Concepts in Programming Languages
Marcelo Fiore

Computer Laboratory
University of Cambridge

Lent 2008

(http://www.cl.cam.ac.uk/teaching/0708/ConceptsPL/)

Practicalities
¢ Topics.

1. Introduction and motivation.

2. The first procedural language: FORTRAN (1954-58).

3. The first declarative language: LISP (1958-62).

4. Block-structured procedural languages: Algol (1958-68),
Pascal (1970).

5. Object-oriented languages — Concepts and origins:
Simula (1964—-67), Smalltalk (1971-80).

6. Types, data abstraction, and modularity: C++ (1983—-98),
SML (1984-97).

/. The state of the art. Scala (2007)

Main books

¢ J.C.Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

¢ T.W.Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION). Prentice Hall,
1999.

¢ R.Sethi. Programming languages: Concepts & constructs
(2ND EDITION). Addison-Wesley, 1996.

¢ 2 exam questions.
¢ Course web page:

(www.cl.cam.ac.uk/teaching/0708/ConceptsPL/)

with lecture slides and reading material.

— Topic I —
Introduction and motivation

References:

¢ Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 20083.

¢ Chapter 1 of Programming languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

Why study programming languages?

¢ To improve the ability to develop effective algorithms.
¢ To improve the use of familiar languages.

¢ To increase the vocabulary of useful programming
constructs.

¢ To allow a better choice of programming language.
¢ To make it easier to learn a new language.

¢ To make it easier to design a new language.

Goals

¢ Critical thinking about programming languages.
What is a programming language!?

¢ Study programming languages.
+ Be familiar with basic language concepts.

+ Appreciate trade-offs in language design.
¢ Trace history, appreciate evolution and diversity of ideas.

¢ Be prepared for new programming methods, paradigms.

What makes a good language?

¢ Clarity, simplicity, and unity.

¢ Orthogonality.

¢ Naturalness for the application.
¢ Support of abstraction.

¢ Ease of program verification.

¢ Programming environments.

¢ Portability of programs.

¢ Cost of use.

+ Cost of execution.

+ Cost of program translation.

+ Cost of program creation, testing, and use.

+ Cost of program maintenance.

Applications domains

New paradigms

Smalltalk, ML, Haskell, Java
Python, Ruby

Era Application Major languages Other languages
1960s | Business COBOL Assembler
Scientific FORTRAN ALGoOL, BASIC, APL
System Assembler JOVIAL, Forth
Al LISP SNOBOL
Today | Business COBOL, SQL, spreadsheet | C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal
Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,
MODULA
Al LISP, Prolog
Publishing TeX, Postcript,
word processing
Process UNIX shell, TCL, Perl Marvel, Esterel

Eifell, C#, Scala

Influences

¢ Computer capabilities.

¢ Applications.

¢ Programming methods.
¢ Implementation methods.
¢ Theoretical studies.

¢ Standardisation.

CMotivating application in language desig@

A specific purpose provides focus for language designers; it
helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one of the
hardest problems in programming language design: deciding
which features to leave out.

Examples: Good languages designed with a specific purpose
in mind.

LISP: symbolic computation, automated reasoning

FP: functional programming, algebraic laws

BCPL: compiler writing

Simula: simulation

C: systems programming

ML: theorem proving

Smalltalk: Dynabook

Clu, ML module system: modular programming

C++: object orientation

® & & & & O o o oo o

Java: Internet applications

Theoretical foundations

Examples:

¢ Formal-language theory.

¢ Automata theory.

¢ Algorithmics.

¢ A-calculus.

¢ Semantics.

¢ Formal verification.

¢ Type theory.

¢ Complexity theory.

Program execution model

Good language design presents abstract machine.

¢

® & & & o o

¢
¢

FORTRAN: Flat register machine; memory arranged as
linear array

LISP: cons cells, read-eval-print loop

Algol family: stack of activation records; heap storage
BCPL, C: underlying machine + abstractions

Simula: Object references

FP, ML: functions are basic control structure

Smalltalk: objects and methods, communicating by
messages

Java: Java virtual machine

Standardisation
Proprietary standards.
Consensus standards.
+ ANSI.
+ |IEEE.
+ BSI.
+ ISO.

)) Language-standards issues
Language standardisation guag

Consider: int i; i = (1 && 2) + 3 ; Timeliness. When do we standardise a language?
Is it valid C code? If so, what's the value of i? Conformance. What does it mean for a program to adhere to
How do we answer such questions!? a standard and for a compiler to compile a standard?

Ambiguity and freedom to optimise — Machine
1] Read the reference manual. , .
dependence — Undefined behaviour.

1] Tty it and see! _
Obsolescence. When does a standard age and how does it

1] Read the ANSI C Standard. get modified?

Deprecated features.

Language standards o . .
PL/1 DEC(p,q) means p digits with q after the decimal point.

. Type rules for DECIMAL in PL/1:
What does the following

9 + 8/3 DEC(pl,ql) + DEC(p2,q2)
=> DEC(MIN(1+MAX(pl-ql,p2-q2)+MAX(ql,q2),15),MAX(ql,q92))

mean?
— 11.666... ? DEC(p1,q1) / DEC(p2,92)
Overflow ? => DEC(15,15-((p1-q1)+q2))
— Overflow *

— 1.666... 7

For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)
=> DEC(1,0) + DEC(15,15-((1-0)+0))
=> DEC(1,0) + DEC(15,14)
=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15) ,MAX(0,14))
=> DEC(15,14)

So the calculation is as follows

9 + 8/3

9 + 2.66666666666666
11.66666666666666 — OVERFLOW
1.66666666666666 — OVERFLOW disabled

1981-85: Smalltalk-80, Prolog, Ada 83.
1986-90: C++, SML, Haskell.
1991-95: Ada 95, TCL, Perl.
1996-2000: Java.

2000-05: C#, Python, Ruby, Scala.

History

1951-55: Experimental use of expression compilers.
1956-60: FORTRAN, COBOL, LISP, Algol 60.
1961-65: APL notation, Algol 60 (revised), SNOBOL, CPL.

1966—70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,
Algol 68, Algol-W, BCPL.

1971-75: Pascal, PL/1 (Standard), C, Scheme, Prolog.
1976-80: Smalltalk, Ada, FORTRAN 77, ML.

Language groups

¢ Multi-purpose languages

+ Scala, C#, Java, C++, C

+ Haskell, ML, Scheme, LISP
¢ Scripting languages

¢+ Perl, TCL, UNIX shell
¢ Special-purpose languages

+ SQL

¢ BTEX

Things to think about
¢ What makes a good language?
¢ Therole of
1. motivating applications,
2. program execution,
3. theoretical foundations

in language design.

¢ Language standardisation.

