
3/12/2007

1

Concepts in Programming Languages
Lecture 8: Java and C#

Andrew Kennedy

Microsoft Research Cambridge

Name the language…

Func<intlist, intlist> Sort =

xs =>

xs.Case(

() => xs,

(head,tail) => (Sort(tail.Where(x => x < head)))

.Concat

(Single(head))

.Concat

(Sort(tail.Where(x => x >= head)))

);

C# 3.0

type inference
append

higher-order function

parameterized type of functions

recursion
filter

lambda expression

How did we get here?

• This lecture: design of Java and C#

– Origins

– Evolution

– Influences

• Focus on C#

– You know Java

– I know C#

– Lots of interesting features in upcoming C# 3.0

Java: origins

• Sun’s “Oak” project (1991): a language for programming consumer
electronic devices

• Didn’t take off, but formed basis for Java (1995), a language for the web

– Java Virtual Machine was integrated in Sun’s HotJava web browser; Netscape
and Microsoft followed suit

– Original aim was “applets” running inside the browser

– Also “servlets” processing web queries on server

– Client-side Java programming for standalone apps

– Also in devices (particularly smartcards, mobile phones) closer to original
vision for Oak

• Ironically, “applets” failed, but look at the Google Web Toolkit: compiling
Java to Javascript to run in the browser!

Java: design goals

• Simplicity
– perhaps a reaction against C++
– though even Java 1.0 had complex features: e.g. overloading

resolution, multiple class loaders

• Safety and security
– strongly typed (mostly static)
– automatic memory management (=> no pointer errors)
– code access security by “stack inspection”

• Portability
– compiled to bytecode, executed by Java Virtual Machine

• Object-orientation
– simple model of implementation inheritance for classes
– multiple interface inheritance

Java: impact

• Many ideas were not new
– e.g. Pascal p-code, Smalltalk virtual machine
– e.g. Modula-3 had shown practicality of type-safe

language with garbage collection

• But Java has had a big impact
– popularized automatic memory management
– encouraged novel compilation technology (just-in-

time compilation, dynamic re-compilation, runtime
specialization, etc)

– much studied by researchers (type systems,
semantics, static analysis, concurrency)

3/12/2007

2

C#: origins

• 1999: .NET, a new framework for application
development
– a Common Language Runtime + variety of languages (C#,

C++, Visual Basic, Eiffel, now Python and others)

– initial focus: server-side web programming, web services

– more generally, client-side application development

– original hope was that many components of Vista would
be written using managed code (C#). Unfortunately, not
realised.

– but for another (research) OS – “Singularity” – even device
drivers are coded in C#. Type safety of C# plays key role
ensuring integrity of “software isolated processes”

C# vs Java: object model

• Object model
– Similar core: primitive types (int, float, etc), single-inheritance

classes + multiple interfaces, covariant arrays
– Better versioning properties e.g. add same-name method to

classes or new interface without accidental override

– Built-in notion of “boxing” for converting primitive values to
heap-allocated objects

– Lightweight struct à la C++; can implement interfaces just like
classes

interface I { void Draw(); }
class C : I {
void I.Draw() { ... }

}

interface J { void Draw(); }
class D : C, J {
void J.Draw() { ... }

}

C# vs Java: parameter passing

• Default is call-by-value
• Explicit annotation for call-by-reference

– in/out e.g.

– out e.g.

– Semantics is deliberately under-specified: typically, local
calls are call-by-reference, remote calls are copy-in, copy-
out

static void Swap(ref int x, ref int y)
{ int tmp = x; x = y; y = tmp; }
...Swap(ref a, ref b)...

bool TryGetValue(string key, out int value)

C# vs Java: first-class functions

• Observation: object-oriented programming is higher-
order programming

– Formally, can translate functions (e.g. from -calculus) into
objects, representing free variables in fields of an object,
and the body of a by an “Apply” method. e.g.

f(x. x+y)

abstract class IntFun { abstract int Apply(int arg); }
class C extends IntFun { int y;
public C(int y) { this.y = y; }
public int Apply(int x) { return x + this.y; }

}
f(new C(y));

C# vs Java: first-class functions

• Higher-order programming with objects is awkward; both Java
and C# provide further support:
– Java has anonymous inner classes

– C# has delegates, special objects which capture an object and a single
method on that object. Named delegate types are like function types
from functional languages

delegate void Handler(EventArgs args);
class Button {

bool buttonDown; // part of state of button
void HandleMouseEvent(EventArgs args) { … }

}
…
RegisterHandler(new Handler(myButton.HandleMouseEvent)) …

Delegate object is a pair of the
target (myButton) and method

(HandleMouseEvent)

Named delegate type

Interlude: type safety

Cook, W.R. (1989) - A Proposal for Making Eiffel Type-Safe,
in Proceedings of ECOOP'89. S. Cook (ed.), pp. 57-70. Cambridge
University Press.

