Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, ..., 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1, ..., S_m\}$.

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_i , and having weight and value

$$\sum_{j \in S_i} (m+1)^{j-1}$$

and set the target weight and value both to

$$\sum_{j=0}^{3n-1} (m+1)^j$$

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of workers each with an associated subset of H (available periods), a set T of tasks and an assignment $r: W \times T \to \mathbb{N}$ of required work, is there a mapping $f: W \times T \times H \to \{0,1\}$ which completes all tasks?

Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a $length \ l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

Validity

We define VAL—the set of *valid* Boolean expressions—to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to **true**.

$$\phi \in \mathsf{VAL} \quad \Leftrightarrow \quad \neg \phi \not \in \mathsf{SAT}$$

By an exhaustive search algorithm similar to the one for SAT, VAL is in $\mathsf{TIME}(n^22^n)$.

Is $VAL \in NP$?

Validity

 $\overline{\mathsf{VAL}} = \{ \phi \mid \phi \notin \mathsf{VAL} \}$ —the *complement* of VAL is in NP.

Guess a a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether *every* truth assignment results in **true**—a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

Anuj Dawar

Complementation

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \overline{L} .

If a language $L \in P$, then also $\overline{L} \in P$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

co-NP – the languages whose complements are in NP.

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x, y)\}$$

Where R is a relation on strings satisfying two key conditions

- 1. R is decidable in polynomial time.
- 2. R is polynomially balanced. That is, there is a polynomial p such that if R(x, y) and the length of x is n, then the length of y is no more than p(n).

Succinct Certificates

y is a *certificate* for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a certificate would be a satisfying truth assignment.

Anuj Dawar

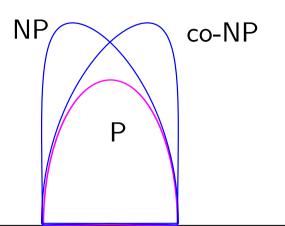
co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

$$L = \{x \mid \forall y \, | y | < p(|x|) \to R'(x, y) \}$$

NP – the collection of languages with succinct certificates of membership.

co-NP – the collection of languages with succinct certificates of disqualification.



Any of the situations is consistent with our present state of knowledge:

- P = NP = co-NP
- $P = NP \cap co-NP \neq NP \neq co-NP$
- $P \neq NP \cap co-NP = NP = co-NP$
- $P \neq NP \cap co-NP \neq NP \neq co-NP$