
Concepts in Programming Languages

Marcelo Fiore

Computer Laboratory
University of Cambridge

Lent 2008

〈http://www.cl.cam.ac.uk/teaching/0708/ConceptsPL/〉

/ 1

Main books

� J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

� T. W. Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION). Prentice Hall,
1999.

� R. Sethi. Programming languages: Concepts & constructs
(2ND EDITION). Addison-Wesley, 1996.

/ 2

Practicalities
� Topics.

1. Introduction and motivation.
2. The first procedural language: FORTRAN (1954–58).
3. The first declarative language: LISP (1958–62).
4. Block-structured procedural languages: Algol (1958–68),

Pascal (1970).
5. Object-oriented languages — Concepts and origins:

Simula (1964–67), Smalltalk (1971–80).
6. Types, data abstraction, and modularity: C++ (1983–98),

SML (1984–97).
7. The state of the art: Scala (2007)

/ 3

� 2 exam questions.
� Course web page:

〈www.cl.cam.ac.uk/teaching/0708/ConceptsPL/〉

with lecture slides and reading material.

/ 4



˜ Topic I ˜
Introduction and motivation

References:

� Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

� Chapter 1 of Programming languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

/ 5

Goals

� Critical thinking about programming languages.
? What is a programming language!?

� Study programming languages.
� Be familiar with basic language concepts.
� Appreciate trade-offs in language design.

� Trace history, appreciate evolution and diversity of ideas.

� Be prepared for new programming methods, paradigms.

/ 6

Why study programming languages?

� To improve the ability to develop effective algorithms.

� To improve the use of familiar languages.

� To increase the vocabulary of useful programming
constructs.

� To allow a better choice of programming language.

� To make it easier to learn a new language.

� To make it easier to design a new language.

/ 7

What makes a good language?

� Clarity, simplicity, and unity.

� Orthogonality.

� Naturalness for the application.

� Support of abstraction.

� Ease of program verification.

� Programming environments.

� Portability of programs.

/ 8



� Cost of use.
� Cost of execution.
� Cost of program translation.
� Cost of program creation, testing, and use.
� Cost of program maintenance.

/ 9

Influences

� Computer capabilities.

� Applications.

� Programming methods.

� Implementation methods.

� Theoretical studies.

� Standardisation.

/ 10

Applications domains

Era Application Major languages Other languages
1960s Business COBOL Assembler

Scientific FORTRAN ALGOL, BASIC, APL
System Assembler JOVIAL, Forth
AI LISP SNOBOL

Today Business COBOL, SQL, spreadsheet C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal

Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,

MODULA
AI LISP, Prolog
Publishing TEX, Postcript,

word processing
Process UNIX shell, TCL, Perl Marvel, Esterel
New paradigms Smalltalk, ML, Haskell, Java Eifell, C#, Scala

Python, Ruby

/ 11

?> =<89 :;Motivating application in language design

A specific purpose provides focus for language designers; it
helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one of the
hardest problems in programming language design: deciding
which features to leave out.

/ 12



Examples: Good languages designed with a specific purpose
in mind.

� LISP: symbolic computation, automated reasoning
� FP: functional programming, algebraic laws
� BCPL: compiler writing
� Simula: simulation
� C: systems programming
� ML: theorem proving
� Smalltalk: Dynabook
� Clu, ML module system: modular programming
� C++: object orientation
� Java: Internet applications

/ 13

Program execution model

Good language design presents abstract machine.
� FORTRAN: Flat register machine; memory arranged as

linear array
� LISP: cons cells, read-eval-print loop
� Algol family: stack of activation records; heap storage
� BCPL, C: underlying machine + abstractions
� Simula: Object references
� FP, ML: functions are basic control structure
� Smalltalk: objects and methods, communicating by

messages
� Java: Java virtual machine

/ 14

Theoretical foundations

Examples:

� Formal-language theory.

� Automata theory.

� Algorithmics.

� λ-calculus.

� Semantics.

� Formal verification.

� Type theory.

� Complexity theory.

/ 15

Standardisation

� Proprietary standards.

� Consensus standards.
� ANSI.
� IEEE.
� BSI.
� ISO.

/ 16



Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

? Is it valid C code? If so, what’s the value of i?

? How do we answer such questions!?

! Read the reference manual.

! Try it and see!

! Read the ANSI C Standard.

/ 17

Language-standards issues

Timeliness. When do we standardise a language?

Conformance. What does it mean for a program to adhere to
a standard and for a compiler to compile a standard?
Ambiguity and freedom to optimise — Machine
dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it
get modified?
Deprecated features.

/ 18

Language standards
PL/1

? What does the following
9 + 8/3

mean?
− 11.666... ?
− Overflow ?
− 1.666... ?

/ 19

DEC(p,q) means p digits with q after the decimal point.

Type rules for DECIMAL in PL/1:

DEC(p1,q1) + DEC(p2,q2)

=> DEC(MIN(1+MAX(p1-q1,p2-q2)+MAX(q1,q2),15),MAX(q1,q2))

DEC(p1,q1) / DEC(p2,q2)

=> DEC(15,15-((p1-q1)+q2))

/ 20



For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)

=> DEC(1,0) + DEC(15,15-((1-0)+0))

=> DEC(1,0) + DEC(15,14)

=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15),MAX(0,14))

=> DEC(15,14)

So the calculation is as follows

9 + 8/3

= 9 + 2.66666666666666

= 11.66666666666666 - OVERFLOW

= 1.66666666666666 - OVERFLOW disabled

/ 21

History

1951–55: Experimental use of expression compilers.

1956–60: FORTRAN, COBOL, LISP, Algol 60.

1961–65: APL notation, Algol 60 (revised), SNOBOL, CPL.

1966–70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,
Algol 68, Algol-W, BCPL.

1971–75: Pascal, PL/1 (Standard), C, Scheme, Prolog.

1976–80: Smalltalk, Ada, FORTRAN 77, ML.

/ 22

1981–85: Smalltalk-80, Prolog, Ada 83.

1986–90: C++, SML, Haskell.

1991–95: Ada 95, TCL, Perl.

1996–2000: Java.

2000–05: C#, Python, Ruby, Scala.

/ 23

Language groups

� Multi-purpose languages
� Scala, C#, Java, C++, C
� Haskell, ML, Scheme, LISP

� Scripting languages
� Perl, TCL, UNIX shell

� Special-purpose languages
� SQL
� LATEX

/ 24



Things to think about

� What makes a good language?

� The role of
1. motivating applications,
2. program execution,
3. theoretical foundations
in language design.

� Language standardisation.

/ 25


