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Course Aims and Structure

Part I: Scalable Synchronization [KAF, 4L]

• Architecture and Algorithms for Work Sharing

• Cache Coherency

• Implementing Mutual Exclusion

• Lock-Free Data Structures

Part II: Internet Routing Protocols [TGG, 4L]

• RIP, EIGRP, OSPF, IS-IS

• Convergence, scalability, stability

Part III: Advanced Operating Systems [SMH, 6L]

• Distributed & Persistent Virtual Memory

• Capability Systems & The CAP Computer

• Microkernels & Virtual Machine Monitors

• Extensible Operating Systems

• Database & Distributed Storage

Scalable synchronization Slide 1-1



First Four Lectures

Aims of this section of AST:

ä to explore software techniques for developing applications

for large multi-processor machines,

ä to look at the hardware architecture of large

shared-memory systems, and its impact on software

performance,

ä to describe how effective concurrency-control abstractions

can be implemented,

ä to introduce current research areas in mainstream

concurrent programming.

Reference material:

ä http://www.cl.cam.ac.uk/Teaching/

2004/AdvSysTop/

ä Lea, D. (1999). Concurrent Programming in Java.

Addison-Wesley (2nd ed.) – particularly Chapter 2

ä Hennessy, J. and Petterson, D. Computer Architecture, a

Quantitative Approach. Morgan Kaufmann (3rd ed.) –

particularly Chapter 6
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Programming environment

ä (i ) hardware parallelism (chips/cores/threads)

(ii ) shared memory (not esoteric message-passing)

(iii ) cache-coherent (more on this later...)

ä Modern uniprocessors use SMT (eg. Intel Hyperthreading)

ä Multi-core is imminent, even on the desktop

ä On x86, 2-way is common, 4-way and 8-way commodity

ä SunFire 15k, 106-way:

(191cm tall, 85cm across,

166cm deep, 1 000 kg)
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A simple program
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Threads

ä 4-processor Sun Fire v480 server

ä 1...8 threads run, each counting to 1 000 000 000

ä Measure the wall-time it takes

ä System load (number of runnable threads, in this case)

grows 1..8
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Another simple program
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Threads

ä Each thread has a reference to a shared hashtable

ä Loops storing an entry in it (1 time in 1000) or reading

entries from it (999 times in 1000)

ä Using the built-in java.util.Hashtable class

Scalable synchronization Slide 1-5



Another simple program (2)
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ä This time using ConcurrentHashMap from Doug Lea’s

“util.concurrent” package

ä Always faster. Scales better over 1..4 processors

This course is about designing software that performs

gracefully as load increases and that makes effective

use of all of the resources available e.g. on that

106-processor box
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Motivating examples

Multi-threaded servers

ä Improving server architecture over basic designs that use

one thread per client (Zeus vs Apache)

ä Implementing effective shared data structures

(ConcurrentHashMap vs Hashtable)

Work sharing

ä Tasks that can readily be partitioned between numbers of

threads

ä Coarse granularity

· parallel ray tracing

· little communication once started

ä Fine granularity

· parallel garbage collection

· potential for lots of communication

ä Usually 1 thread per available processor
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General approach

1. Identify tasks that can usefully operate in parallel

· Top/middle/bottom thirds of an image in the ray

tracing example

· Returning files to different clients

2. Ensure that they operate safely while doing so

· e.g. basic locking strategies (as in Hashtable and

CS&A last year)

3. Make it unlikely that they ‘get in each others way’

· Even though its safe to do so, there’s no benefit from

running 2 CPU-bound tasks on a simple uniprocessor

· e.g. copying a shared read-only data structure so that

locking is needed less often

4. Reduce the overheads introduced by their co-ordination

· e.g. usually silly to start a new thread to do a tiny

amount of work

· Specialized algorithms exist for some cases, e.g. shared

work queues operating correctly without any locks
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General approach (2)

ä In many cases step 3 comes down to avoiding contention

for resources that cannot be shared effectively and

encouraging locality to aid caching of those that can

ä e.g. locks, CPU time, cache lines, disk

ä In each case sharing them introduces costs which are not

otherwise present

· Waiting for resources held under mutual exclusion

· Lock acquisition / release times

· Context switch times

· Management of scheduler data structures

· Pollution of caches (both hardware and

software-implemented)

· Invalidation of remote hardware cache lines on write

· Disk head movements

ä Remember from CSM: it’s the bottleneck resource which is

ultimately important
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Example: static-content web server

Single-threaded, one client at a time

Disc is the bottleneck. Thread is blocked on I/O most of the

time. CPU time and disc bandwidth are under-utilised.

