per RTT
■ Here, we allow multiple packets per RTT (= transmission 

window)
Router

D1

D2

D3

D4

D5

D6

Wait

DestinationSource

Time

A1

A2

A3

A4

31

What should window size be?

■ Let bottleneck service rate along path = b packets/sec
■ Let round trip time = R sec
■ Let flow control window = w packets
■ Sending rate is w packets in R seconds = w/R
■ To use bottleneck w/R > b → w > bR
■ This is the bandwidth delay product or optimal window size

32

Static window

■ Works well if b and R are fixed
■ But, bottleneck rate changes with time!
■ Static choice of w can lead to problems

◆ Too small – wasted potential
◆ Too large – congestion

■ So, need to adapt window
■ Always try to get to the current optimal value



9

33

DECbit flow control

■ Intuition
◆ Every packet has a bit in header
◆ Intermediate routers set bit if queue has built up => source 

window is too large
◆ Sink copies bit to ACK
◆ If bits set, source reduces window size
◆ In steady state, oscillate around optimal size

Router A Router B DestinationSource

Data0 Data1 Data1

ACK1ACK1

34

DECbit 

■ When do bits get set?
■ How does a source interpret them?

35

DECbit details: router actions

■ Measure demand and mean queue length of each source
■ Computed over queue regeneration cycles
■ Balance between sensitivity and stability

Time

Queue
Length Now

Previous
Cycle

Current
Cycle

Averaging
Interval

36

Router actions

■ If mean queue length > 1.0
◆ Set bits on sources whose demand exceeds fair share

■ If it exceeds 2.0
◆ Set bits on everyone
◆ Panic!



10

37

Source actions

■ Keep track of bits
■ Can’t take control actions too fast!
■ Wait for past change to take effect
■ Measure bits over past + present window size
■ If more than 50% set, then decrease window, else increase
■ Additive increase, multiplicative decrease

38

Evaluation

■ Works with FIFO
◆ but requires per-connection state (demand)

■ Simple implementation
■ But:

◆ Assumes cooperation!
◆ Has conservative window increase policy

39

Sample trace

40

TCP Flow Control

■ Implicit
■ Dynamic window
■ End-to-end

■ Very similar to DECbit, but

◆ No support from routers
◆ Increase if no loss (usually detected using timeout)
◆ Window decrease on a timeout
◆ Additive increase, multiplicative decrease



11

41

TCP details

■ Window starts at 1
■ Increases exponentially for a while, then linearly
■ Exponentially → doubles every RTT
■ Linearly → increases by 1 every RTT
■ During exponential phase, every ACK results in window 

increase by 1
■ During linear phase, window increases by 1 when # ACKs = 

window size
■ Exponential phase is called slow start
■ Linear phase is called congestion avoidance 

42

More TCP details

■ On a loss, current window size is stored in a variable called slow 
start threshold or ssthresh

■ Switch from exponential to linear (slow start to congestion 
avoidance) when window size reaches threshold

■ Loss detected either with timeout or fast retransmit (duplicate 
cumulative ACKs)

■ Many versions of TCP
◆ Tahoe: in both cases, drop window to 1
◆ Reno: on timeout, drop window to 1, and on fast retransmit 

drop window to half previous size (also, increase window on 
subsequent ACKs)

◆ Vegas, New Reno
◆ (CU)BIC: Used in Linux 2.6.8 (2.6.19)

43

TCP vs. DECbit

■ Both use dynamic window flow control and additive-increase 
multiplicative decrease

■ TCP uses implicit measurement of congestion
◆ Probe a black box

■ Operates at the cliff
■ Source does not filter information

44

Evaluation

■ Effective over a wide range of bandwidths
■ A lot of operational experience
■ Weaknesses

◆ Loss → overload? (not always: e.g. wireless)
◆ Overload → self-blame, problem with FCFS
◆ Overload detected only on a loss

✦ In steady state, source induces loss
◆ Needs at least bR/3 buffers per connection



12

45

Sample trace

46

TCP Vegas

■ Expected throughput = 
transmission_window_size/propagation_delay

■ Numerator: known
■ Denominator: measure smallest RTT
■ Also know actual throughput
■ Difference = how much to reduce/increase rate
■ Algorithm 

