Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

Anuj Dawar

May 21, 2008

Complexity Theory

84

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of workers each with an associated subset of H (available periods), a set T of tasks and an assignment $r: W \times T \to \mathbb{N}$ of required work, is there a mapping $f: W \times T \times H \to \{0,1\}$ which completes all tasks?

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, ..., 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1, ..., S_m\}$.

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_i , and having weight and value

$$\sum_{i \in S_i} (m+1)^{j-1}$$

and set the target weight and value both to

$$\sum_{i=0}^{3n-1} (m+1)^{i}$$

Anuj Dawar

May 21, 2008

Complexity Theory

8

Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a $length \ l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Anuj Dawar May 21, 2008

Anuj Dawar

May 21, 2008

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

Anuj Dawar

May 21, 2008

Complexity Theory

88

Validity

 $\overline{\mathsf{VAL}} = \{ \phi \mid \phi \not\in \mathsf{VAL} \}$ —the *complement* of VAL is in NP.

Guess a a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether *every* truth assignment results in **true**—a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

Validity

We define VAL—the set of *valid* Boolean expressions—to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to **true**.

$$\phi \in \mathsf{VAL} \quad \Leftrightarrow \quad \neg \phi \not \in \mathsf{SAT}$$

By an exhaustive search algorithm similar to the one for SAT, VAL is in TIME (n^22^n) .

Is $VAL \in NP$?

Anuj Dawar

May 21, 2008

Complexity Theory

89

Complementation

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \overline{L} .

If a language $L \in P$, then also $\overline{L} \in P$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define.

co-NP – the languages whose complements are in NP.

Anuj Dawar

May 21, 2008

Anuj Dawar

May 21, 2008

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x, y)\}\$$

Where R is a relation on strings satisfying two key conditions

- 1. R is decidable in polynomial time.
- 2. R is polynomially balanced. That is, there is a polynomial p such that if R(x, y) and the length of x is n, then the length of y is no more than p(n).

Anuj Dawar

May 21, 2008

Complexity Theory

92

co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

$$L = \{x \mid \forall y \, |y| < p(|x|) \to R'(x, y)\}$$

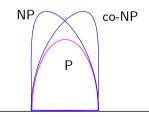
NP – the collection of languages with succinct certificates of membership.

co-NP – the collection of languages with succinct certificates of disqualification.

Succinct Certificates

y is a *certificate* for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a certificate would be a satisfying truth assignment.


Anuj Dawar

May 21, 2008

Complexity Theory

93

PSfrag replacements

Any of the situations is consistent with our present state of knowledge:

•
$$P = NP = co-NP$$

•
$$P = NP \cap co-NP \neq NP \neq co-NP$$

•
$$P \neq NP \cap co-NP = NP = co-NP$$

•
$$P \neq NP \cap co-NP \neq NP \neq co-NP$$

Anuj Dawar

May 21, 2008

Anuj Dawar

May 21, 2008