Thread per client

Threads can share CPU during each others idle periods. Can

spread threads across multiple CPUs. Increased disc

bandwidth due to scheduling of concurrent I/O requests.

But what happens when we hit a bottleneck: e.g., maximal

disc throughput. If we continue to create a thread for every

client request then the system is overloaded: service time

increases; service rate remains constant or even decreases!

Thread pool

Could cap maximum number of threads simultaneously active.

Extending this idea, we can avoid ongoing cost of thread

creation and destruction by creating a thread pool during

initialisation of the web server. Size the thread pool according

to available system resources (statically or dynamically).
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Java recap

ä Encapsulate a thread’s implementation inside a class that

implements the Runnable interface

ä Create a new thread by creating a Thread object and

passing an implementation of Runnable to its constructor

public class Worker implements Runnable
{

public void run()
{
...

}

...
}

public static void main()
{

Worker w = new Worker();
new Thread(w).start();

}
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Java recap (2)

ä Each object has an associated mutual exclusion lock

(mutex) which can be held by at most one thread at any

time

ä If a thread calls a synchronized method then it blocks

until it can acquire the target object’s mutex

ä No guarantee of fairness – FIFO or other queueing

disciplines must be implemented explicitly if needed

public class Hashtable
{

...

public synchronized Object get(Object key)
{
...

}

public synchronized Object put
(Object key, Object value)

{
...

}
}

Scalable synchronization Slide 1-12



Java recap (3)

ä Each object also has an associated condition variable

(condvar) which can be used to control when threads

acting on the object get blocked and woken up

· wait() releases the mutex on this and blocks on its

condition variable

· notify() selects one of the threads blocked on this’s

condvar and releases it – the woken thread must then

re-acquire a lock on the mutex before continuing

· notifyAll() releases all of the threads block on

this’s condvar

ä These operations can only be called when holding this’s

mutex as well
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Java recap (4)

class FairLock
{
private int nextTicket = 0;
private int currentTurn = 0;

public synchronized void awaitTurn()
throws InterruptedException

{
int me = nextTicket ++;
while (currentTurn != me) {
wait();

}
}

public synchronized void finished()
{

currentTurn ++;
notifyAll();

}
}
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Fine-grained parallelism

ä Often operations on structured data can be executed in

parallel, e.g.

public void sum(int a[], int b[]) {
for (int i = 0; i < a.length; i ++) {
a[i] += b[i];

}
}

ä How can the compiler identify such code? What

assumptions are needed for parallel execution to be safe in

this case? How can it be executed effecitvely?

ä OpenMP provides a set of pragmas through which the

programmer can indicate where concurrent execution is

safe, e.g.

#pragma omp parallel
#pragma omp for
for (int i = 0; i < a.length; i ++) {

a[i] += b[i];
}

ä Notice how the program is still correct for single-threaded

execution
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Fine-grained parallelism (2)

ä Non-iterative work-sharing:

#pragma omp sections
{

#pragma omp section
<block-1>

#pragme omp section
<block-2>

}

ä Other pragmas indicate sections the must be executed by

only one thread (single), by one thread at a time

(critical), or barrier points which synchronize all

threads in a team, or reduction clauses to avoid data

dependencies

#pragma omp parallel for reduction(+: a) \
reduction(||: am)

for (i = 0; i < n; i ++) {
a += b[i];
am = am || b[i] == c[i];

}

ä The implementation is responsible for creating a suitable

number of threads and deciding how to assign work to

them
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Exercises

1-1 Discuss how FairLock could be made robust against

interruption.

1-2 A particular application can either be structured on a

2-processor machine as a single thread processing n work

items, or as a pair of threads each processing n/2 items.

Processing an item involves purely local computation of

mean length l and a small period of mean length s during

which it must have exclusive access to a shared data

structure.

Acquiring a lock takes, on average a and releasing it takes

r.

(i ) Assuming that s is sufficiently small that the lock is

never contended, derive an expression showing when the

single-threaded solution is faster than the 2-threaded

one.