◆ Send a special packet
◆ On ACK, compute expected and actual throughput
◆ (expected - actual)* RTT packets in bottleneck buffer
◆ Adjust sending rate if this is too large

■ Works better than TCP Reno

47

NETwork Block Transfer (NETBLT)

■ First rate-based flow control scheme
■ Separates error control (window) and flow control (no coupling)
■ So, losses and retransmissions do not affect the flow rate
■ Application data sent as a series of buffers, each at a given rate
■ Rate = (burst size at burst rate) so granularity of control = burst
■ Initially, no adjustment of rates
■ Later, if received rate < sending rate, multiplicatively decrease 

rate
■ Change rate only once per buffer → slow

48

Packet pair

■ Improves basic ideas in NETBLT
◆ Better measurement of bottleneck
◆ Control based on prediction
◆ Finer granularity

■ Assume all bottlenecks serve packets in round robin order
■ Then, spacing between packets at receiver (= ACK spacing) = 

1/(rate of slowest server)
■ If all data sent as paired packets, no distinction between data 

and probes
■ Implicitly determine service rates if servers are round-robin-like



13

49

Packet pair

Bottleneck
Router

(rate = ) Sink

Packet 1
Packet 2

Non-bottleneck
Router

Time

RTT

Source

50

Packet-pair details

■ ACKs give time series of service rates in the past
■ We can use this to predict the next rate
■ Exponential averager, with fuzzy rules to change the averaging 

factor
■ Predicted rate feeds into flow control equation

51

Packet-pair flow control

■ Let X = # packets in bottleneck buffer
■ S = # outstanding packets
■ R = RTT
■ b = bottleneck rate
■ Then, X = S - Rb (assuming no losses)
■ Let l = source rate
■ l(k+1) = b(k+1) + (setpoint -X)/R

52

Sample trace



14

53

ATM Forum End-to-End Rate-based Flow 
Control (EERC)

■ Similar to DECbit, but send a whole cell’s worth of info instead 
of one bit

■ Sources periodically send a Resource Management (RM) cell 
with a rate request

◆ Typically once every 32 cells
■ Each server fills in RM cell with current share, if less
■ Source sends at this rate

54

ATM Forum EERC details

■ Source sends Explicit Rate (ER) in RM cell
■ Switches compute source share in an unspecified manner 

(allows competition)
■ Current rate = Allowed Cell Rate = ACR
■ If ER > ACR then ACR = ACR + RIF × PCR else ACR = ER

◆ (PCR is Peak Cell Rate, RIF is Rate Increase Factor)
■ If switch does not change ER, then use DECbit idea

◆ If CI bit set, ACR = ACR (1 - RDF)
■ If ER < AR, AR = ER
■ Allows interoperability of a sort
■ If idle 500 ms, reset rate to Initial cell rate
■ If no RM cells return for a while, ACR = ACR × (1-RDF)

55

Comparison with DECbit 

■ Sources know exact rate
■ Non-zero initial cell-rate → conservative increase can be 

avoided
■ Interoperation between ER/CI switches

56

Problems

■ RM cells sitting in the data path is a mess
■ Updating sending rate based on RM cell can be hard
■ Interoperability comes at the cost of reduced efficiency (as bad 

as DECbit)
■ Computing ER is difficult



15

57

Comparison among closed-loop schemes

■ On-off, stop-and-wait, static window, DECbit, TCP, NETBLT, 
Packet-pair, ATM Forum EERC

■ Which is best? No simple answer
■ Some rules of thumb

◆ Flow control easier with RR scheduling
✦ Otherwise, assume cooperation, or police rates

◆ Explicit schemes are more robust
◆ Hop-by-hop schemes are more responsive, but more 

complex
◆ Try to separate error control and flow control
◆ Rate based schemes are inherently unstable unless well-

engineered

58

Hybrid flow control

■ Source gets a minimum rate, but can use more
■ All problems of both open loop and closed loop flow control
■ Resource partitioning problem

◆ What fraction can be reserved?
◆ How?