Betrand Meyer, on unsoundness of Eiffel:
“Eiffel users universally report that they almost
never run into such problems in real software
development.”

3/12/2007

3

Ten years later: Java C# vs Java: static typing

• Type safety is now recognised as crucial
– a type loophole is a potential security loophole if “untrusted”

code is downloaded from the web

• Java’s original type system was simple but limited
– e.g. no support for parametric polymorphism

• Escape by downcast, safety ensured by runtime type-check

• Covariant arrays, made type-safe by runtime type-check on
update

Stack st;
st.Push(new Integer(5)); st.Push(“abc”);
int i = (int) st.Pop(); int j = (int) st.Pop();

Type error at runtime!

Java evolution: generics

• Java 1.5 has support for parameterized types and
polymorphic methods (“generics”)

Stack<string> st;
st.Push(“abc”); st.Push(“xyz”);
string s = st.Pop();
Integer j = st.Pop();

class Stack<T> {
T[] items; int nitems;
T Pop() {

if (nitems==0) { ... }
else
{ nitems--; return items[nitems]; }

}
}
class Array {
static <T> void Sort(T[] arr) { ... }

}

Compile-time
type error!

Type parameter to class

Type parameter to method

C# evolution: generics

• C# 2.0 introduced its own design for generics

• Improves on Java model
– Value type instantiations, e.g. List<int>

– No odd restrictions (e.g. T[] illegal in Java)

– Types preserved at runtime (e.g. (List<string>) x really checks that x is
a List of strings; in Java it just checks that x is a List

– Better performance due to native support in runtime

• In the meantime, Java introduced its own novelty: “wildcard”
types, providing a kind of variance/existential ability. Search
the web for opinions on this feature!

C# evolution: anonymous methods

• C# 2.0 introduced a lightweight mechanism for first-
class functions: the ability to create a delegate object
from in-line code, much like a -abstraction.

delegate bool Predicate(int x);

bool Exists(List<int> list, Predicate p) {
foreach (int i in List<int>)

{ if (p(i)) return true; }
return false;

}
bool ExistsPrimeAbove(List<int> list, int limit) { return
Exists(list, delegate(int x) { return x > limit; }); }

Delegate body Free variable

Anonymous methods puzzler

• Guess the output

IntFunc funs = new Func<int,int>[5]; // Array of functions
for (int i = 0; i<5; i++)
{

funs[i] = delegate(int j) { return i+j; } // To position index i, assign j. i+j
}
Console.WriteLine(funs[1](2));

Result is “7”!

• Why? Clue: r-values vs l-values. Arguably the right decision for
an imperative language:

static void While(Predicate condition, Action action) { … }
int x = 1; While(delegate { return x < 10; }, delegate { x=2*x; });

3/12/2007

4

C# 1.0 foreach

• Like Java, C# has standard interfaces for “iterators” and “iterable”
collections:

• The foreach construct makes it easy to write consumer code.

• Producer code – implementing the IEnumerable and IEnumerator
interfaces – is trickier, as the programmer must carefully maintain iterator
state when coding up Current and MoveNext methods.

interface IEnumerable<T> { IEnumerator<T> GetEnumerator(); }
interface IEnumerator<T> { bool MoveNext(); T Current { get; } }

foreach (i in List<int>) { sum += I; }

C# 2.0 iterators

• C# 2.0 introduces iterators (similar to generators in the Icon
programming language), easing task of implementing producers
e.g.

• Iterators can mimic functional-style streams. They can be
infinite:

• The System.Query library provides higher-order functions on
IEnumerable<T> for map, filter, fold, append, drop, take, etc.

IEnumerable<int> UpAndDown(int bottom, int top)
{ for (int i = bottom; i < top; i++) { yield return i; }
for (int i = top; i >= bottom; i++) { yield return i; } }

static IEnumerable<int> Evens() {
for (int i = 0; true; i += 2) { yield return i; } }

static IEnumerable<T> Drop(IEnumerable<T> xs, int n) {
foreach(T x in xs) { if (n>0) n--; else yield return x; } }

Java generics: implementation

• Two of the design goals for Java generics were
– no change to the bytecode or JVMs

– backward compatibility for collection libraries: retrofit generic types
onto non-generic library code

• This drove implementation technique of type erasure and is
the reason for the odd restrictions. Essentially, generics is
“compiled away” e.g.