(ii ) Repeat your calculation, but take into account the

possibility of a thread having to block. You may assume

(unrealistically) that a thread encounters the lock held

with probability s/(s + l)

(iii ) Why is the previous assumption unrealistic?
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Exercises (2)

1-3 Compare the performance of the FairLock class against

that of a built-in Java mutex. How would you expect

FairLock’s performance to scale as the number of threads

increases and as the number of available processors

increases?

1-4∗ An application is being written to transfer two files over

HTTP from a remote well-provisioned server. Do you think

the overall transfer of both would be faster (i ) using two

concurrent connections to the server and two threads

performing the transfers or (ii ) performing the transfers

sequentially. Explain why and any additional assumptions

that you have made.

‘Starred’ exercises are outside the syllabus of the course and

are included as extensions or as topics for discussion
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Deploying threads

To separate out reasonably independent tasks

ä Examples from CS&A last year – dealing with different

clients, updating the screen vs computing the data to

display

4 In modern systems each thread can block/unblock

independently

8 Uncontrolled thread creation creates contention on the

CPU

8 Sometimes a risk of +ve feedback effects – high load

causes poor response times causes clients to retry causing

higher load...

To make effective use of available processing resources

ä Divide a task into 2 sections on a 2-processor machine,

into 4 on a 4-processor etc; no benefit having more

ä “Correct” number of threads not known until runtime (and

dependent on other system load)
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Threading models

Kernel threads

ä Operating system manages the threads, usually as separate

processes sharing the same address space.

4 The OS can balance threads across multiple CPUs, and

can individually block the threads when they submit I/O

requests.

8 Can be moderately expensive to create.

User/language threads

ä Implemented within an application library or language

runtime.

ä The threads are multiplexed onto a single kernel-visible

process.

4 Fast creation and context-switch times.

8 Not possible to exploit CPU parallelism.

8 Without care, a blocked thread blocks the entire

application.

Scalable synchronization Slide 2-2



Deploying threads (2)

Decouple the ideas of

ä commands – things to be done

· Each line of a scene to ray-trace

· Each object to examine in a garbage collector

· Each request received from a remote client

ä executors – things responsible for arranging the execution

of commands

Commands should be lightweight to create – perhaps a single

object in an application, or an entry on a queue in a garbage

collector

Executors can be more costly to create and likely to be

long-lived – e.g. having an associated thread

Terminology here varies greatly: this course aims to follow

usage from the util.concurrent toolkit so you can see

“real” examples alongside these notes
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Commands & executors in util.concurrent

ä A command is represented by an instance of Runnable,

holding encapsulated state and supplying its code as a run

method:

public interface Runnable {
public abstract void run();

}

ä An executor is interacted with through a similar interface

by passing a command to its execute method:

public interface Executor {
public void execute(Runnable command)

throws InterruptedException;
}

Different implementations indicate common approaches

ä DirectExecutor – synchronous
ä LockedExecutor – synchronous, one at a time
ä QueuedExecutor – asynchronous, one at a time
ä PooledExecutor – asynchronous, bounded # threads
ä ThreadedExecutor – asynchronous,

unbounded # threads
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Thread pools

Minimum
pool
size = 2

Maximum
pool
size = 6

ä Commands enter a single queue

ä Each thread taking commands from the queue, executing

them to completion before taking the next

ä Items are queued if 6 threads are already running

ä New threads are created if fewer than 2 are running

ä The queue size can be bounded or unbounded

ä How to signal queue overflow?

· Block the caller until there is space in the queue

· Run the command immediately

· Signal an error

· Discard an item (which?) from the queue
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Thread pools (2)

What about commands that are not simple things to run to

completion?

8 Ones that block (e.g. ongoing interaction with clients)

· With suitable independence we could maybe just

increase the maximum pool size

8 Ones that generate other commands (e.g. parallel GC)

· Could just add them to the queue, but...

· ...may harm locality

· ...also, what if the queue fills?

Good solutions depend on the application, but common

approaches are:

ä Use asynchronous I/O so that a ‘command’ is generated in

response to one I/O completing

ä That new command is then responsible for the next step of

execution (e.g. replying to one client command) before

issuing the next I/O

ä Encourage affinity between particular series of commands

and particular threads
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Thread pools (3)

ä Provide separate queues for each active worker thread

ä If command C1 generates command C2 then place it on

the queue C1 came from

ä ...at the head or at the tail?

