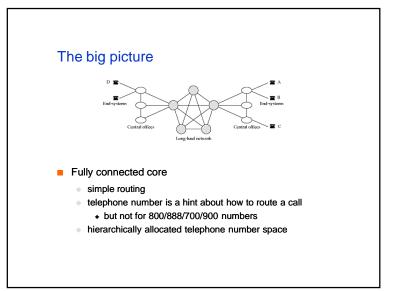
The Telephone Network


An Engineering Approach to Computer Networking

Is it a computer network?

- Specialized to carry voice
- Also carries
 - telemetry
 - video
 - fax
 - modem calls
- Internally, uses digital samples
- Switches and switch controllers are special purpose computers
- Principles in its design apply to more general computer networks

Concepts

- Single basic service: two-way voice
 - Iow end-to-end delay
 - guarantee that an accepted call will run to completion
- Endpoints connected by a *circuit*
 - like an electrical circuit
 - signals flow both ways (full duplex)
 - associated with bandwidth and buffer resources

The pieces

- 1. End systems
- 2. Transmission
- 3. Switching
- 4. Signaling

1. End-systems Most end-systems analogue Transducers microphone and speaker Dialer Ringer Switchhook (...dialtone) Powered from exchange...

Sidetone

- Transmission and reception circuit need two wires each
 - => 4 wires from every central office to home
 - Can we do better?
- Use same pair of wires for both transmission and reception
 - Keep it simple for field engineer!
 - Try and cancel out what is being said
 - However, unavoidable leads to sidetone (local) and echo (far end)
- Ergonomics,
 - Actually want some sidetone to stop users shouting

Echo

- Shared wires
 - Some received signal is transmitted back
- Leads to echo (why?)
 - OK for short-distance calls
 - For long distance calls, need to put in echo chancellors (why?)
 "Expensive"
- Lesson
 - keep end-to-end delays as short as possible

Dialing

Pulse

- sends a pulse per unary coded digit
- collected by exchange (US = central office)
- Tone
 - key press sends a pair of tones (4 * 3 grid) = 12 digits
 - also called Dual Tone Multifrequency (DTMF)

2. Transmission

Link characteristics

- bandwidth:
 - + analogue range of frequencies link can support
 - + digital information carrying capacity
 - related through Shannon's work
- delay
 - + time for signal to reach other end
 - + light travels at 0.7c in fiber ~8 microseconds/mile
 - + NY to SF => 20 ms; NY to London => 27 ms
- attenuation
 - + degradation in signal quality with distance
 - + long lines need amplifiers, repeaters or regenerators

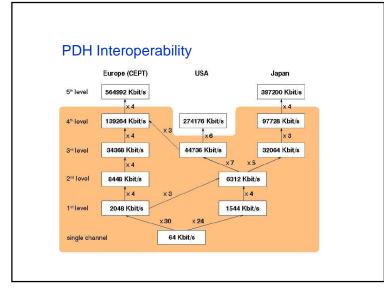
Transmission: Multiplexing

- **Trunks** between exchanges carry hundreds of conversations
 - Not cost effective to run thick bundles!
- Instead, send many calls on the same wire
 - multiplexing
- Analog multiplexing
 - bandlimit call to 3.4 kHz and frequency shift
 - obsolete (except WB900 <shudder>)
- Digital multiplexing
 - first convert voice to samples
 - 1 sample = 8 bits of voice
 - 8000 samples/sec => call = 64 kbps
 - Interleave samples from different calls

Transmission: Digital multiplexing

- How to choose a sample?
 - 256 quantization levels
 - logarithmically spaced (why?)
 - sample value = amplitude of nearest quantization level
 - two choices of levels (mu law and A law)
- Time division multiplexing
 - trunk carries bits at a faster bit rate than inputs
 - n input streams, each with a 1-byte buffer
 - output interleaves samples
 - need to serve all inputs in the time it takes one sample to arrive
 - => output runs n times faster than input
 - overhead bits mark start/end of frame (why?)

Transmission: Multiplexing


- Multiplexed trunks can be multiplexed further
- Need some standards! (why?)
- Europe and others, various G series standards
- This group is the PDH hierarchy...