Stack<string> st;
st.Push(“abc”);
string s = st.Pop();

Stack st;
st.Push((object)“abc”);
string s = (string) st.Pop();

C# generics: implementation

• For C#, we were able to change the bytecode and runtime
(virtual machine)

• Prototype by Don Syme, Andrew Kennedy and Claudio Russo,
code transferred to product for .NET 2.0

• Example of bytecode:

static void Swap<T>(ref T x, ref T y)
{ T tmp = x;
x = y;
y = tmp; }

.method static void Swap<T>(!!T& x,
!!T& y)

{ .maxstack 2 .locals init ([0] !!T tmp)
ldarg.0 ldobj !!T stloc.0
ldarg.0 ldarg.1 ldobj !!T stobj !!T
ldarg.1 ldloc.0 stobj !!T ret

}

Generics: implementation, as was

Two main techniques:

• Specialize code for each instantiation
– C++ templates, MLton & SML.NET monomorphization

– good performance 

– code bloat 

• Share code for all instantiations
– Either use a single representation for all types (ML, Haskell)

– Or restrict instantiations to “pointer” types (Java)

– no code bloat 

– poor performance  (extra boxing operations required on primitive
values)

C# generics: implementation

• Runtime does “just-in-time code specialization” but shares
representation and code where possible
– resulting performance almost as good as hand-specialized code

• Rule:
– share field layout and code if type arguments have same

representation

• Examples:
– Representation and code for methods in Set<string> can be also be

used for Set<object> (string and object are both 32-bit pointers)

– Representation and code for Set<long> is different from Set<int> (int
uses 32 bits, long uses 64 bits)

3/12/2007

5

C# generics: implementation

• We wanted to support
if (x is Set<string>) { ... }
else if (x is Set<Component>) { ... }

• But representation and code is shared between compatible
instantiations e.g. Set<string> and Set<Component>

• So there was a conflict to resolve…
…and we didn’t want to add lots of overhead to languages targeting .NET

that don’t need run-time types (ML, Haskell)

• Solution was to maintain distinct virtual dispatch tables (so-
called v-tables) for each instantiation
– v-table slots point to shared code

– cache runtime type information in extra slots in table

C# evolution: LINQ

• Focus of upcoming version 3.0 is Language INtegrated Query

• Slick integration of SQL-like queries into C# requires additional
language features, useful in their own right
– lambdas

– type inference

– meta-programming

– anonymous types

– extension methods

• We’ll take a quick look at the first two.

Lambda expressions

• C# 2.0 anonymous methods are just a little too heavy
compared with lambdas in Haskell or ML: compare

delegate (int x, int y) { return x*x + y*y; }
\(x,y) -> x*x + y*y
fn (x,y) => x*x + y*y

• C# 3.0 introduces lambda expressions with a lighter syntax,
inference (sometimes) of argument types, and expression
bodies:

(x,y) => x*x + y*y

• Language specification simply defines lambdas by translation
to anonymous methods.

Type inference

• Introduction of generics in C# 2.0, and absence of type aliases,
leads to typefull programs!

Dict<string,Func<int,Set<int>>> d = new Dict<string,Func<int,Set<int>>>();
Func<int,int,int> f = delegate (int x, int y) { return x*x + y*y; }

• C# 3.0 supports a modicum of type inference for local
variables and lambda arguments:

var d = new Dict<string,Func<int,Set<int>>>();
Func<int,int,int> f = (x,y) => x*x + y*y;

Research impact

• Recent versions of Java and C# show impact of programming
language researchers
– Java: generics, wildcards

– C#: generics, lambdas, type inference

• Sometimes, perhaps the languages are a little too close to the
“bleeding edge” (e.g. it’s an open question whether type
checking in Java is decidable!)

• At the other extreme, some languages lack any such
underpinnings. A ruby puzzler: what is the value of local
variable (initially 0) x after executing this code?

x = 0
[1,2,3].each{|x| print x }

Is C# my favourite programming
language?

• No. I’m still rather attached to ML.

– C# has borrowed many features from other languages but
the features are sometimes watered down or interact
badly with existing features
• E.g. type inference in C# is limited to local variables and lambda

parameters only, and is purely local – no unification.

– no proper support for separating interface from
implementation (cf ML signatures) or parameterization in-
the-large (cf ML functors)

– no algebraic datatypes or pattern matching

3/12/2007

6

Want to know more?

• Original paper on “GJ” (Generic Java):
Making the future safe for the past: Adding Genericity to the Java
Programming Language. Bracha, Odersky, Stoutamire, Wadler,
OOPSLA’98.

• Our paper on .NET generics:
Design and Implementation of Generics for the .NET Common Language
Runtime. Kennedy & Syme, PLDI’01.

• Flavour of the moment in functional programming: “Generalized Algebraic
Data Types”. (Mostly) possible in C#!
Generalized Algebraic Data Types and Object-Oriented Programming.
Kennedy & Russo, OOPSLA’05.