ä Note the analogy (and contrasts) with thread scheduling

What happens if a queue runs empty?

ä Take an item from another queue

ä From the head or from the tail?

ä One item or many?
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Thread pools (4)

This motivates the design of specialized queues for work

stealing

A basic version: Michael & Scott’s 2-lock concurrent queue

supporting concurrent push tail and pop head operations

val = 10 val = 20
null

Head
Tail

ä Head always points to a dummy node

ä Tail points to the last node in the list

ä Separate mutual exclusion locks protect the two operations

– the dummy node prevents them from conflicting

More intricate designs provide one thread fast access to the

head and stealing (of 1 item or 1/2 contents) from the tail
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Reducing contention

We now turn to look at the shared data structures that are

accessed during execution; what general techniques can we use

(e.g. as on Michael & Scott’s queue)?

ä Confinement: guarantee that some objects must always

remain thread-local → no need to lock/unlock them

seperately

· e.g. after locking some other ‘controlling’ object

· e.g. per-thread copies of a read-only data structure

ä Accept stale/changing data: particularly during reads

→ allow them to proceed without locking

· What’s the worst that can happen?

· Can stale data be detected?

ä Copy-on-write: access data through indirection and copy

when updated → again, reads proceed without locking

· Assumes writes are rare

· e.g. lists of event recipients in Swing
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Reducing contention (2)

ä Reduce locking granularity: lots of ‘small’ locks instead

of a few ‘large’ ones → operations using different locks

proceed in parallel

· Need to think about deadlock again

· Not a magic solution

ä Simple per-node locks in a red-black tree:

A B

C A

B C

X

Y

Y

X

ä Even read operations need to take out locks all of the way

from the root

ä Otherwise, suppose one thread is searching for A and has

got to node X, another thread performs a rotation...

ä We’ll return to this in the context of lock-free designs in

Lecture 10.
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Reducing contention (3)

Example: ConcurrentHashMap

Hash

Table divided into segments (shown here as the same colour).

One update lock per segment.

Read operations:

ä Proceed without locking
ä If successful then return
ä If failed then acquire segment lock and retry

Write operations:

ä Acquire segment lock required
ä If resizing then acquire all segment locks

Scalable synchronization Slide 2-11



Exercises

2-1 When might a thread pool be configured to create more

threads than there are processors available?

2-2 Discuss the advantages and disadvantages of configuring a

thread pool to use an unbounded input queue. Describe a

situation in which each of the suggested

overflow-management strategies would be appropriate.

2-3 A parallel garbage collector proceeds by taking objects to

scan, one by one, off a per-thread queue. For each object

it has to examine each of its fields and generate a new

work item for each of the objects it encounters that has

not been seen before.

Discuss the merits of placing these items on the head of

the thread’s queue versus the tail.

When the queue is empty, discuss the merits of stealing

items from the head of another thread’s queue versus the

tail.

You do not need to consider the details of how a parallel

garbage collector would work, but you may find it useful to

consider how your algorithm would proceed with a number

of common data structures such as lists and trees.
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Exercises (2)

2-4 Design a double ended queue supporting concurrent

push tail, pop head and push head operations. As

with Michael & Scott’s design, you should allow operations

on both ends to proceed concurrently wherever possible.

2-5∗ Now consider supporting pop tail, pop head and

push head. Why is this a much more difficult problem?

2-6∗ Examine either the java.nio features for asynchronous

and non-blocking I/O in Java, or their equivalents in

POSIX. Implement a simple single-threaded web server

which can still manage separate clients.
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Implementing mutual exclusion

Many of the concurrency algorithms and language features we

have seen so far depend on mutual exclusion.

ä Implemented by mutual-exclusion locks (mutexes).

ä Careful mutex implementation can have a huge impact on

scalability.

ä Locking protocol is also a design issue

· A lock that admits multiple readers into their critical

sections reduces serialisation, but complicates the

locking protocol.

ä The correct choice depends on:

· workload

· memory-access costs

· scalability requirements

Before investigating lock designs and their tradeoffs, we must

take a step back and look at the hardware architecture of the

systems we are designing for...
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Multi-processor system architectures

Cache-coherent shared memory multiprocessor, with either

uniform memory access from each CPU:

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Memory

or non-uniform access (ccNUMA):

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Memory

Memory

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Interconnect
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Recap: Uniprocessor cache coherence

ä Modern CPUs implement a write-back policy

ä Modified cache lines written back to memory only when

they are replaced.