Standard	Number of	Number of	Bandwidth
(Common	previous level	voice	
name)	circuits	circuits	
(E0)		1	64 Kbps
G.704 (E1)	32	30	2.048Mbps
G.742 (E2)	4	120	8.448 Mbps
G.751 (E3)	4	480	34.368 Mbps
G.751 (E4/H1)	4	1920	129.264 Mbps
. ,			

Transmission: Multiplexing

US standard is called *Digital Signaling* hierarchy (DS)

Digital Signal Number	Number of previous level circuits	Number of voice circuits	Bandwidth
DS0		1	64 Kbps
DS1	24	"24"	1.544Mbps
DS2	4	96	6.312 Mbps
DS3	7	672	44.736 Mbps

SDH

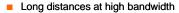
	defined by Bellcore standardised by CCI		•
Level	SONET STS-n	SDH STM-n	Bandwidth
0	3	1	155.52 Mbps
1	12	4	622.08 Mbps
2	48	16	2488.32 Mbps
2	-0	10	2400.32 100093

The cost of a link

- Should you use the cheapest possible link?
 - No!
 - Cost is in installation, not in link itself
 - Builders routinely install twisted pair (CAT 5), fiber, and coax to every room
 - Even if only one of them used, still saves money
- Long distance
 - often overprovision physical media
 - unless undersea cable....

Transmission: fiber optic links

- Wonderful stuff!
 - lots of capacity (>10 Pbps = 10¹⁶ bps)
 - very little attenuation (e.g. 0.5db/km handy hint 3db = 50% loss)
 - low noise low error rate
 - optical tap requires somewhat more specialized gear..
- A long thin strand of very pure glass
 - simple view near total internal reflection
 - complex view solve the wave equation



Cladding > _ Core

More on fibers

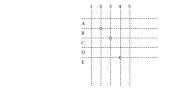
- Three types
 - step index (multimode)
 - graded index (multimode)
 - Single / mono mode (refers to only one solution to wave equation)
- Multimode
 - cheap
 - use LEDs
 - short distances (up to a few kilometers)
- Single mode
 - expensive
 - use lasers
 - long distances (up to hundreds of kilometers)

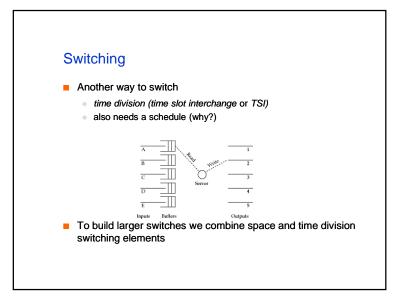
Geosynchronous

- 36,000 km in the sky
- up-down propagation delay of 250 ms
- bad for interactive communication
- slots in space limited
- Nongeosynchronous (Low Earth Orbit)
 - appear to move in the sky
 - need more of them
 - handoff is complicated
 - e.g. Iridium

3. Switching

Problem:

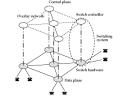

- each user can potentially call any other user
- can't have direct lines!
- Switches establish temporary *circuits*
- Switching systems come in two parts
 - switch and switch controller


Switching: what does a switch do?

- Transfers data from an input to an output
 - many ports (up to 200,000 simultaneous calls)`
 - need high speeds
- Some ways to switch:

space division

• if inputs are multiplexed, need a *schedule* (why?)



4. Signaling

- Recall that a switching system has a switch and a switch controller
- Switch controller is in the control plane
 - does not touch voice samples
- Manages the network
 - call routing (collect *dialstring* and forward call)
 - alarms (ring bell at receiver)
 - billing
 - directory lookup (for 800/888 calls)

Signaling network

- Switch controllers are special purpose computers
- Linked by their own internal computer network
 - Common Channel Interoffice Signaling (CCIS) network
- Earlier design used in-band tones, but was severely hacked
- Also was very rigid (why?)
- Messages on CCIS conform to Signaling System 7 (SS7) spec.

Signaling

- One of the main jobs of switch controller: keep track of state of every endpoint
- Key is state transition diagram

Cellular communication

- Mobile phone talks to a base station on a particular radio frequency
- Aren't enough frequencies to give each mobile a permanent frequency (like a wire)
- Reuse
 - temporal
 - + if mobile is off, no frequency assigned to it

 $C \mid D$

- spatial
 - + mobiles in non-adjacent cells can use the same frequency

Problems with cellular communication

How to complete a call to a mobile?

- need to track a mobile
- on power on, mobile tells base of its ID and home
- calls to home are forwarded to mobile over CCIS
- How to deal with a moving cell phone?
 - nearest base station changes
 - need to hand off existing call to new base station
 - a choice of several complicated protocols

Challenges for the telephone network

Multimedia

- simultaneously transmit voice/data/video over the network
- people seem to want it
- existing network can't handle it
 - bandwidth requirements
 - + burstiness in traffic (TSI can't skip input)
 - + change in statistical behavior
- Backward compatibility of new services
 - huge existing infrastructure
 - idiosyncrasies
- Regulation
 - stifles innovation

Challenges

- Competition
 - future telephone networks will no longer be monopolies
 - how to manage the transition?
- Inefficiencies in the system
 - an accumulation of cruft
 - special-purpose systems of the past
 - 'legacy' systems
 - need to change them without breaking the network
- Critical systems have been built that rely on the characteristics
 - alarms systems
 - power grid control...