ä Avoid writing back umodified cache lines on replacement.

ä Associate a state with each data line in the cache:

Dirty Line is modified: data in main memory is stale.

Clean Line is clean: data in main memory is up to date.

Invalid Line is invalid.

PrWr/BusRd

PrRd/BusRd PrWr/−

PrRd/− PrRd/−
PrWr/−

Evict/−

Evict/BusWr

Invalid Clean Dirty

ä A dirty cache line can be read or written by the CPU. It

must be written back to main memory when replaced.

ä A clean cache line need not be written back when it

replaced. Upgraded to dirty state if it is modified.
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SMP cache coherence

ä Coherency requires that there is at most one dirty version

of a cache line.

ä But a line can be cached read-only by multiple processors

ä SMP systems with a single memory bus ensure this by

snooping requests on the bus.

ä We can adapt the three-state uniprocessor state machine

to create the classic MSI protocol:

Modified Line is modified (equiv. of ‘dirty’ state)

Shared Line is clean (equiv. of ‘clean’ state)

Invalid Line contains no data

PrRd/BusRd

PrRd/− PrRd/−
PrWr/−

Evict/−

Evict/BusWr

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

BusRdX/−
BusRd/Flush

Invalid ModifiedShared

ä New read request BusRdX: read for exclusive ownership.

ä BusRdX is snooped by other caches: invalidate their copies.

ä New action Flush: typically abort the remote bus cycle

and write the cache line back to memory.

Scalable synchronization Slide 3-4



More complex snoopy protocols

Invalidate bus message

ä Replaces BusRdX in the Shared → Modified transition.

ä Avoids an unnecessary data fetch.

MESI protocol

ä Extends MSI with an Exclusive state.

ä Cache line is clean but owned exclusively.

ä Exclusive → Modified needs no bus transaction.

ä Needs a more complex BusRd protocol to determine if

other CPUs have the line cached.

MOESI protocol

ä Extends MESI with an Owned state.

ä Cache line may be modified even though other CPUs may

have the line cached in Shared state.

ä Modifications must be transmitted to those remote CPUs.

ä Good if there is high bandwidth link between CPUs

There are many, many variations...
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ccNUMA cache coherence

ä CPUs and their local memory grouped into nodes.

ä An interconnect allows message passing between nodes.

· No shared bus to serialise writes.

· No shared bus to snoop for memory accesses.

ä Directories provide a serialisation point

· One directory per node

· Tracks the caching of memory blocks belonging to its

node

ä CPUs issue read/write requests to the home node of the

memory block

· Local node: The node the request originates from

· Home node: Where that block of memory lives

· Remote node: Any node that has that block cached

ä Worst-case access latency in a ccNUMA system:

· 1. Local node → Home node

· 2. Home node → Remote node

· 3. Remote node → Local node

ä Three-hop miss
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Cache coherence: performance impact

Memory access much faster when satisfied by a cache, e.g.

from Hennessy & Patterson for 17-64 processors:

Processor cycles

Cache hit 1

Local memory 85

Remote, in home directory 150

Remote, cached elsewhere 170

ä Locality between CPUs and local data is important

ä Servicing cache misses will dominate execution time in

poorly designed algorithms (see Comp Arch for

uniprocessor examples)

ä Stealing data cached elsewhere is usually worst of all

· The ccNUMA ‘three-hop miss’

ä Know the cache block size to prevent false contention

ä Consumption of interconnect bandwidth is also a concern
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Memory consistency

As a further complication, modern processors execute

instructions out of order! (recall from Comp Arch)

ä What does this do to the programming model?

CPU A CPU B

x = 1 if ( y != 0 )

y = 1 print x

ä Can CPU B print any value other than 1?

· Typically the answer is yes!

· CPU B may predict the branch taken and read x from

its cache before evaluating the predicate.

ä What can we depend on?

· Aliased accesses by a single CPU are ordered

· Writes are eventually visible to other CPUs

· Aliased writes by different CPUs are serialised

ä Processors often guarantee more than this

· Sequential Consistency: very strong, but expensive

· Speculative Processor Ordering: modern x86

· See http://www.cl.cam.ac.uk/~kaf24/mem.txt

ä Insert memory barriers as necessary to enforce ordering

ä Programs that use mutual exclusion generally do not need

to worry about this: it can be hidden by the locking

protocol.
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Basic spin-locks

Assume that we’ve got an operation CAS (compare and

swap) which acts on a single memory location

seen = CAS (&y, ov, nv);

ä Look at the contents of y
ä If they equal ov then write nv there
ä Return the value seen
ä Do all of this atomically

class BasicSpinLock {
private boolean locked = false;

void lock () {
while (CAS(&locked,false,true) != false) {}

}

void unlock () {
locked = false;

}
}

ä What are the problems here?
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Basic spin-locks (2)

8 CAS must acquire exclusive access to the cache block

holding locked

8 This block will ping-pong between all of the processors,

probably with the worst case “three-hop miss” penalty

8 The interconnect will probably be saturated

8 This will harm the performance of other processes on the

machine, including that of the thread holding the lock,

delaying its release

Is this any better:

class ReadThenCASLock {
private boolean locked = false;

void lock () {
while (CAS(&locked,false,true) != false) {
while (locked == true) { /*2*/ }

}
}

void unlock () { locked = false; }
}
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Basic spin-locks (3)

4 Threads now spin at /*2*/ and only go for the lock when

they see it available

4 Any number of threads can now spin without causing

interconnect traffic

8 They’ll stampede for the lock when it becomes available

Several options exist:

ä Use a lock that allows greater concurrency (e.g. build

MRSW out of CAS)

ä Introduce a purely-local delay between seeing the lock

available and going for it

· Count to a large random number

· Exponentially increase this

· Re-check the lock after counting

ä Explicitly queue threads and arrange that the one at the

head of the queue acquires the lock next
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MRSW locks

class MRSWLock {
private int readers = 0; // -1 => writer

void read_lock () {
int seen;
while ((seen = readers) == -1 ||

CAS(&readers, seen, seen+1) != seen) { }
}

void read_unlock () {
int seen = readers;
while (CAS(&readers, seen, seen-1) != seen)
seen = readers;

}

void write_lock () {
while (readers != 0 ||
CAS(&readers, 0, -1) != 0) { }

}

void write_unlock () {
readers = 0;

}
}
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No silver bullet for performance

Red-black trees implemented over:
· A single spinlock (no concurrency)

· Per-node MRSW locks (parallel read accesses)

ä The tree contains approximately half million nodes.

ä Workload is 75% lookups, 25% insertions/deletions.

ä Very low (real) contention.
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Poor scalability because of contention in the locking protocol!
ä Always remember that performance is critically affected by

the underlying primitives (locks, coherency protocol, ...),

your choice of algorithm, and your workload
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Linux “big reader” locks

ä Supports read lock, read unlock, write lock,

write unlock with usual MRSW semantics

ä Assumes that read operations are much more common

than write operations

ä Built from per-CPU MRSW locks

ä A reader just acquires the lock for that CPU

ä A writer must acquire all of the locks

locks in order

Reader uses 1 entry

Writer acquires

Locked: read

Locked: read
Locked: read

Locked: write
Locked: write

Unlocked

Unlocked
Unlocked
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Queue-based spin locks

ä Basic idea: each thread spins on an entirely separate

location and keeps a reference to who gets the lock next:

Thread 3

false

Thread 2

tail

nulltrue

Thread 1

true

ä Each qnode has a next field and a blocked flag

ä In this case thread 3 holds the lock and will pass it to 1

and then to 2

ä A shared tail reference shows which thread is last in the

queue

ä How do we acquire the lock (i.e. add a new node to the

queue) safely without needing locks?

ä How does one thread ‘poke’ the next one in the queue to

get it to unblock?
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Queue-based spin locks (2)

1. Suppose Thread 4 wants the lock. It prepares a new qnode

in private storage:

Thread 2

true null

tail

true null

Thread 4

2. It uses CAS to update tail to refer to its node:

Thread 2

true null true null

Thread 4

tail

3. It writes to the next field of the previous tail:

true null

Thread 4

tail

Thread 2

true

4. Thread 4 now spins watching the flag in its qnode
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Queue-based spin locks (3)

Suppose Thread 2 now holds the lock:

true null

Thread 4

tail

Thread 2

false

If next is non-null (as here), wake the successor:

tail

Thread 2

false null

Thread 4

false

If next is null then either (i ) there really isn’t anyone waiting

or (ii ) another thread is between steps 2 and 3 on the

previous slide:

ä Thread 2 first tries to CAS the tail from itself to null

(leaving no-one waiting)

ä If that fails then someone must be waiting: spin watching

next until the successor makes itself known
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Queue-based spin locks (4)

ä Note how the CAS used to update tail serves to define a

total ordering between the threads that will acquire the

lock

ä It is critical that CAS returns the value that is seen when it

makes its atomic update: this makes sure that each thread

is aware of its immediate predecessor

This queue-based spin lock can be decomposed into two

separate algorithms:

ä The basic queue management using the next field:

qnode push_tail (qnode q);
qnode pop_head (qnode q);

push tail adds the qnode q to the tail of the queue and

returns the previous tail

pop head removes the qnode q from the head of the

queue and returns the new head

ä ...and the actual blocking and unblocking
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Exercises

3-1 The BasicSpinLock design is being used on a machine

with n processors. Each processor wants to briefly acquire

the lock and perform a small amount of computation

before releasing it. Initially the lock is held and all

processors are spinning attempting CAS operations.

Each access to the locked field takes, on average, 170

cycles and therefore vastly dominates the cost of executing

other parts of the algorithm and indeed the work

performed while holding the lock.

Estimate how many cycles will elapse between the lock

first becoming available and all n processors having

completed their work.

3-2 Explain why the ReadThenCASLock would be likely to

perform better for even a moderate number of processors.

Discuss the merits of rewriting the lock method to be:

void lock () {
do {
while (locked == true) { }

} while (CAS(&locked,false,true) != false);
}
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Exercises (2)

3-3 An implementation of Linux-style big reader locks for a

32-CPU machine uses the same basic scheme as the

MRSWLock in these slides, but defines the array as:

int readers[] = new int[32];

Why is this a bad idea?

3-4 Develop a pseudo-code implementation of a queue-based

spin lock, showing the memory accesses and CAS

operations that are used.

3-5∗ To what extent is the queue developed for queue-based

spin locks suitable as a general queue for work-stealing?

Show how it can be extended to support an operation

void push_head(qnode prev_head,
qnode new_head)

to push the qnode new head onto the head of the queue,

assuming that prev head is currently the head
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Disadvantages of mutual exclusion

Mutexes make it easy to ensure safety properties, but

introduce concerns over liveness:

ä Deadlock due to circular waiting

ä Priority inversion problems

ä Data shared between an interrupt handler and the rest of

an OS

ä Pre-emption or termination while holding locks

We’ve seen other performance concerns in this course:

ä Programming with ‘a few big locks’ is easy, but may

prevent valid concurrent operations (e.g. reads & writes on

a hashtable using different keys)

ä Programming with ‘lots of little locks’ is tricky (e.g.

red-black trees) and juggling locks takes time

ä Balancing these depends on the system’s workload &

configuration
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Non-blocking data structures

A non-blocking data structure provides the following

guarantee:

ä The system as a whole can still make progress if any

(finite) number of threads in it are suspended

Note that this generally precludes the use of locks: if a lock

holder were to be suspended then the locked data structure

remain unavailable for ever

We can distinguish various kinds of non-blocking design, each

weaker than the one before:

ä Wait free – per-thread progress bound

ä Lock free – system wide progress bound

ä Obstruction free – system wide progress bound if threads

run in isolation

Theoretical results show that CAS is a universal primitive for

building wait free designs – i.e. it can build anything
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Non-blocking data structures (2)

A simple example of why CAS can easily implement any data

structure:

ä Suppose we have an complicated data structure without

any concurrency control, e.g.

class FibonacciHeap {
Object put(Object key, Object val) { ... }
...

}

ä Access it through a level of indirection:

class LockFreeFibonacciHeap {
private FibonacciHeap fh =

new FibonacciHeap ();

Object put(Object key, Object val) {
FibonacciHeap copy, seen;
do {

seen = fh;
copy = seen.clone ();
copy.put (key, val);

} while (CAS (&fh, seen, copy) != seen);
}
...

}
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Building directly from CAS

We’ll now look at building data structures from scratch using

CAS, e.g. consider inserting 30 into a sorted singly-linked list:

tailhead

null10 4020

1. Search down the list for the node after which to make the

insert:

tailhead

20 null10 40

insert after
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Building directly from CAS (2)

2. Create the new node in private storage:

tailhead

20

30

null10 40

3. Link it in using CAS on its predecessor:

tailhead

20

30

null10 40

ä The CAS will fail if the 20 node’s successor is no longer the

40 node – e.g. if another thread has inserted a number

there
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Correctness

Suppose we now build a lookup table with lists of

(key, value) pairs. We want to also ask question such as

“Which keys map to a particular value”.

The table initially maps the key 20 to the colour ‘red’

ä One thread invokes key for(‘red’)

ä Concurrently, a second thread invokes

insert(10, ‘red’) then delete(20)

ä What are the answers allowed to be?

ä A OK, B OK, X returns {10, 20} seems an intuitive option

ä In that case, even though the operations take some time to

run, they appear to occur atomically at the marked points:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)
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Correctness (2)

4 A OK, B OK, X returns {20} corresponds to:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)

4 A OK, B OK, X returns {10} corresponds to:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)

8 A OK, B OK, X returns {} doesn’t correspond to any such

execution – there’s always some key associated with ‘red’

· Suppose the keys are simply held in order and CAS is

used to safely add and remove (key,value) pairs

· The key for implementation traverses down the list,

gets to (say) 15, then A runs, then B, then X continues
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Correctness (3)

This idea of correctness is known as linearisability:

ä Each operation should appear to take place atomically at

some point between when its invoked and when it returns

ä Notice that this is more restrictive than serializability

ä A linearizable non-blocking implementation can be used

knowing only the operations it provides, not the detail of

how they are implemented

ä In many implementations this means identifying a single

CAS operation (for updates) or a single memory read (for

read-only operations) which atomically checks and/or

updates all of the state that the result depends on

ä Compound operations are still a problem – e.g. given two

hashtables with linearizable operations, how to we do a

‘transfer’ that doesn’t leave the item in both (or neither) in

the middle...
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Current research

ä Programming with fine-grained locks is hard...

ä programming without locks is even harder :-(

ä A nice abstraction is a software transactional memory

(STM) which holds ordinary values and supports

operations such as

void STMStartTransaction();
word_t STMReadValue(addr_t address);
void STMWriteValue(addr_t address, word_t val);
boolean STMCommitTransaction();

ä The STM implementation ensures that all of the accesses

within a transaction appear to be executed in a linearizable

manner

ä We’ve developed a range of STMs supporting lock-free and

obstruction-free updates

ä In current research we’re evaluating their performance and

comparing ‘simple’ implementations of data structures,

using them, to carefully engineered data structures (e.g.

ConcurrentHashMap)
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Current research (2)

ä Another direction of research is exposing this to

mainstream programmers as a language extension, e.g.

atomic {
...

}

ä Anything within an atomic block would be implemented

using the STM

ä An extension to this is to allow threads to block

mid-transaction until an update is made to an address that

they are interested in, e.g.

do {
atomic (!full) {
full = true;
value = new_val;
done = true;

}
} while (!done);

ä This would block the current thread until full is false and

then, atomically with that, perform the updates to full,

to value and to the local variable done
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Summary

We’ve seen a range of techniques for designing scalable

concurrent applications for multiprocessors

The main points to remember:

ä Lots of threads usually means lots of context switching:

using a moderate number (e.g. #processors if they are

CPU-bound) is often better

ä Excessive contention and low locality will lead to poor

performance: try to ensure threads can proceed using

‘local’ resources as often as possible

ä Designing scalable shared data structures is hard and

depends on the workload and the execution environment:

higher level programming abstractions may help here
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Exercises

4-1 Distinguish between the properties of a wait-free system, a

lock-free one and an obstruction-free one. Which is most

appropriate for a hard-real-time application? What other

aspects of the system must be considered in order to

guarantee meeting external deadlines?

4-2 Someone suggests performing deletions from a sorted

singly linked list by finding the element to delete and using

CAS to update the next pointer contained in its

predecessor. Show why a solution based solely on this

approach is incorrect.

4-3 A new processor supports a DCAS operation that acts as an

atomic compare-and-swap on two arbitrary memory

addresses. Outline how DCAS can be used to perform

deletions from a sorted singly liked list.

4-4∗ Why would it be difficult to provide a wait free software

transactional memory (STM)?
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